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Let S" denote the sphere of all points in Euclidean space R"+1 at a distance of
1 from the origin and Dn+1 the ball of all points in Rn+ * at a distance not exceeding
1 from the origin. The space X is said to be aspherical if for every n S; 2 and every
continuous mapping: / : S" —>• X, there exists a continuous mapping g: Dn+X -> X
with restriction to the subspace S" equal t o / . Thus, the only homotopy group of
X which might be non-zero is the fundamental group n^X, *) S G. If X is also a
cell-complex, it is called a K(G, 1). If X and Y are K(G, l)'s, then they have the
same homotopy type, and consequently

H^X; M)^Ht(Y;M) and H\X; M) s H'(Y; M)

for all coefficients M and integers i. If M is a left G-module, it determines a local
coefficient system over X. The groups

HpC; M) and H'(X; M)

are thus invariants of the group G and module M. They are called the homology
and cohomology groups of G with coefficients M, written

HIG; M) and ff'(G; M)

(These observations, essentially due to H. Hopf, led to the development of homo-
logical algebra, which initiated the study of these groups by algebraic means.)

For a given discrete group G, it may be that there is an integer n such that
for all left G-modules M and integers i > n, H'(G; M) = 0. If so, then G is said to
be of finite cohomological dimension and the minimum of all such integers n is
defined to be the cohomological dimension ofG, written cdG.

It might also be that there exists a K(G, 1) which has finite topological
dimension. If so, the minimum such dimension is called the geometric dimension
of G, written dim G.
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It is easy to show that cdG ^ dim G. In [3], Eilenberg and Ganea showed
that when 3 ^ cdG, cdG = dim G. In [11] and [13], Stallings and Swan showed
if 1 = cdG, then cdG = dim G. The case 2 = cdG is unresolved at this time.

This paper presents explicit cellular constructions of 2-dimensional K(G, l)'s
for certain families of groups G. The techniques involve elementary rewriting
arguments and covering space constructions. This recovers and casts new light
on the Lyndon Identity Theorem. Based on a group described by Higman [4], a
2-dimensional K(G, 1) is given which has curious topological properties. Also,
conjecture I ' of Papakyriakopoulos [8] is answered affirmatively.

The authors take this opportunity to thank publicly Professor Joan Dyer for
a number of conversations helpful in the preparation of this paper.

1. Preliminaries

We present several constructions and lemmas which will be used subsequently.
Let X denote a pathwise connected space and A denote a subspace of X which

is simply and pathwise connected. Each path /J in X induces an isomorphism

given by /?*(« = Pcofi'1 for co a loop at /?(1). The isomorphism /?* depends only
on the homotopy class of /? relative to its end points. Since A is both pathwise
connected and simply connected, for any two points a0 and al of A, there is a
path a from a0 to a, and any two such paths are homotopic relative to their end
points. Thus, there is a well defined isomorphism

for any two points a0 and ax of A. We define n^X^) to be the subgroup of the
group \\aeA Xi(X>a) defined by nen^XyA) if and only if for every two points
a0 and ax of A, n(a0) e n^X, a0) and n{a{) e n^X, ax) correspond under the above
isomorphism. Clearly, for any aeA projection of n^X,A) on the ath-coordinate
is an isomorphism n^XyA) s n^X^). The advantage of n^X^) is that it is
determined independently of base points.

LEMMA 1.1: Let X be a pathwise connected, locally pathwise connected
space, A be a pathwise connected, simply connected subspace of X, and H be a
group of homeomorphisms of X which acts properly discontinuously on X and
each of which transforms A onto itself.

Then the fundamental group G of the orbit space X \R is isomorphic to the
semi-direct product determined by the split extension

where N = n^XyA) and the action of H on N is the topologically induced action.
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PROOF: The action of H on rc^X,/!) is denned by h(n)(a) = n^
w h e r e h(a') = a a n d n^h): n^X,a') -> n^X,a), for heH a n d tien^X,A).

Let B = X jH be the space of orbits and p: X -* B be the quotient map.
It is well-known that (X,p,B) is a regular covering space with H being the group
of convering transformations. Thus, for any x0 e X, b0 = p(x0), there is an exact
sequence

1 -» JTiCY.JCo) ^ JT^B, W ^ f l - 1 .

Let x0 = a0 e A. We shall show this sequence splits. For heH and a a path in A
from a0 to /i(a0), set s(h) = [pa] e n^B, b0). This is well-defined, it is a homomor-
phism, and ps = \H.

Thus, TT^B, b0) is the semi-direct product of 7r1(X, a0) and / / with H acting
on n^XjOo) denned by

P*(h(y)) = sWp^sihy^en^bo).

Identifying nt{X, a0) with n^XyA) as above, we have left to show only that this
action coincides with the induced action of H on n^X^A). Let nen^X, A) and
h e H; let a be a path in A from a0 to h(a0) and /? be a loop at a0 in the class of
n(a0). We must show that

The loop pa- pfi • pa'1 is in the homotopy class of s(/i)pH!(n(a0))s(/i)"1 and
a- hfi • a~x is the lift of this loop starting at a0. Thus, p*(a- hf]-a~l) = s(h)p*
(n(ao)MA)"1. We need show only that h(n)(a0) = [a • /$ • a"1] e n^X,^). Let
n' be the element of nx(X,A) with n'(«o) = [a •/zjS • a " 1 ] . Since a lies in A,
n'(a.) = [ ¥ ] , where a, = A(flo)- But [A/S] = Tt^l jSJ = T T ^ / I ^ ^ O ) = h{n){ax).
Hence, n'iaj = h(n){a{); consequently, ri = /;(«) and, in particular, they are
equal at a0.

