
ANZIAM J. 57(2016), 280–298
doi:10.1017/S1446181115000292

SIMULATION OF MULTI-ASSET OPTION GREEKS UNDER
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Abstract

We discuss simulation of sensitivities or Greeks of multi-asset European style options
under a special Lévy process model: that is, the subordinated Brownian motion model.
The Malliavin calculus method combined with Monte Carlo and quasi-Monte Carlo
methods is used in the simulations. Greeks are expressed in terms of the expectations
of the option payoff functions multiplied by the weights involving Malliavin derivatives
for multi-asset options. Numerical results show that the Malliavin calculus method
is usually more efficient than the finite difference method for options with nonsmooth
payoffs. The superiority of the former method over the latter is even more significant
when both are combined with quasi-Monte Carlo methods.
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1. Introduction

1.1. Subordinated Brownian motions Empirical studies using real financial data
from German, Brazilian, North American and Chinese markets [10, 11, 33] show that
the Lévy processes based on generalized hyperbolic (GH) distributions can fit real data
much better than the well-known Gaussian process for the rate of returns of financial
asset prices. Among the GH processes, the normal inverse Gaussian (NIG) and the
variance gamma (VG) processes are becoming more and more popular in practice,
because they can fit real data better than the Gaussian process. Moreover, their sample
paths are easier to obtain than more complex Lévy processes, since both of these
processes can be expressed as subordinated (or time changed) Brownian motions.

A positive and increasing almost surely Lévy process {Yt}t≥0 is called a
subordinator [6]. If {Wt}t≥0 is a Brownian motion and {Yt}t≥0 is a subordinator such
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that {Wt}t≥0 and {Yt}t≥0 are independent of each other, then the process {Lt}t≥0 given by

Lt = θYt + σWYt (1.1)

is a subordinated Brownian motion (SBM), where θ and σ are constants. If {Yt}t≥0 is
the inverse Gaussian (IG) process or gamma process, then {Lt}t≥0, given by equation
(1.1), is the NIG process or VG process, respectively. Let ϕYt (u) = E(eiuYt ) be the
characteristic function of a subordinator (with i =

√
−1), and let ψYt (u) = log[E(eiuYt )].

Then the characteristic function of the SBM Lt given by (1.1) is

ϕLt (u) = E(eiuLt ) = E
[
eiu(θYt+σWYt )

]
= E

{
E
[
eiu(θYt+σWYt )|Yt = y

]}
= E

[
eiuθYt E

(
eiσuWy |Yt = y

)]
= E

[
eiuθYt ei2σ2u2y/2|Yt = y

]
= E

[
ei(uθ+iσ2u2/2)Yt

]
= ϕYt

(
uθ + 1

2 iσ2u2).
A random variable X has the IG distribution with parameters δ > 0 and γ > 0

(denoted by X ∼ IG(δ, γ)), if its probability density function (PDF) is given by

fIG(x; δ, γ) =

√
γ

2πx3 exp
[
−
γ(x − δ)2

2δ2x

]
· 1{x∈R:x>0}(x),

where R is the set of all real numbers, the indicator function of the set {x ∈ R : x > 0} is
defined by 1{x∈R:x>0}(x) = 1 if x > 0, and 1{x∈R:x>0}(x) = 0, otherwise. The characteristic
function of X ∼ IG(δ, γ) is given by

ϕX(u) = exp
[
−δ

(√
γ2 + 2iu − γ

)]
.

At time t, the value of an IG process {Yt}t≥0 with parameters δ > 0 and γ > 0 has
distribution IG(δt, γ). Thus, its characteristic function is

ϕYt (u) = exp
[
−δt

(√
γ2 + 2iu − γ

)]
.

A random variable X has the gamma distribution with parameters a > 0 and b > 0
(denoted by X ∼ Γ(a, b)), if its PDF is

fΓ(x; a, b) =
ba

Γ(a)
xa−1e−bx · 1{x∈R:x>0}.

The characteristic function of X ∼ Γ(a, b) is given by

ϕX(u) =

(
1 −

iu
b

)−a
.

At time t, the value of a gamma process {Yt}t≥0 with parameters a > 0 and b > 0 has
distribution Γ(at, b). Therefore, its characteristic function is

ϕYt (u) =

(
1 −

iu
b

)−at
.
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The density of the one-dimensional NIG distribution is given by

f NIG(x;α, β, δ, µ) =
αδ

π

K1
(
α
√
δ2 + (x − µ)2)√

δ2 + (x − µ)2
exp

[
δ

√
α2 − β2 + β(x − µ)

]
,

for x ∈ R, where K1(x) is the modified Bessel function of the second kind with
parameter one [1] and α, β, δ and µ are model parameters for the NIG distribution.
These four parameters in the model can be estimated by a maximum likelihood method
or by matching the theoretical and sample moments. More details about definitions,
properties and some applications in finance of subordinated Brownian motions can be
found in the literature (see, for example, [6, 10, 29]).

