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Ion-acoustic waves in a dusty plasma are investigated where it is assumed that the ions
follow a Cairns distribution and the electrons are Boltzmann distributed. Two theoretical
methods are applied: Sagdeev pseudopotential analysis (SPA) and reductive perturbation
theory (RPT). Since SPA incorporates all nonlinearities of the model it is the most accu-
rate but deriving soliton profiles requires numerical integration of Poisson’s equation. By
contrast, RPT is a perturbation method which at second order yields the Gardner equation
incorporating both the quadratic nonlinearity of the Korteweg–de Vries (KdV) equation
and the cubic nonlinearity of the modified KdV equation. For consistency with the per-
turbation scheme the coefficient of the quadratic term needs to be at least an order of
magnitude smaller than the coefficient of the cubic term. Solving the Gardner equation
yields an analytic expression of the soliton profile. Selecting an appropriate set of com-
positional parameters, the soliton solutions obtained from SPA and RPT are analysed and
compared.
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1. Introduction

For the theoretical treatment of electrostatic nonlinear solitary waves in plas-
mas there are essentially two methods: Sagdeev pseudopotential analysis (SPA) and
reductive perturbation theory (RPT). These methods predate their contemporary
application in plasma physics in the mid-1960s.

The SPA method is commonly used in plasma physics to study the propagation
of nonlinear solitary and periodic ion-acoustic waves. Based on an integration of the
Poisson equation (which underlies all treatments of electrostatic plasma waves), one
obtains a kind of energy integral, allowing a fully nonlinear analysis of one wave
at a time. The method draws on the analogy with classical mechanics, much as in
the era of Newton, where the properties of the potential energy dictate the motion
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of a particle in a potential field. The SPA method requires that the densities of the
different plasma species can be expressed as functions of the electrostatic potential
(ϕ) which is not always possible.

As the name suggests, RPT is a perturbation method which can be applied in
many fields of the natural sciences, including fluid dynamics and plasma physics.
Based on RPT, solitary surface water waves were described by a Korteweg–de Vries
(KdV) equation in 1895 (Korteweg & de Vries 1895) to explain John Scott Russell’s
observations dating from 1834 (Scott Russell 1844). Once RPT was used (after a
long period of dormancy) for solitary plasma waves in 1966 (Washimi & Taniuti
1966), other nonlinear equations of KdV type appeared, such as the modified KdV
(mKdV) (Miura, Gardner & Kruskal 1968; Wadati 1973) and Gardner (Gardner
et al. 1967, 1974) equations. The Gardner equation is sometimes called a combined
(or mixed) KdV–mKdV equation since both quadratic and cubic nonlinearities are
present. These equations, as well as the nonlinear Schrödinger and sine-Gordon
equations, led to the discovery of elastically scattering waves (solitons) by Zabusky &
Kruskal (1965) and ingenious mathematical methods to compute them, most notably
the inverse scattering transform discovered in 1967 (Gardner et al. 1967) (see e.g.
Ablowitz & Segur 1981; Ablowitz & Clarkson 1991; Remoissenet 1999) and Hirota’s
method dating back to the early 1970s (Hirota 1971, 1972, 2004). The investigation
of their rich mathematical structure revealed a whole range of properties similar to
those of completely integrable dynamical systems.

Both the SPA and RPT methods have their advantages and drawbacks. When
applicable, both methods can complement each other to give a fuller picture of
the nature of the nonlinear wave solutions. Of the two methods, SPA is the most
accurate one because it uses the nonlinearities of the plasma model in full. One
can still work with an analytical expression for the Sagdeev pseudopotential (the
‘potential energy’ in the mechanics analogy) but the profiles for the solitary waves
have to be computed by numerical integration of Poisson’s equation.

By contrast, RPT is entirely algorithmic and often leads to nonlinear evolution
equations for which some properties and analytical profiles (for ϕ) are already
known in the literature. A drawback is that the nonlinearities are truncated to sec-
ond or third order, making RPT less reliable for computation of ion-acoustic waves
with large amplitudes.

The purpose of this paper is twofold. (i) We compare the results from SPA and
RPT applied to a sufficiently complicated plasma model with compositional param-
eters such as mass, charge and temperature. Using SPA we numerically compute
soliton profiles for a suitable set of compositional parameters. Using RPT we derive
the Gardner equation. Its analytic soliton solutions are compared with the numer-
ical soliton profiles obtained from SPA for the same parameter values and for the
same soliton velocity with respect to an inertial frame. Although the literature about
solitons computed with SPA and RPT separately is vast, comparisons of the results
from both treatments for the same plasma model are rare. (ii) In the derivations
of the Gardner equation, we pay close attention to the choice of the compositional
parameters which determines the signs and magnitudes of the coefficients of the
quadratic and cubic terms. For the plasma model under consideration, only the
so-called focusing Gardner equation is relevant. That is the equation that can be
reduced to the focusing mKdV equation where the coefficients of all terms are pos-
itive (perhaps after scaling). Consequently, for the compositional parameters used
in this paper, ion-acoustic waves modelled by the Gardner equation cannot take the
shape of flat-top (sometimes called table-top) solutions (Hereman & Göktaş 2024b).
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However, these table-top solitons arise in SPA as numerical solutions of Poisson’s
equation near double layers and triple-root structures in some multispecies plas-
mas. The interested reader is referred to Verheest, Hellberg & Olivier (2020) where
table-top solutions of the model in this paper (and others) are discussed.