Let P: {xt, •••,xn; RL, •••,Rm} be a presentation of the discrete group G; i.e.,
Rl,---,Rm are words in the x1,---,xn and G is the quotient of the free group
F(xu---,xn) on xu---,xn by the normal closure in F of the elements RL,--,Rm.
The wedge V"= i S,1 of n 1-spheres has fundamental group

with the generator x, corresponding to a map S1-* S,1 of degree 1. For eachj, 1
^ j ^ m, let Dj be a 2-ball, B) be its boundary (which is a 1-sphere) and

/,•: B) - V S,1
i = l

be a map such that if tj is a generator of n^B)) s Z, then
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maps tj into the word Rj. Form the quotient space C(P) from the disjoint union

V Sf u U Dj

by identifying yeBJ with / /y) for every point in U™=i &)• (This is sometimes
described as attaching the cells Df by the maps /,.) This quotient space is called
the canonical cell-complex of the presentation P, written C(P); it is a 2-dimensional
cell-complex and an application of the Siefert-van Kampen Theorem shows

LEMMA 1.2: / /

P: {xi,---,xn; R1,--,Rm}
and

P':{xl,-,xn;a.lR\'ci.i\-,amR^cQ1}, et = ± 1,

are presentations, then C(P) and C(P') have the same unpointed homotopy
type; one is aspherical if and only if the other is.

This is true basically because the attaching maps are freely homotopic.
We recall a theorem of J. H. C. Whitehead [14]:

THEOREM W: Suppose X, Y and X n Y are aspherical cell-complexes and
both nt(X n y,*) -* n^X,•) and n^X C\ Y,*) -> n^Y,*) are injections. Then
X U Y is aspherical.

This theorem has a number of useful immediate consequences. Let G, H and
A denote the fundamental groups of X, Y and X n Y, respectively. Then by the
Seifert-van Kampen Theorem, the fundamental group of X U Y is the free
product with amalgamation G * H. Letting M be a left G * //-module viewed as
local coefficients over X U Y and applying the Mayer-Vietoris Sequences for
(X, Y; A), one obtains the Mayer-Vietoris Sequences for homology and cohomo-
logy of groups of free products with amalgamation: (This argument is essentially
that of [10]; the result is indicated in [6] and a homological algebra proof appears
in [13].)

It is immediate from these sequences that

max {cdG, cdH) ^ cd G * H ^ 1 + max {cdG, cdH),

with equality on the left applying if either cdA < cdG or cdA < cdH. Using
mapping cylinders for cellular maps K(A, 1) -» K(G, 1) and K(A, 1) -> K(H, 1)
which induce the appropriate injections of fundamental groups, we can conclude
from Whitehead's Theorem that
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max {dim G, dimff} ^ dimG * H <; 1 + max {dim G, dim H},

with equality on the left applying if either dim A < dim G or dim A < dim H.
In particular, we have the generalized free product (free product amalgamated

over a free group) of 2-dimensional groups is a 2-dimensional group. Of course,
the same is true for cohomology dimension.

Using the homological algebra definition of cohomology of groups, since a
projective resolution over a group remains projective over a sugroup, we have

if H is a subgroup of G, cd H :g cd G.

Also, if X is an n-dimensional K(G, 1), the covering space of X with fundamental
group H is an n-dimensional aspherical cell-complex. Thus,

if if is a subgroup of G, dim H ^ dim G.

In light of the Eilenberg-Ganea Theorem, this parallelism of conclusions is of
interest only at 2.

2. One relator presentations

Let P: {xu---,xn; R} be a one relator presentation for the group G. We
assume R is fully reduced, R # 1; if for some word W in the x;'s and integer t,
R = w', let s be the maximal such integer and Q the corresponding word,
R = Qs. If s > 1, R is said to be a proper power. Clearly, Q is not a proper power.

For s a positive integer, let Zs denote the cyclic group of order s, Z/sZ.
There is a cell-complex K(ZS, 1) with 1-sphere S1 as 1-skeleton; for s > 1 K(ZS, 1)
can be formed with exactly one cell in each dimension (using infinite dimensional
lens spaces {p. 67 of [12]}), and its homology and cohomology have been well
understood for several decades. For s = 1, K(0,1) can be formed by adding the
2-cell D2 to S1 along its boundary. In any case the inclusion Sl -»• K(ZS, 1) induces
an epimorphism of fundamental groups Z -* Zs. As in Section I, let f:Sl

-*• V"= I $i induce the homomorphism on fundamental groups sending a generator
of TiiCS1) to the word Q in nt(\/"=lSl). From the disjoint union X(Z4,1)
U Vi"=i S;1 form the quotient space D(P) by identifying each xeS1 <= K(ZS, 1)
with / ( x ) e Vi^i $t- For s = 1 (that is, R not a proper power, R = Q), D(P) is
exactly the cell-complex C(P) described in the first section with n 1-cells and 1
2-cell. For s > 1, D{P) is an infinite dimensional cell-complex, with n 1-cells and
1 i-cell for each i 2: 2. By the Siefert-van Kampen Theorem, n^D^P)) is the
pushout of the diagram

Z-^»ZS

P
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where a is an epimorphism and jS(O = Q. Thus, the pushout is the quotient of
F(xlt---,xn) by the normal closure of the relation Q" = 1, that is, G.

THEOREM 2.1: Let P be a one relator presentation of the group G. Then the
cell-complex D(P) is a K(G, 1). In particular, if the relator is not a proper power,
then the geometric dimension of G is less than or equal to two.

Before giving our proof of this theorem, we observe several consequences
of it and relations between it and previously known results.

II P: aubl,---,ag,bg; f]f=i [fliA]» t n e n the relator is not a proper power
and C{P) is a compact, orientable surface of genus g. Theorem 2.1 asserts the
asphericity of the surface. This familiar fact is thus proved in an unfamiliar
manner. Similarly, this argument applies to the non-orientable surfaces except
for the projective plane — for it the relator is a proper power.