1.2. Methods of option sensitivity estimation Consider a European option whose
payoff f depends on p asset prices S (1)

T , . . . , S (p)
T at maturity time T . Define S T =

(S (1)
T , . . . , S (p)

T ) as the asset price vector at maturity. Under some risk-neutral measure,
the option price or value can be expressed as (see, for example, [6] or [14])

V = V(S 0,K,Σ, r,T ) = E[e−rT f (S T )],

where S 0 = (S (1)
0 , . . . , S (p)

0 ) is the initial asset price vector, K is the strike price,
Σ = (σi j)p×p is the covariance matrix of the asset price returns (assumed to be constant
in this paper), r is the risk-free interest rate (also constant) and f (S T ) = f (S T ,K) is the
option payoff function. A risk-neutral measure, such as the one in the above, is unique
under the Black–Scholes–Merton model for the underlying asset prices, but it usually
is not unique under a model with jumps for the asset prices.

The option sensitivities or Greeks, such as

∆1 =
∂V

∂S (1)
0

, Γ11 =
∂2V

∂(S (1)
0 )2

, Γ12 =
∂2V

∂S (1)
0 ∂S (2)

0

, V11 =
∂V
∂σ11

,

V12 =
∂V
∂σ12

ρ =
∂V
∂r

and θ =
∂V
∂T

, and so on,

are important in financial trading, hedging and risk management, where the indices i
and j in Γi j refer to the sensitivity of the option price with respect to the initial asset
prices S (i)

0 and S ( j)
0 , respectively, and, inVi j, the indices i and j refer to the sensitivity

of the option price with respect to σi j. The values of Greeks are even harder to obtain
than values of options themselves.

Conventionally, the central finite difference method is used to estimate the Greeks,
since it is more efficient than the forward or backward finite difference method. For
example, with the central finite difference method, ∆ j and Γ jk are approximated to be
(see, for example, [14, p. 379] for the case of a single asset)

∆ j =
∂V

∂S ( j)
0

≈
V(S 0,1) − V(S 0,2)

2dS ( j)
0

, (1.2)
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where S 0 = (S (1)
0 , . . . , S (p)

0 ), S 0,q = (S (1)
0,q, . . . , S

(p)
0,q) for q = 1, 2,

S (l)
0,1 = S ( j)

0 + dS ( j)
0 for l = j and S (l)

0,1 = S (l)
0 for l , j,

S (l)
0,2 = S ( j)

0 − dS ( j)
0 for l = j and S (l)

0,2 = S (l)
0 for l , j,

where dS ( j)
0 is the increment in S ( j)

0 . Other Greeks can be approximated similarly.
The plain or crude Monte Carlo simulation method is used to estimate option values

appearing in the above expressions of Greeks. The choice of dS ( j)
0 is critical for

applying the finite difference method. The value of dS ( j)
0 cannot be too small or too

large. One criterion is that small changes in dS ( j)
0 will not lead to large changes in

the Greeks. In many situations, the choice of dS ( j)
0 ≈ S ( j)

0 /1000 will be good enough.
Another very important consideration is the method for choosing the pseudorandom
numbers needed for simulating expectations so as to obtain option values for each
Greek by the finite difference method (see, for example, (1.2)). To obtain the best
possible convergence in the simulation of the Greeks, it has been shown that one should
use common pseudorandom numbers for all expectations appearing in each Greek (see
the article by L’Ecuyer and Perron [22] for more details on this issue). However, the
central finite difference method is difficult to apply when obtaining Greek values for
options with nonsmooth payoff functions. The likelihood ratio method is useful if the
density functions exist [14].

A third approach, the Malliavin calculus method, was proposed about fifteen
years ago and shows advantages over the other two methods for exotic options, as
demonstrated in the literature [12, 13, 24, 34]. The main idea of this method is to
express the Greeks in terms of option payoff functions multiplied by weight functions
that depend on Malliavin derivatives.

1.3. Elements of Malliavin calculus Here we give a very brief introduction to
some basic facts on Malliavin calculus. For details, readers are referred to the book by
Nualart [26]. Bally [3] and Øksendal [27] provide two other sources for an elementary
introduction to Malliavin calculus. Nunno et al. introduced Malliavin calculus for
Lévy processes with some applications in finance in a recent book [9].