COROLLARY 2.2: / / in the presentation P of G, R is not a proper power, and
N denotes the normal closure in F(xx, •••,xn) of R, then there is an isomorphism
tl/:Z(G)-> N I[N,N] ofZ (G)-modules with \ji{\) the coset containing R.

(This is a special case of the Lyndon Identity Theorem [6].)

PROOF: Let X = C(P) and X1 be its 1-skeleton ( = V,"=i S,1); let X -» X
be the universal covering of X and p1: Y -» X1 be the restriction of p to the
1-skeleta. We have the diagram

with pl and p both covering maps. Any two points of Y are end points of a path
w in X; pw is homotopic relative to its end points to a path w in X1. Covering
this homotopy in X yields a path in Y with the same end points as w; thus, Y is
patwise connected. A loop in X1 which is null-homotopic in X can be lifted to a
loop in Y. Thus,

) = Kernel (i,: n^X1) = F(xu-,xtt) -* K,(X) = F/JV) = N.

Since pl is an injection, nl{Y) — N. By the Hurewicz Theorem H^YiZ)
£ N I[N,N~\. Since X is aspherical, X is both simply connected and aspherical.
Thus, X is contractible. This implies it is acyclic. Thus,

^ Ht(Y).

But Y is the 1-skeleton of X; and so, H2(X, Y) is the free abelian group on the
2-cells of X. These are permuted simply transitively by G, the group of deck
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transformations. Hence, H2(X, Y) s Z(G) as G-modules; and Z(G) ^ N/[N,iV]
as G-modules.

It remains to describe the image of a generator. Let e2 be the 2-cell containing
the base point of Y. d{e2) is the homology class represented by the loop on the
boundary. But p* of this loop is the class of the attaching map R.

NOTE: In this case the argument can be reversed; Lyndon's Identity Theorem
implies that d is an isomorphism and hence that H2(X) = 0. Since X is simply
connected and 2-dimensional, this implies it is contractible and C(P) is aspherical.
A similar argument was made by Cockcoft in [2].

COROLLARY 2.3: The group G with a one relator presentation P: {xls---,xn;K}
is torsion free if R is not a proper power. If R = Qs, s > 1 and maximal, the
order of Q in G is s.

This is a special case of results of Karrass, Magnus and Solitar [5].

PROOF: If R is not a proper power, by Theorem 2.1 C(P) is a K(G, 1); and so,
cd(G) ^ 2. If H is a non-trivial 1-generator subgroup of G, since cd(H) :g cd(G),
H is not finite; i.e., G is torsion free.

If R = Qs, s > 1 and maximal, since D(P) has no cells out of K(ZS, 1) in
dimensions greater than two and the boundary of the 3-cell of K(ZS, 1) lies in the
2-cell of K(ZS, 1) it follows from standard computations of H^(ZS;Z), that
H3(D(P);Z) = ZS. For a presentation P': {xu •••,*„; Q'}, we have that
H3(D(P');Z) = Z,. If Q' is trivial in G, and t is minimal, it lies in the normal
closure of R; by minimality, R lies in the normal closure of O'. Thus, P and P'
present isomorphic groups, which have isomorphic homology groups. But this
implies t = s.

There are some simple relations among the homology (and cohomology) of
one relator groups immediately derivable from the geometry in Theorem 2.1.

Suppose P: {xu---,xn; R} is a one relator presentation of G and R = Qs,
s > 1 and maximal. Then P': {xiy---,xn; Q] is a one relator presentation of a
group G'. Let 6: G -» G' be the surjection induced by the identity on generators.

COROLLARY 2.4: For M a left G'-module, there is an exact sequence

0 -> H2(ZS;M) -> H2{G;M) ^ H2(G';M)

-+ H^Z^M) -+ H,{G;M) e-X ff,(C';M)

-> HO(ZS;M) -+ H0(G;M) '-!• H0(G';M) -> 0.

/ / S is the kernel of 0, then for q ^ 3 and any left G-nodule L, there is an
isomorphism

Hq(Zs; L) ® Z ( G ' ) - ^ > Hq(S; L)
of left G'-modules.
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PROOF: We modify the construction of D(P) slightly. Instead of identifying
the S1 of K(ZS, 1) with its image under the map into V"=i S] spelling Q, first
attach to S1 the cylinder S1 x I along S1 x (0) and then identify S1 x 1 into
V"= i S/ to spell Q. Call this space D'(P)\ it obviously has the same homotopy
type as D(P). The advantage of D'(P) is that K(ZS, 1) is a subspace of (DP) (in
fact it is imbedded as a cofibration). Let C denote the cone of K(ZS, 1). Then C
is contained in C U D'(P) as a cofibration and is contractible in itself to a
point. Thus, CuD'( .P) and Cu£) ' (P ) /C have the same homotopy type. But
C U D\P)jC is homeomorphic to D(P') = C(P'). Hence, we have the inclusions

K(Zs,l) < D'(P) < C U D'(P),

where D'(P) is a K(G, 1) and C U D'(P) is a K(G', 1). Since

= H,{C U D'(**)> C; M) (by excision)

S Ht(C(P');M)

the exact sequence of the corollary is just the exact sequence of the pair (D'(P),
K(7JS, 1)). It is trivial on the left as indicated since G' has geometric dimension g 2.

Let us abbreviate K(ZS, 1) by K and D\P) by Z . Let X1 -» X be the regular
covering of X (a K(G, 1)) corresponding to the subgroup S of G. Since X is
aspherical, so is Xx; hence, X^ is a K(S, 1). The group of deck transformations
of the covering Xt->X is the quotient group G'. This gives Hq{Xi;L) the
structure of a G'-module.