Fix T > 0, p ∈ N, q ∈ N and let {Wt = (W (1)
t , . . . ,W (p)

t )}t≥0 be a p-dimensional
standard Brownian motion in Rp. For any t ∈ [0, T ], let Ft = σ(Yu : u ∈ [0, t]) and
Gt = σ(WYu : u ∈ [0, t]). Let F = (F1, . . . , Fq)′ be a random column vector in Rq,
measurable with respect to GT = σ(WYt : t ∈ [0, T ]). Denote the Malliavin derivative
on the Gaussian space with respect to the kth component of the underlying Brownian
motion by D(k), and define

DsFk =
(
D(1)

s Fk, . . . ,D
(p)
s Fk

)′
, k = 1, . . . , q,

where the symbol s refers to the time variable for the Malliavin derivative {DsFk : s ≥
0}, which is also a stochastic process (see [12] or [26]).
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Furthermore, denote the Skorohod integral [26] over (0, YT ] with respect to the kth
component of the underlying Brownian motion by δk: that is, for a suitable smooth
stochastic process {Gt}t≥0 in Rq,

δk(G·) =

∫ YT

0
GsδW (k)

s ,

where the multivariate Skorohod integral is taken componentwise. The two operators
D and δ are linked by the equations

δk〈F,G·〉 = 〈δk(G·), F〉 −
∫ YT

0
〈D(k)

t F,Gt〉 dt

and

E
[∫ YT

0

(
D(k)

t F
)
Gt dt

]
= E

[
Fδk(G·)

]
for F ∈ D1,2, G ∈ Dom(δ) and k = 1, . . . , q.

So far in the literature, application of Malliavin calculus to Greek estimations
has been mainly used for asset prices under (geometric) Brownian motions. Davis
and Johansson [7] discuss simulation of Greeks of options under jump-diffusion
processes for asset prices, while Kawai and Kohatsu-Higa [18] address simulation
of option Greeks under subordinated Brownian motion for up to two assets, as well
as density estimation in multiple dimensions. There are almost no results on option
Greek simulations with Malliavin calculus combined with quasi-Monte Carlo methods
reported in the literature. In this paper, our contributions are twofold. We (1) derive
Greek formulas for multi-asset options under subordinated Brownian motions for
European style options and (2) apply the derived formulas, combined with Monte
Carlo and quasi-Monte Carlo methods, to simulate the Greeks.

The rest of this paper is organized as follows. Formulas of Greeks for multi-asset
options are given in Section 2. Numerical test examples are given in Section 3 with a
concluding summary in Section 4.

2. Formulas of option Greeks

Under a Lévy process model for asset prices, the market is usually no longer
complete, and the equivalent martingale measure is not unique. However, such an
equivalent martingale measure can be found by methods such as Esscher transform,
mean-correcting martingale measure, and so on. Assume that there are p (≥ 1) risky
assets. Let {Yt}t≥0 be a subordinator process, and ϕYt , ψYt , Ft and Gt be the same as in
Section 1. Using the mean-correcting martingale measure, one can derive equations
for the underlying asset prices: that is,

S ( j)
t = S ( j)

0 exp
[
rt − ψYt

{
−i

(
η j +

1
2

p∑
l=1

c2
jl

)}
+ η jYt +

p∑
l=1

c jlW
(l)
Yt

]
,

S ( j)
t |t=0 = S ( j)

0 , j = 1, . . . , p,

(2.1)
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where r is the risk-free interest rate, η j, j = 1, . . . , p are constants, C = (c jk)p×p is a
matrix such that Σ = (σ jk)p×p = CC′ is the covariance matrix of asset price returns (that
is, C can be taken as the Cholesky decomposition of Σ [15]), {Yt}t≥0 is a subordinator
process, {Wt = (W (1)

t , . . . ,W (p)
t )}t≥0 is a p-dimensional standard Brownian motion

(that is, {W (1)
t }t≥0, . . . , {W

(p)
t }t≥0 are independent one-dimensional standard Brownian

motions), and ∣∣∣∣∣ψYt

[
−i

(
η j +

1
2

p∑
l=1

c2
jl

)]∣∣∣∣∣ <∞, t ∈ [0,T ], j = 1, 2, . . . , p.

Denote σ2
j = σ j j. Then σ2

j = σ j j =
∑p

l=1 c2
jl. If Yt has an IG or a VG distribution

with parameters a > 0 and b > 0, then equation (2.1) becomes

S ( j)
t = S ( j)

0 exp
(
r jt + η jYt +

p∑
l=1

c jlW
( j)
Yt

)
with S ( j)

t |t=0 = S ( j)
0 , j = 1, . . . , p. (2.2)

Here,

r j = r + a[
√

b2 − 2(η j + σ2
j/2)] − b with b ≥

√
max
1≤ j≤p

|2η j + σ2
j | if Yt ∼ IG(at, b),

or

r j = r + a log[1 − (η j + σ2
j/2)/b] with b > max

1≤ j≤p
(η j + σ2

j/2) if Yt ∼ Γ(at, b).

We concentrate on simulation of Greeks under NIG and VG models in this paper.
Simulation of option Greeks under other GH models can be treated similarly, but with
more effort.

Let δi j = 1 for i = j and zero otherwise, and define ei to be the ith row of the p × p
identity matrix. If matrix C = (c′1, . . . , c

′
p)′ and its inverse C−1 = (βi j)p×p = (β1, . . . , βp)

are partitioned into row and column vectors, respectively, then ciβ j = δi j for i, j =

1, 2, . . . , p. We consider the following European style option whose payoff f depends
on asset prices at maturity or terminal S T = (S (1)

T , . . . , S (p)
T ) given by

V = E[e−rT f (S T )].

Theorem 2.1. Assume that the asset prices are given by equation (2.1) and f : Rp→ R

is a measurable function such that E[ f 2(S T )] is locally uniformly bounded in S 0.

(1) If E[Y−2
T ] <∞, then for j = 1, 2, . . . , p,

∆ j =
∂V

∂S ( j)
0

=
e−rT

S ( j)
0

E
(

f (S T )
1

YT

p∑
l=1

βl jW
(l)
YT

)
for j = 1, 2, . . . , p. (2.3)
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(2) If E[Y−4
T ] <∞, then for j, k = 1, 2, . . . , p,

Γ jk =
e−rT

S ( j)
0

E
[

f (S T )
{
−

δ jk

S ( j)
0 YT

p∑
l=1

βl jW
(l)
YT

+
1

S (k)
0 Y2

T

(( p∑
l=1

βl jW
(l)
YT

)( p∑
p=1

βpkW (p)
YT

)
− YT

p∑
l=1

βl jβlp

)}]
. (2.4)

(3) If E[Y−2
T ] <∞, then for j, k = 1, 2, . . . , p,

Ṽ jk =
∂V
∂c jk

= e−rTE
[

f (S T )
(W (k)

YT

YT

p∑
l=1

βl jW
(l)
YT
− βk j

)]
. (2.5)

Proof. The proof of this theorem requires the order of differentiation and expectation
to be exchanged. The validity of such an exchange can be verified by a similar
method to that of Kawai and Kohatsu-Higa [18], and, therefore, it is omitted here.
We concentrate on the derivation of formulas (2.3)–(2.5) below. By definition,

∆ j =
∂V

∂S ( j)
0

= e−rTE
[
∂ f (S T )

∂S ( j)
0

]
= e−rTE

[ d∑
l=1

∂l f (S T )
∂S (l)

T

∂S ( j)
0

]
=

e−rT

S ( j)
0

E[∂ j f (S T )S ( j)
T ],

since S (l)
T is independent of S ( j)

0 when l , j, where ∂l f is the partial derivative of f
with respect to the lth variable. Conditioning on FT yields ∆ j = (e−rT/S ( j)

0 )E{
E[∂ j f (S T )S ( j)

T |FT ]
}

and, given FT , we have D(k)
u S ( j)

t = S ( j)
t c jk1{u≤Yt} and

DuS ( j)
t = (D(1)

t S ( j)
t , . . . ,D(d)

t S ( j)
t ) = (S ( j)

t c j11{u≤Yt}, . . . , S
( j)
t c jd1{u≤Yt}) = S ( j)

t 1{u≤Yt}c j.

Moreover, for any p-variate differentiable function f ,

Du f (S t) =

p∑
l=1

∂l f (S t)DuS (l)
t =

p∑
l=1

∂l f (S t)S
(l)
t 1{u≤Yt}cl for u, t ∈ [0,T ].

In particular, Du f (S T ) =
∑p

l=1 ∂l f (S T )S (l)
T 1{u≤YT }cl, which yields∫ YT

0
Du f (S T )(β j) du =

p∑
l=1

∂l f (S T )S (l)
T (clβ j)

∫ YT

0
1{u≤YT } du

=

p∑
l=1

∂l f (S T )S (l)
T δl j

∫ YT

0
du = ∂ j f (S T )S ( j)

T YT .

Hence

∂ j f (S T )S ( j)
T =

∫ YT

0
Du f (S T )

β j

YT
du (2.6)
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and, therefore,

∆ j =
e−rT

S ( j)
0

E
[
E
{
∂ j f (S T )S ( j)

T

∣∣∣
FT

}]
=

e−rT

S ( j)
0

E
[
E
{∫ YT

0
Du f (S T )

β j

YT
du

∣∣∣∣
FT

}]
=

e−rT

S ( j)
0

E
[
E
{

f (S T )δ
( β j

YT

)∣∣∣∣
FT

}]
=

e−rT

S ( j)
0

E
[

f (S T )δ
( β j

YT

)]
.