Since n^K) -» 7T1(JL) factors through TriCX )̂ -> T : ^ ^ ) , the inclusion K -> X
factors through Xl -> Â . The inverse ^ of K in X, is then the disjoint union of
copies of K, which are simply transitively permuted by the group G' of desk
transformations. Hence,

Hq{K;L)^ H,(K;L)®Z(G')

for all q. However, dim X — K = 2; and so, dim Xx — K = 2. Thus,

Hq(K;L)^Hq(Xi;L) for q ^ 3.

Combining these two isomorphisms and the in.ormation that Xt is a K(S, 1)
gives the conclusion

H.fZs\ L) ® Z(G') ^ H,[S; L) for g ^ 3.

(Using results of Cohen and Lyndon [1], it can be shown that S = *n'6c-(ZJ9'
with the obvious G' action.)
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We conclude this list of implications of Theorem 2.1 with an alternate proof
of the Lyndon Identity Theorem

P: {xu---,xn;R}, R = Qs, N - normal closure of R in F = F(xu---,xn)
is a presentation of G as before. The image of Q in G generates a cyclic subgroup
H of G of order s.

COROLLARY 2.5. (The Lyndon Identity Theorem): There is an isomorphism

of G-modules, where Z[G/ff] is the free abelian group on the set of cosets G jH
ofH in G with obvious G-action. It can be arranged so that the coset H corresponds
to the coset of R.

PROOF: Let p: X -* D(P) be the universal covering space of D(P). X has a
cell-complex structure induced from that of D(P): the cells of X lying over a
single cell of D(P) are permuted simply transitively among themselves by the
group G of deck transformations. Since Hk(X

w, X^" 1 ' ) is the free abelian group
on generators corresponding to the /c-cells of X (thus, the cells of Xw — X(k~^),
it is thus a free Z(G)-module with generators corresponding to the cells of D(P).

Since X is contractible, its homology is trivial; also, it is easy to verify that

Ht(X) = Ht(X
w) for i < k.

Thus, there are exact sequences

0 -» H2(X(2)) -* H2(X
(2\ Z( 1 )) ->• H^X^) -» 0

0 -+ H3(X<3)) - - H 3 (X ( 3 ) , X ( 2 ) ) - H2(X
i2)) - • 0,

etc. Splicing these together gives an exact sequence

) 3 ( , ) 2 ( , X(1)) a4 H^1') -> 0

of Z(G)-modules.
We can assume s > 1. (Corollary 2.2 established the conclusion for s = 1.)

We also assume the K(ZS, 1) used to construct D(P) has only one cell in each
dimension and that the attaching map

f-.s1 -» V s,1

is cellular. As in Corollary 2.2, H^X^) s JV/[JV, JV]. Thus cokernel d3

S N I[N,N]. As in Corollary 2.2, the 2-cell e2 containing the base point of X
can be taken as the generator for H2{X(-2), Z l u ) and d2e2 is the coset of R in

It remains only to describe d3. Let K = K(ZS, 1) and q:K-* K be the
universal covering map. There is a map i;K -+ X so that the diagram
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K —*-+ X

I'
K "-* D(P)

commutes. Let e'2 and e'3 be the 2- and 3-cells of K containing the base point. It is

a standard computation (p. 67 of [12]) that for

3 • "• 3 \ * ^ J •"• / — ^ 2 \ J / '

33e3 = (1 — /i)e2, where n is the generator of n^K) = H. Thus,

As K contains all of the cells of D(P) of dimensions 2 and greater, ie3 = e3 and
'e2 = e2- Thus, the Z(G)-homomorphism d3 involves only the Z(H)-module
structure. Since Z(G) is a direct sum of copies of Z(ff)> °ne for each element of
GjH, it is clear that cokernel d3 £ Z[G/H].

3. Proof of Theorem 2.1.

The proof of Theorem 2.1 is inductive on k, the length of the word Q. The
method we use to analyze a one-relator presentation goes back to Magnus [7].

Let us first briefly restate the construction. A group G is given by a one-
relator presentation P: {xu •••,*„; R} with R = Q", s maximal, R being fully
reduced. To the wedge of n circles with base point is attached the circle with base
point of a K(ZS, 1) by a base point preserving map which "spells" the word Q.
The resultant space is denoted D(P). By the Seifert-van Kampen Theorem we
know the fundamental group of G to have the presentation P, and we need to
verify only that D(P) is aspherical to know that it is a K(G, 1).

The case s = 1, that is the case in which R is not a proper power, can be read
independently of the more general case. In this case, D{P) = C(P) is two-dimen-
sional, and certain complications, particularly in Sublemma 3.3.1, do not arise.

Being aspherical is an invariant of free homotopy type (homotopies not
preserving the base point can be used) and altering the attaching map by a free
homotopy does not change the free homotopy type of the space constructed. By
using as attaching map a pointed map which "spells" a conjugate of Q, we are
only altering by a free homotopy. Thus, to check D(P) is aspherical, we can use
D(P') where

R' =

In particular, we can assume R and Q are cyclically reduced.

LEMMA 3.1: If Q has length 1, D(P) is aspherical.

PROOF: Permuting the xt change D(P) only by a homeomorphism. We will
assume Q = xf1 and R = xfs. The attaching map of the S1 in X(ZS, 1) to
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S{ can be taken to be a homeomorphism (it has degree + 1 as needed), and
D(P) = K(ZS, 1) V y"=2^i, which by Theorem W is aspherical.

We shall use the following notations: for Q e f ^ n ' - . x , , ) and a one of the xh

#Q(a) is the total number of occurences of a in Q; i.e., the sum of the absolute
values of the exponents of a in Q, assuming Q to be fully reduced; aQ(a) is the
exponent sum for a in Q; i.e., the sum of the values of the exponents of a in Q;
the length of Q, l(Q) = S? = 1 #<,(*,).

We assume that k = l(Q) 2: 2 and that D(P') is aspherical for any presentation
P' for which l(Q') < k. This is our inductive hypothesis.

LEMMA 3.2: Let R — Qs, s maximal, be a cyclically reduced word in
F(xt, ••-,xn). Suppose there is an a = xt for which

0 jt #Q(a), 0 = ffQ(fl), anJ

Z #Q(X) < fc.
I * /

Then the inductive hypothesis implies that D(P) is aspherical.
COROLLARY OF LEMMA 3.2: Let R = Qs, s maximal, be a cyclically reduced

word in F(xu---,xn). If Q has length k and contains a generator with exponent
sum 0, then the inductive hypothesis implies D(P) is aspherical.

LEMMA 3.3: Let R — Qs, s maximal, be a cyclically reduced word in
F(xx,---,xn). Suppose Q has length k and contains no generator with exponent
sum 0. Then the inductive hypothesis implies D(P) is aspherical.

PROOF OF LEMMA 3.2: Since aQ(a) = 0, the function F(xu---,xn) -> Z

defined by W -> ow(a) induces a homomorphism of G to the integers. Let N be
the kernel of this homomorphism. This proof will construct a regular covering
space X of D(P) corresponding to the subgroup N and prove X is aspherical.
The general structure of Lemma 1.1 will be reflected in these particular con-
structions. The construction of X is motivated by the Reidemeister-Schreier
rewriting process for N.

Let 3$ = {x; | 1 ^ i <; n, i # /} and W(ffl) be the wedge of n - 1 circles
labelled by the xt in @. For each integer i let W{0H)i be a copy of the space W{38).
Let T be the space obtained by attaching to the real line at each integer point i
the space W{3S)t at its base point. For example, if 3S had two elements, part of T
would look like

VrV Vn
- 2
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Let h: T -> T be the homeomorphism that carries a point of W(^)t into the
corresponding point of W{3f)i+, and takes a point x of the real line to the point
x + 1. Clearly, h generates an infinite cyclic group H of self-homeomorphisms
of T. The orbit space T/H contains W{3S) (the image of any W(^>),) and one more
S1 (the image of any interval [/c, k + 1] of the real line for keZ). Thus, TjH can
be identified with

V s\ = w(so,
i = l

where s/ is the set {xu •••,*„}, and

p: T-> 7/if = MX)

is a regular covering space.
It is easy to see that ^(T^O)) is free. A convenient set of generators are the

xfi described as follows: for fie!%, ieZ, xfi is the sum of the paths [0, i],
Sl

p 6 W{0S)h and [/,0j. This is a loop at 0. Clearly,

Let S1 be the 1-sphere of K(Zs,l) and/ : S1 ^ W(,a/) spell Q, i.e.,f.(ji) = Q.
Since aQ(a) = 0, /^(^) e ImQ^). Thus, there exists / 0 : S1 ->• T (taking base point
to 0 e T) such that pf0 = f.

Let Q' = /o*(/0 e TI^T^O)). Recall that TT^T^O)) is free on the xfi. We claim

(i) Q' is not a proper power,
(ii) length Q' < k, and
(iii) Q' is cyclically reduced.

The first is easy since p*(Q') = Q and Q is not a proper power. Let N = length Q'

and write

~ */!i,M X/J2.*2 XPN.IN>

st = ± 1. Then

P*6' = Q = ( f l ' ^ ' a " ' ' ) ^ ' ' ^ " ' 1 ) («'%"«"'")•

Since JV = length g', if (^-,iy) = (PJ+1,iJ+1), then 8y- = sj+1. Hence, the only
cancellation taking place in this expression for Q is cancellation among the a's.
Thus, JV= 2f,a#QP<k.

If g ' were not cyclically reduced, then (puh) = (PN^N)
 a nd £i + £iv = 0.

Thus, g starts with a^/Pand ends with (a'1^1)"1; i.e., it is not cyclically reduced.
Let u = min{iy} and v = max{iy} for ij appearing in Q'. Since we can alter

/o by a pointed homotopy, we can assume

/0(S1)«=RU U
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For each integer i let Kt be a copy of K(Z5,1) and Ct be the 1-sphere of Kj.
Let X be the quotient space of the disjoint union of the X,'s and T by identifying
each point P e C, with ti(fo(P)) e T. If is clear that h extends to a self-homeomor-
phism of X, which we also call h (it takes a point of Kt to the corresponding point
of Ki+1). Again, h generates an infinite cyclic group H of self-homeomorphisms
of X. It is clear that the orbit space X jH is

m

TIH U K = V S,1 U K = D(P).
7>/o > = 1 /

Also, the action of H on X is properly discontinuous; and so,

X -» X / H =

is a covering map. Thus, it suffices to show that X is aspherical.
Let XN be the subcomplex of X consisting of the real line, the W{3S)t for

u + N ^ i ^ v + N and X;V. Clearly, /i(XN) = XN+1. Our inductive hypothesis
will show XN is aspherical, and we will use this to conclude that X is aspherical.