Now, for given FT ,

δ
( β j

YT

)
=

1
YT

p∑
l=1

∫ YT

0
βl j dW (l)

t =
1

YT

p∑
l=1

βl jW
(l)
YT

and so

∆ j =
e−rT

S ( j)
0

E
[
E
{

f (S T )δ
( β j

YT

)∣∣∣∣
FT

}]
=

e−rT

S ( j)
0

E
[
E
{

f (S T )
1

YT

p∑
l=1

βl jW
(l)
YT

∣∣∣∣
FT

}]
=

e−rT

S ( j)
0

E
(

f (S T )
1

YT

p∑
l=1

βl jW
(l)
YT

)
,

which proves (2.3). To prove (2.4), notice that (1/YT )
∑p

l=1 βl jW
(l)
YT

is independent of
S (k)

0 , so

Γ jk =
∂2V

∂S ( j)
0 ∂S (k)

0

=
∂∆ j

∂S (k)
0

= −
e−rTδ jk

(S ( j)
0 )2
E
[

f (S T )
1

YT

p∑
l=1

βl jW
(l)
YT

]
+

e−rT

S ( j)
0

E
[
∂ f (S T )

∂S (k)
0

1
YT

p∑
l=1

βl jW
(l)
YT

]

= −
e−rTδ jk

(S ( j)
0 )2
E
[

f (S T )
1

YT

p∑
l=1

βl jW
(l)
YT

]
+

e−rT

S ( j)
0 S (k)

0

E
[
E
{
∂k f (S T )S kT

1
YT

p∑
l=1

βl jW
(l)
YT

∣∣∣∣
FT

}]

= −
e−rTδ jk

(S ( j)
0 )2
E
[

f (S T )
1

YT

p∑
l=1

βl jW
(l)
YT

]

+
e−rT

S ( j)
0 S (k)

0

E
[
E
{∫ YT

0
Du f (S T )

βk

YT

1
YT

p∑
l=1

βl jW
(l)
YT

du |FT

}]

= −
e−rTδ jk

(S ( j)
0 )2
E
[

f (S T )
1

YT

p∑
l=1

βl jW
(l)
YT

]
+

e−rT

S ( j)
0 S (k)

0

E
[
E
{

f (S T )δ
(
βk

YT
2

p∑
l=1

βl jW
(l)
YT

)∣∣∣∣
FT

}]
.

(2.7)
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For given FT ,

δ
[
βk

YT

( 1
YT

d∑
l=1

βl jWlYT

)]
=

1
Y2

T

[( d∑
l=1

βl jWlYT

)
δ(βk) −

∫ YT

0
Du

( d∑
l=1

βl jWlYT

)
βk du

]

=
1

Y2
T

[( d∑
l=1

βl jWlYT

)( d∑
p=1

βpkWpYT

)

−

∫ YT

0

{
D(1)

u

( d∑
l=1

βl jWlYT

)
, . . . ,D(d)

u

( d∑
l=1

βl jWlYT

)}
βk du

]
=

1
Y2

T

[( d∑
l=1

βl jWlYT

)( d∑
p=1

βpkWpYT

)

−

∫ YT

0

(
β1 j1{u≤YT }, . . . , βd j1{u≤YT }

)
βk du

]
=

1
Y2

T

[( d∑
l=1

βl jWlYT

)( d∑
p=1

βpkWpYT

)
−

∫ YT

0
β′jβk1{u≤YT } du

]

=
1

Y2
T

[( d∑
l=1

βl jWlYT

)( d∑
p=1

βpkWpYT

)
− YT

d∑
l=1

βl jβlp

]
. (2.8)

When equation (2.8) is substituted into (2.7), we obtain the required expression for Γ jk

in (2.4). For equation (2.5), since S (l)
T = S (l)

0 exp(µlYT +
∑p

q=1 clqW (q)
YT

), for given FT ,

we obtain ∂S (l)
T /∂c jk = S (l)

T W (k)
YT
δl j. Thus,

Ṽ jk =
∂V
∂c jk

= e−rTE
[ p∑

l=1

∂l f (S T )
∂S (l)

T

∂c jk

]
= e−rTE

[
E
{
∂ j f (S T )S ( j)

T W (k)
YT

∣∣∣
FT

}]
. (2.9)

Similarly to equation (2.6), for given FT ,

∂ j f (S T )S ( j)
T W (k)

YT
=

∫ YT

0
Du f (S T )

W (k)
YT
β j

YT
du,

and hence,

E
[
∂ j f (S T )S ( j)

T W (k)
YT

]
= E

[∫ YT

0
Du f (S T )

W (k)
YT
β j

YT
du

]
= E

[
f (S T )δ

(W (k)
YT
β j

YT

)]
, (2.10)
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and

δ
(W (k)

YT
β j

YT

)
=

1
YT
δ
(
W (k)

YT
β j

)
=

1
YT

[
W (k)

YT
δ
(
β j

)
−

∫ YT

0

(
DuW (k)

YT

)
β j du

]
=

1
YT

[
W (k)

YT

p∑
l=1

βl jW
(l)
YT
−

∫ YT

0

(
D(1)

u W (k)
YT
, . . . ,D(p)

u W (k)
YT

)
β j du

]
=

1
YT

[
W (k)

YT

p∑
l=1

βl jW
(l)
YT
−

∫ YT

0

(
δ1k1{u≤YT }, . . . , δpk1{u≤YT }

)
β j du

]
=

1
YT

[
W (k)

YT

p∑
l=1

βl jW
(l)
YT
−

(∫ YT

0
1{u≤YT } du

)
e′kβ j

]

=
1

YT

[
W (k)

YT

p∑
l=1

βl jW
(l)
YT
− YTβk j

]
=

W (k)
YT

YT

p∑
l=1

βl jW
(l)
YT
− βk j. (2.11)

Thus equation (2.5) follows from the equations (2.9)–(2.11), which completes the
proof of the theorem. �

Remark 2.1. In the rest of the paper, we assume that Σ has the Cholesky
decomposition, Σ = CC′, where C = (ci j)p×p is a lower triangular matrix, and

c11 =
√
σ11, ci1 =

σi1
√
σ11

, 2 ≤ i ≤ p;

cii =

√√√
σii −

i−1∑
k=1

c2
ik, ci j =

σ11 −
∑i−1

k=1 cikc jk

cii
, 2 ≤ j ≤ p, j + 1 ≤ i ≤ p;

ci j = 0, i < j.

Thus, from the above expressions,V j0k0 of the option is given by

V j0k0 =
∂V

∂σ j0k0

=
∂V
∂c j0k0

∂c j0k0

∂σ j0k0

= Ṽ j0k0

∂c j0k0

∂σ j0k0

.

3. Numerical tests

In this section, we simulate the Greeks by both a finite difference method and the
Malliavin calculus method combined with the Monte Carlo and the quasi-Monte Carlo
methods, and compare their performances.

The Monte Carlo (MC) simulation method has been widely used in financial
applications since Boyle [4] first proposed it in 1977. It is the main method used
to handle problems with high dimensions (>3). Its main drawback is that computation
is slow, sometimes even after using variance reduction techniques. To overcome
this, people have applied the quasi-Monte Carlo (QMC) methods (also called low-
discrepancy sequence (LDS) methods), where deterministic or quasirandom sequences
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are used, instead of pseudorandom ones. There are, basically, has two classes of
LDS [8, 21, 25]: digital net sequences, such as Halton’s sequence, Sobol’s sequence,
Faure’s sequence, Niederreiter’s (t,m, s)-nets and (t, s)-sequences; and integration
lattice sequences, such as good lattice points (GLP).

The asymptotic convergence rate of the error of a p-dimensional integration is
O((log N)p/N) when a digital net LDS is applied, whereas it is O(1/

√
N) when

a pseudorandom number sequence is used, where N is the number of points or
sample size or replications, and p is the dimension of the problem. The asymptotic
convergence rate of the error is even better when a GLP is applied to estimate an
integral with smooth and periodic integrand: that is, it is O((log N)αp/Nα), where
α (> 1) is a parameter related to the smoothness of the integrand. Niederreiter’s
book [25] is an excellent reference for QMC methods. Dick and Pillichshammer [8]
provide more updated information on QMC methods, whereas Hua and Wang [16] and
Sloan and Joe [30] discuss GLP and lattice rules with rank r (≥ 1). Applications of
GLP and lattice rules with rank r (≥ 1) to option pricing and sensitivity can be found
in the work of Boyle et al. [5] and Lai [19].

To compare the efficiencies of different methods, we need a benchmark for fair
comparisons. If the exact value of the quantity to be estimated is known, then we could
use the absolute error or relative error for comparison. Otherwise, we use σ2

N · t =

Nδ2
N · t for comparison, where σ2

N is the unbiased sample variance, δN = σN/
√

N is
the standard error and t is the simulation time.

For a given LDS sequence, following Tufflin [31], a randomized LDS sequence
produced by introducing random shift (probably the simplest randomized QMC
(RQMC) method), can be defined as follows. Assume that we estimate µ = E[ f (X)],
where X is a p-dimensional random vector. Let {Xi}

m
i=1 ⊂ [0, 1]p be a finite LDS

sequence and {R j}
n
j=1 ⊂ [0, 1]p be a finite sequence of random vectors. For each

fixed j, we form a sequence {Yi, j}
m
i=1 with Yi, j = Xi + R j (mod 1) componentwise. The

operation of x = y (mod 1) is to take the fractional part of the number y ≥ 0, so that
x ∈ [0, 1]. When such a randomized LDS is applied, the integration error still has the
same asymptotic convergence rate as the error does when the original LDS is applied
(see [31]). Define

µ j =
1
m

m∑
i=1

f (Yi, j) and µ =
1
n

n∑
j=1

µ j.

Then the unbiased sample variance is

σ2
=

∑n
j=1(µ j − µ)2

n − 1
=

n
∑n

j=1 µ
2
j −

(∑n
j=1 µ j

)2

(n − 1)n

and the standard error of the randomized LDS is defined by δ = σ/
√

n. The variance
of the MC method is calculated as usual with mn points. When two methods are used
to simulate the same quantity with the same sample size, one way to measure the
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efficiency of the second method over the first one is defined as in [28] to be

efficiency =
σ2

1 · t1
σ2

2 · t2
,

where σ2
1 and t1 are the variance and time used for the first method, respectively, and,

similarly, for σ2
2 and t2 of the second method. Other definitions of efficiencies can be

found in the literature [2], and the efficiency here is the ratio of the efficiencies, based
on other definitions. The variance reduction ratio (VRR) is σ2

1/σ
2
2. If the efficiency is

greater than one, then the second method is regarded as more efficient than the first. If
the times used by the two methods are close, then the efficiency is close to the variance
reduction ratio.