SUBLEMMA 3.2.1: a) XN is aspherical,

b) the elements xt:hfSe 3$ Je\u + N + l,v + N~], are distinct and generate
a free subgroup of 71^X^,(0)), and

c) the elements x01, $e8$, ie\u + N, v + N — 1] , are distinct and
generate a free subgroup of ^ ( . ^

PROOF: It suffices to consider the case N = 0. Since the real line is a con-
tractible subcomplex of Xo, collapsing it to a point does not change homotopy
type. Call the resultant space Yo and q: Xo -* Yo the collapsing map. Let W be
the subcomplex of Yo which is the image of all W(^)j, u ^ i ^ v. This is a wedge
of circles, indexed by 3$ x (u,u + l,---,v). Yo is of the form ffU,;,K, for
qfo:C->K. Let Q' = (qfol^en^W). It is clear that Yo is D(P') for the
presentation P': {& x (u,u + 1, --^v); Q's), where Q' is as above. The inductive
hypothesis then implies that Yo, and hence Xo, is aspherical.

The definition of u is such that b) is an immediate consequence of the Magnus
Freeness Theorem. Similarly, c) follows from the definition of v.

SUBLEMMA 3.2.2: For X0,N = Xo U Xt U ••• u XN, X0,N is aspherical
and XN -> X0,N induces and injection of fundamental groups.

PROOF: The assertion is true for JV = 0 by Sublemma 3.2.1. Assume it is
true for JV. Then XOiN+l = XOiN.V XN+1 and

XO.N O XN + 1 = (real line) u W{B)u+N+l U ••• U W(B)V+N.

By the Siefert-van Kampen Theorem, the following diagram is a pushout in the
category of groups
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V n

I"
^IC^JV+I) > ni(xo,N+i)-

Sublemma 3.2.1.c) shows that i2 is an injection. The map it factors through n^Xf,)
and is thus the composition of two injections, by sublemma 3.2.1.b) and induction.
Hence, 7ti(X0 N+1) is a free product with amalgamation, and, in particular, j t is
an injection. The conclusion that Xo N+1 is aspherical then follows from Theorem
W.

We now conclude the proof of Lemma 3.2 by showing X to be aspherical.
Let F: Sq -> X be a continuous map. Since S ' i s compact, there is an integer N
such that F^S9) <=. X_N u L , t l U ••• u l , , a subspace homeomorphic to
XQ,2N- Since X02N is aspherical, F is null-homotopic if q ^ 2. Thus, X is
aspherical.

PROOF OF LEMMA 3.3: Since s is maximal and k ̂  2, Q must involve at
least two generators. Let a and b be two such and # be set of all other xt, 1 ̂  i
^ n. Let yl and B be two objects distinct from any in F(Xt, •••,xn) and G. Let
.s/' = ^ U {4} U {6} and st" = <€ \J \A~\ U [Bj and let F(s4') and F(^" ) be
the free groups generated by the elements of stf' and ^/", respectively. Define
homomorphisms

and

by et(a) = A«, 0!(&) = b, e^c) = c for all ce^, and 02(X) = A, 92(b) =
02(c) = c for all c e f , where q = ffQ(b) and p = aQ(a). Let Q' = 01(Q)e
and Q" = 62(Q')eF(,^"). It is immediate that Q' and g" are cyclically reduced
and are not proper powers. Also,

aQ.{A) = <TQ.(A) - pcrQ,(b)

= go-e(a) - paQ(b)

= 0,
and

#Q.,B = #Qb and #Q..c = #Qc for all ce«".

Lemma 3.2 applies to the presentation

P" = { J / " ; Q " S } ;

i.e., D(P") is aspherical. Let P' be the presentation {stf',Q's}.
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SUBLEMMA 3.3.1. D(P') and D{P") have the same homotopy type.

PROOF OF SUBLEMMA 3.3.1: Let S1 c K(ZS, 1) and

f-.s'^sWslw V sl
c

be a map "spelling" Q'. Let

h rs ivs iv V sl^sW/slv V s*

induce the homomorphism 92 on fundamental groups. Then hf "spells" Q".
Since 62 is an isomorphism, h is a homotopy equivalence; and so D(P') and
D{P") are homotopy equivalent.

We next compare D(P) and D(P') in order to deduce the asphericity of D(P).
Let M be the mapping cylinder of a map from S1 to S1 of degree q. Recall that M
has in it circles Sj and Sr

x (domain and range) such that S* is a strong deformation
retract of M, and the inclusion of S] in M followed by the retraction of M onto
S* is a map of degree q. Let ^ = M V S j ' V Vc<=« s ' ; t h e n ^ ( ^ )
= S] V S|J VVc6«S,l and W(s4') = S,1 V Si VVre^^J are contained in W.
Clearly, W(,s/') is a strong deformation retract of W and the composition of
i: W(sf) -»• jy followed by the retraction of W onto W(sf') is a map fc: W(.vf)
-> W(s/') which induces the homomorphism 0j: F(^) -> F(JZ?') on fundamental
groups.

Let / : S1 -• W(,a/) spell Q. Then D(P) = W(s>J) KJfK is a subcomplex of
X = W ViofK, where S1 <= K = K(ZS, 1). Let r: W -> W(,a/') be the retraction.
Then W(j3/')uro(l/)K has the same homotopy type as X. (This uses the general
proposition that if W -> D is a cofibration and fc: W -* W", then D UfcW" and
Z) U M(k) have the same homotopy type. In our case, M(k) = W.) The map
r o ! o / : S ' - > W(,zT) spells Q'. Thus, W(st') VromK is Z)(P')- Since this is
aspherical, so is X.

Let X1 be that part of X which is in M and has cylinder coordinate ^ i.
Let AT2 be the closure in X of the complement of Xt. Then Xt has Sr

L as strong de-
formation retract, X2 has D(P) as strong deformation retract, and Xo = Xj
n X2 is a circle.

By the Siefert-van Kampen Theorem, the following is a pushout diagram in
the category of groups:

"

From remarks above, the groups on the left are both infinite cyclic and ij is raising
to the gth power. Since X2 has the homotopy type of D(P), 7i1(X2) = G, the
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group presented by P. By construction i2 takes a generator into the element of G
represented by a. By the Freeness Theorem (recall that R is cyclically reduced
and involves b) i2 is an injection. Thus, K^X) is a free product with amalgamation
and ji and j2 are injections.

Consider the universal covering p: X -*• X of X. Since X is aspherical, Jt is
contractible, and has trivial homology groups. Thus, by the Mayer-Vietoris
Theorem

H£p-lX0) -> Htp-^XJ 0 Hjj>~lX2)

is an isomorphism for i >. 1. For a = 0,1,2, n^XJ -* n^X) is an injection;
hence each component of p~1Xa: is homomorphic to the universal covering space
of Xx. In particular, Xo being a circle, each component of p~1X0 is the real line,
and Ht(p-lX0) = 0 for i ^ 1. Thus, H£p~lX2) = 0 for i ^ 1; i.e., the universal
covering space of X2 is acyclic. Since it is simply connected, it is contractible.
Hence, X2 is aspherical, and so is D(P).

4. An amusing space

In [4] Higman presented a group H on four generators and four relators
which has a number of interesting properties. We observe here that the canonical
two-dimensional cell-complex of his presentation is an aspherical space and
translate various of the group-theoretic properties of H into topological properties
of the associated cell-complex.

Let Hxy be the group presented by Pxy: {x,y; xyx~ly~2}. Since xyx~ly~2

has exponent sum equal — 1, it is not a proper power and so by Theorem 2.1,
C(Pxy) is aspherical. Let Hx yz be the free product with amalgamation defined by

where each homomorphism carries y into its class in the appropriate group. By
Theorem W, C(Pxy) \JyC(Pyz) is aspherical. As seen in [4], the homomorphism

* jc.y,z»

defined by taking each of x and z into its class in Hxy,, is an injection. Thus
letting H be the free product with amalgamation defined by

F(x,z)
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the space (C(Pxy) U,C(P,.,)) U».,(C(PI>W) U»C(PW,,)) is a K(H, 1). This space is
C(P) for the presentation

P: {w,x,y,z; wxw~1x~2,xyx~1y~2,yzy~1z~2, zwz~1w~2}

of H.It has one vertex, four 1-cells and four 2-cells;it is aspherical and n^C^P), *)
^ H. Since the abelianization of H is trivial, Hi(C(P); Z) = 0. Since the boundary
of a non-zero 2-chain corresponding to the cell attached by the relation in Px,y is a
non-zero multiple of the 1-chain corresponding to y, it is easy to see that the only
2-cycle on C(P) is the 0 cycle. Thus, H2(C(P); Z) = 0. Clearly the higher dimen-
sional homology groups of C(P) are all zero. This implies that the suspension
ofC(P) is contractible.

The group H has no non-trivial finite dimensional representations over any
field, see [4]. It follows that if 38 is any local coefficient system over C(P) of
finitely generated abelian groups, then

H*{C{P)\ 3S) = 0 = H*(C(P); 3S).

Also, any finite dimensional real or complex vector bundle over C(P) is trivial
since obstructions to finding a section are elements of suitable cohomology
groups.

Summarizing, C(P) is a finite 2-dimensional cell-complex (nine cells) C(P) is
a K(H, 1), for H the Higman group, the suspension of C(P) is contractible,
homology and cohomology of C(P) with finitely generated local coefficients is
trivial, all finite dimensional real or complex vector bundles over C(P) are trivial.
In short, it is difficult to detect that C(P) does not have the homotopy type of a
point by the usual abelian invariants of algebraic topology. (If one performs the
same construction on the analogous presentation, cycling around in three steps,
instead of four, as here, the complex obtained does have the homotopy type of a
point.)

If N is a regular neighborhood of an imbedded C{P) in R4 and S is the union
of two copies of N identified along the boundary of N, the "double" of JV, then
S is an orientable 4-manifold and is a homology 4-sphere. It can be shown that
7ti(S) s H. Except for infinitely generated local coefficient systems, the manifold
S is hard to distinguish from S4 by usual invariants of algebraic topology.

5. Conjecture I'

In 1961 Papakyriakopoulos conjectured [8] that for the presentation
n

P:{a,b,xuyu~-,xn,yn;\a,b~] Y[ i^,y^, \a,bx]},
i = l

where T is in the commutator subgroup of the free group on a,b,xu---,yn, the
complex C(P) is aspherical.

In 1963 Rapaport showed [9] that for the presentation
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n

P:{a,b,x1,y1,--,xn,yn;[a,b~\ f] [x^y^la.w]},
i = l

where w is any word in a,b, •••,yn, the group defined by P is torsion free. (This
established a generalization of Conjecture I of Papakyriakopoulos; the statement
above for/" is his Conjecture I'.)

We show here, using specific results in Rapaport's argument, that if [a, w]
is not in the normal closure in F(a, b,x1, •••,yn) of the word [a, b~\ n?= i [*i>>'i]>
then C(P) is aspherical. Of course, if [a, H>] were in that normal closure, then C{P)
would be the homotopy type of the wedge of a surface of genus n + 1 and a 2-
sphere; thus, C{P) would not be aspherical. The word [a, bz] in Papakyriakopoulos
Conjecture is not in the normal closure of [a,fr] n»"=i [^..Vi]' ( s e e Theorem 6.2
of [8]), and the above assertion then implies that Conjecture I' is true.