In this paper, all the programs are run under Windows XP using MATLAB (version
7.0.4), the computer is a TOSHIBA Satellite Pro laptop with Intel Core 2 Duo CPU @
2.10 GHz, 2.00 GB of RAM. The pseudorandom number generator used is the built-in
generator (that is, rand) provided by MATLAB. Inverse Gaussian random variates can
be generated by the method proposed by Michael et al. [23] (denote this as the MSH
method). For low-discrepancy sequences, Sobol’s sequence is used, since it usually
gives the best performance out of the available digital net low-discrepancy sequences
that can be implemented. We use the direction numbers of Joe and Kuo [17], so that
our implementation of Sobol’s sequence can generate points of dimension as high as
1111. We use the approximation method of Wichurat [32] to generate the standard
normal random variate. This method achieves 16-digit accuracy, as claimed.

Note that we do not simulate Greeks by a finite difference (FD) method combined
with low-discrepancy sequences in order to save time. A fairer comparison would
be between two different methods combined with the same type of sequence with
the same number of points or sample size. We conjecture that, although the FD
method combined with an LDS will be more efficient than the central finite difference
method combined with MC, it is still less efficient than the Malliavin calculus method
combined with the same type of LDS.

We consider two examples: basket type down-and-out (DNO) and corridor options
under multivariate NIG and VG models. That is, the asset prices are given by (2.2),
where

r j = r + a
√

b2 − 2(η j + σ2
j/2) − b with b ≥

√
max
1≤ j≤d

(
|2η j + σ2

j |
)

if Yt ∼ IG(at, b),

or

r j = r + a log[1 − (η j + σ2
j/2)/b] with b > max

1≤ j≤d
(η j + σ2

j/2) if Yt ∼ Γ(at, b).

We have taken the parameter values as follows: r = 0.1, T = 1, d = 6, S j0 = 50 + 5 ×
( j − 1), dS j0 = 0.003 × S j0 for 1 ≤ j ≤ d; σ j = 0.2 for j ≤ 3 and σ j = 0.3 for 4 ≤ j ≤ d,
ρ jk = 0.6 for 1 ≤ j, k ≤ 3 or 4 ≤ j, k ≤ d, ρ jk = −0.4, otherwise, σ jk = ρ jkσ jσk for
1 ≤ j, k ≤ d; the number of random shifts n = 10. The choice of n = 10 may be a little
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Figure 1. Comparison of simulations of ∆1 of a 6-dim. basket type DNO option under NIG model with
K = min(S 0) and η0 = 0.3.

Table 1. Comparison of simulation efficiencies and VRRs of ∆1 and Γ11 for a basket type DNO option
with 6 assets under NIG model by finite difference and Malliavin calculus combined with MC and QMC.
Notice that to shorten the width of the table, the following notations are used: FD for FDMC, MC for
MVMC and SB for MVSB. The same comment applies to Table 2.

Efficiencies VRR
∆ Γ11 ∆ Γ11

FD/MC FD/SB FD/MC FD/SB FD/MC FD/SB FD/MC FD/SB
K = min(S 0)

11.7 16.2 7972.2 5006.5 2.8 17.6 1810.8 5721.1
K = mean(S 0)

16.1 13.9 16 732.6 7661.2 3.7 15.0 4100.1 9201.4
K = max(S 0)

22.7 15.5 23 154.5 11 431.3 5.2 17.2 5882.4 14 830.8

noisy for other cases, but replacing larger values of n will not change the conclusion
that the RQMC method outperforms the MC method, in general, when both methods
are applied to derivative pricing and Greek estimations. In our simulations, the sample
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Figure 2. Comparison of simulations of Γ11 of a 6-dim. basket type DNO option under NIG model with
K = min(S 0) and η0 = 0.3.

sizes for the MC method are 2560, 5120, 10 240, 20 480, 40 960, 81 920, 163 840,
327 680, 655 360, 1 310 720, 2 621 440, and 5 242 880; and those for Sobol’s sequence
are 256, 512, 1024, 2048, 4096, 8192, 16 384, 32 768, 65 536, 131 072, 262 144, and
524 288, each with 10 random shifts. Values of other parameters are specified in
the examples. Symbols used in the following tables are explained as follows. The
central finite difference method with pseudorandom sequence is denoted by FDMC,
the Malliavin calculus method with plain MC is denoted by MVMC and the Malliavin
calculus method with Sobol’s sequence is denoted by MVSB, using the formulas given
in Theorem 2.1. Due to limited space, only some of the numerical results for a basket
type DNO option under both NIG and VG models are presented below. Results for a
basket type corridor option under NIG and VG are totally omitted here for the same
reason. The detailed numerical results are available on request.

Example 3.1. Simulation of Greeks of a basket type DNO option under the
multivariate NIG model. The option has payoff

f (S T ,K) = 1{S T :
∑d

j=1 α jS jT≥K}(S T ).

The asset prices follow (2.2), where Yt ∼ IG(at, b). Some parameter values are taken

as follows: α j = 1/d, a = 1, b = max1≤ j≤d(
√
|2η j + σ2

j |), η j = η0 + 0.005( j − 1),
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Figure 3. Comparison of simulations of Γ12 of a 6-dim. basket type DNO option under NIG model with
K = min(S 0) and η0 = 0.3.

Table 2. Comparison of simulation efficiencies and VRRs of ∆1 and Γ11 for a basket type DNO option
with 6 assets under VG model by finite difference and Malliavin calculus combined with MC and QMC.

Efficiencies VRR
∆ Γ11 ∆ Γ11

FD/MC FD/SB FD/MC FD/SB FD/MC FD/SB FD/MC FD/SB
K = min(S 0)

1.9 4.2 711.6 488.0 0.4 4.6 156.9 596.1
K = mean(S 0)

9.2 4.9 4548.9 2311.8 2.0 5.7 1082.5 2852.7
K = max(S 0)

14.1 5.6 10 432.1 3826.0 3.0 6.2 2279.2 4667.1

η0 ∈ {−0.2, 0, 0.3}, K ∈ {min(S 0), mean(S 0), max(S 0)}, where min(S 0), mean(S 0) and
max(S 0) are the minimum, mean and maximum of the coordinates of S 0, respectively.
Comparisons of simulations for ∆1, Γ11 and Γ12 with η0 = 0.3 are displayed in Figures
1–3 and Table 1. Each efficiency (or VRR) in Table 1 is the average of efficiencies
(or VRRs) over 12 sample sizes listed above (the same comment applies to Table 2).
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Figure 4. Comparison of simulations of ∆1 of a 6-dim. basket type DNO option under VG model with
K = mean(S 0) and µ0 = 0.3.

Figures with K = mean(S 0) and max(S 0), η0 = −0.2 and 0 are quite similar, and so
they are omitted here to save space.

When simulating ∆1, from Figure 1 and Table 1, we observe that the Malliavin
calculus (MVC) method, no matter what kind of sequence is used, is more efficient
than the FDMC method. The MVSB method is the most efficient out of these three
methods if we only compare variances or standard errors without considering CPU
times, whereas the MVMC method is more efficient than the MVSB method most
of the time if CPU times are also considered. This is because MVMC is faster
than MVSB. Notice that this may change depending on how the Sobol’s sequence
is implemented. The efficiencies or VRRs are no more than 20 in this case. When
simulating Γ11 and Γ12 for this option under the multivariate NIG model, from
Figures 2, 3 and Table 1, we obtain very similar conclusions as in the case of simulation
of ∆1, except that the efficiencies or VRRs are larger (both up to more than ten
thousand).

Example 3.2. Simulation of Greeks of a basket type DNO option under the
multivariate VG model. The option has the same payoff as in Example 3.1. The
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Figure 5. Comparison of simulations of Γ11 of a 6-dim. basket type DNO option under VG model with
K = min(S 0) and µ0 = 0.3.

asset prices follow the multivariate VG model (2.2), where Yt ∼ Γ(at, b) with a, b > 0.
Some parameters are taken as follows: α j = 1/d, r j = r − ω j, ω j = −(1/ν) ln(1 − η jν −
σ2

jν/2), η j = η0 + 0.01 ∗ j, η0 ∈ {−0.2, 0, 0.3}, ν = 0.3. Comparisons of simulations for
∆1 and Γ11 are displayed in Figures 4, 5, and Table 2, from which we reach a similar
conclusion to that of Example 3.1, except that the efficiencies or VRRs are smaller.

4. Summary

We have derived Greek formulas of multi-asset European style options under
subordinated Brownian motions. The numerical results show that the Malliavin
calculus method is more efficient than the finite difference method for exotic options
with nonsmooth payoffs. The superiority of the first method over the second is even
more significant when the quasi-Monte Carlo method based on the Sobol’s sequence
is used. The efficiencies reach up to more than ten thousand times in six-asset option
cases when simulating the Γ. Further improvements in efficiency would be expected, if
variance reduction methods, localization techniques (see for example, [12]) and GPU
(graphical processing unit) computational skills were to be used. These ideas may
motivate some research topics in near future. It would also be interesting to compare
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the results obtained by the Malliavin calculus method with the method proposed by L’
Ecuyer [20], if the latter is applicable to the problems discussed in this paper.
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