Before giving this argument, we would like to make two comments. There is a
vast difference between asking whether the group defined by a presentation P is
torsion free and asking if C(P) is aspherical. The latter conclusion implies the
group has geometric dimension two, a rare property even among groups without
torsion. G. Baumslag has given (unpublished) an example of an infinite dimen-
sional, finitely presented group without torsion; it is known that for each integer n,
there exists a finitely presented group with geometric dimension n. Of course,
all of them are torsion free. Secondly, although our argument establishes Con-
jecture I', it is not in the geometric spirit sought by Papakyriakopoulos. Indeed,
it relies heavily on the specific rewriting obtained by Rapaport. While this is a
failing from the viewpoint of [8] and even though there may be some geometric
argument applicable for P, we would like to point out that the combination of
rewriting and covering space techniques employed here has a general character
which may be applicable to a wider class of groups.

We first modify the presentation P to obtain a new presentation P', differing
from P only in that a word [w*,a] with aw,a = 0 is substituted for the word
[a, w] in P. As we have seen C(P) is aspherical if and only if the corresponding
construction with the conjugate w~1(awa~1\v~1)w is aspherical (Lemma 1.2).
Writing

w~1awa~1 = w~1ahaa~hwa~1,

let w* = w " 1 ^ for that h with o-w_i,,a a = 0; then w~1awa~1 = [w*, a] and
<rw.a = 0. Letting n = g — 1 and writing

Xu-i = xi

Xzi = yi, * = 1 . — . 0 - 1 ,

we have precisely the presentation in [9].
Continuing with the notation and results of [9], let
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bk = a~kbak

D7] = n [x2t-ipX2t.j]-
j = l

The relator G* = [a, b~] • [00] becomes
G* = Go = 6_!&o ' [00] ,

and
Gk = a~kG*ak = V A~'l> k~\.

Let
R = w* aw*~1a~1 = wowZ\,

and „ _!
Rk = wkwk_ly

where Kfc = a~kRak and wt = a~*woa''.
If R is not in the normal closure of G*, there are integers (u, v) with either

u = i ) = 0 o r u ^ 0 and 1 ^ y and a word 4̂ = yl0 in Fo — F(xik, b for u ^ fc
^ i>) such that, letting

Hr:{FrMr}

Sr: F(xt k, br for r + u + 1 ^ k ^ r + v),

(=F(br) if « = » = 0),
ar: Sr -» Hr be induced by the identity on generators,
Pr: Sr -*• Hr+1 be induced by the identity on the xlk and fir(K) = [r + 1

r + l ] " 1 ^ ^ ! , then ar and ySr are injections,
Ar is not a proper power in Fr,
H = ••• *H_i2_1Ho*S oH1* ••• is the kernel of G(P)-» Z(a) denned by

exponent sum of a,
Z(a) acts as group of automorphisms on H with the generator a translating

the above displayed generalized free product one step to the right (by conjugation),
and

the modified presentation P' of G is precisely that defined by this extension.
As in Section 3 we will construct an aspherical, 2-dimensional csll-complex

for H with a properly discontinuous action of Z(a) on it inducing the above
automorphisms on H; the quotient space defined by this action will be (CP').
As it has an aspherical covering space, it will also be aspheric.il.

Let Xo be the cell-complex constructed as follows: to the real line adjoin at
each integer point k, u :g k rg v, a wedge of 2g — 2 circles corresponding to the
generators xik, i = l,---,2<7 —2, and one more circle at 0 corresponding to b.
Let 0 be the base point and describe the generator in n^Xo,*)) corresponding to
xik by the sum [0,/c] + S/k + [fc,0J. Attach a 2-cell to X0, forming Yo, to spell
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the word Ao with the above description of Fo. As Ao is not a proper power in Fo,
Yo with the line identified to a point is C(H0) and is aspherical by Theorem 2.1.
Thus, Yo is aspherical.

For each integer r let Yr be a copy of Yo translated r to the right. Take all
of the yr to be disjoint. Attach the sylinder (S1 x / ) r + 1 to Yr+1 along S1 x 1 by a
mapping /?r which spells [r + 1 r + l]~1br+1. Since Yr+1 is a strong deformation
retract of Yr+i \JpAS1 x l)r+i = Wr+1, the space Wr+1 is aspherical; it is a
K(Hr+1,1). Let Zr be the complex consisting of the real line with circles corres-
ponding to xt k, I ^ i ^ 2g — 2, r + u + 1 -^ k ^ r + v, adjoined at k, together
with a circle corresponding to br adjoined at r.

Define dr: Zr -> Wr to be the identity on the line and to carry the circle in Zr

corresponding to xik (to br) homeomorphically into the circle in Wr corresponding
to xik (to br). Define pr: Zr -> Wr+1 to be the identity on the line, to carry the
circle in Zr corresponding to xik homeomorphically into the circle in Wr+1 cor-
responding to xt k, and to carry the circle corresponding to br homeomorphically
into the circle (S1 x 0)r+1 in Wr+1. Then dr and /5r induce the homomorphisms
ar and j3r on fundamental groups. As these are injections, by Theorem W,
Wr \JZr Wr+l has fundamental group Hr*rHr+l and is aspherical. Since
~* ni(Wr Uzr^r+i)> i — r, r + 1, is injective, so are the compositions

r U Wr+1)
and Zr

nx(Zr+1)

Thus, continuing inductively, the process can be iterated to form'a space

x = ••• U w-i U w0 U wi U -
Z-i Z,

which is a iC(//, 1). There is a properly discontinuous action of Z(a) defined on X
by letting a move each point one unit to the right or into its correspondent with
one higher subscript r or k, as the case may be. The quotient space X /Z(a) has

a base point, (0)

2,7-2 circles, (xik), i = l,-,2g-2

1 circle, (bk)

1 circle, image [0,1]

1 2-cell, attached by Ao, and

1 2-cell, attached by bL = [11] V

These correspond precisely to the generators and relators of the presentation P'.
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Thus, X /Z(a) is homeomorphic to C(P'). Since X is aspherical and the projection
X -> X /Z(a) = C(P') is a covering map, C(P') is aspherical.
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