The paper is organised as follows. Section 2 covers the governing equations of the
plasma model under consideration. For an appropriate set of compositional param-
eters, SPA is used to numerically compute profiles of bright and dark solitons. The
Gardner equation is derived using RPT in § 3. Close attention is paid to the mag-
nitude of the coefficients of the quadratic and cubic terms in the Gardner equation
to remain consistent with the terms retained within RPT. Using suitable composi-
tional parameters, in § 4 the analytic soliton solutions of the Gardner equation are
compared with the numerical soliton profiles based on SPA. Some conclusions are
drawn in § 5. In Appendix A we compare the results from applying SPA and RPT to
a simple plasma model where the KdV equation (instead of the Gardner equation)
is relevant.

2. Sagdeev pseudopotential analysis and plasma model

We consider a dusty plasma (Verheest 2000) consisting of cold charged negative
dust, Boltzmann electrons and Cairns non-thermal ions. The model is written in
normalised variables yielding a compact formulation where the relevant parameters
are readily recognisable. In terms of the physics of the model, the normalised densi-
ties are really charge densities but that has no impact on the mathematical analysis.
The present model has been successfully used to study solitons in dusty plasmas
(Verheest & Pillay 2008a,b) and, more recently, for the correct description of non-
linear periodic (‘cnoidal-like’) waves in such plasmas (Verheest & Olivier 2024). A
similar approach can be readily applied to a wide range of other plasma models,
where results from SPA and/or RPT are available, to establish their validity ranges.

Following the Cairns distribution (Cairns et al. 1995), at the macroscopic level the
ion density ni is given by

ni = (1 + βϕ + βϕ2)e−ϕ, (2.1)

where ϕ denotes the electrostatic potential and the non-negative parameter β mea-
sures the non-thermality. Note that (2.1) gives a deviation from the ubiquitous
Boltzmann distribution which is included at the lower limit for β = 0. The very
mobile electrons (with density ne) are assumed to be Boltzmann distributed. Thus,
in normalised form,

ne = (1 − f )eσϕ, (2.2)

where σ = Ti/Te is the ion-to-electron temperature ratio and f is the fraction of
the negative charge density taken up by the charged dust relative to the positively
charged ions at equilibrium. Hence, (1 − f ) represents the equilibrium electron
charged density fraction.

Crucial in the analysis is the representation of the cold negative charged dust
which, in a one-dimensional fluid description, comprises the equations of continuity

∂nd

∂t
+ ∂

∂x
(ndud) = 0 (2.3)

and momentum (Verheest & Pillay 2008a)

∂ud

∂t
+ ud

∂ud

∂x
= ∂ϕ

∂x
, (2.4)
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where nd and ud are the density and velocity of the dust grains. The basic equations
are coupled by Poisson’s equation (Watanabe 1984):

∂2ϕ

∂x2
+ ni − ne − nd = 0. (2.5)

To greatly simplify the mathematical analysis, we work in a frame co-moving with
the structure, by introducing

ζ = x − V t, (2.6)

where V is the velocity of the nonlinear wave. In the Sagdeev formalism, it is
assumed that solitary waves exist, with a stationary profile in the co-moving frame.
For that, the restrictions on the parameters have to be established.

The time variable is subsumed in ζ , and the description will only work if the dust
density nd can be expressed as function of ϕ. Given that ne and ni are already of
the appropriate form, once nd as function of ϕ has been obtained, (2.5) becomes a
differential equation from which ϕ has to be determined.

We rewrite (2.3) and (2.4) in terms of ζ with the help of (2.6) and integrate the
resulting expressions with respect to ζ , starting from the undisturbed equilibrium
quantities far away from the structure. Hence, we impose the boundary condi-
tions ϕ = 0, nd = f and ud = 0 when |ζ | → ∞. Eliminating ud between the two
expressions thus obtained leads to

nd = f√
1 + (2ϕ/V 2)

, (2.7)

involving a square root which is typical for cold plasma species.
Poisson’s equation (2.5) then becomes

d2ϕ

dζ 2
+ (1 + βϕ + βϕ2)e−ϕ − (1 − f )eσϕ − f√

1 + 2ϕ

V 2

= 0. (2.8)

After multiplication by dϕ/dζ and integration with respect to ζ one obtains an
energy-like integral:

1
2

(
dϕ

dζ

)2

+ S(ϕ) = 0, (2.9)

with the Sagdeev pseudopotential S(ϕ) defined (Sagdeev 1966) as

S(ϕ) = 1 + 3β − (1 + 3β + 3βϕ + βϕ2)e−ϕ + 1 − f

σ
(1 − eσϕ)

+ f V 2

(
1 −

√
1 + 2ϕ

V 2

)
. (2.10)

Evidently, (2.8) is then
d2ϕ

dζ 2
+ S′(ϕ) = 0, (2.11)

which plays a complementary role to (2.9) in the investigation below.
The behaviour of (2.10) has to be studied as we vary the compositional parame-

ters f , β and σ . One of the conditions to find soliton solutions is that the origin
(at ϕ = 0) is an unstable equilibrium; in other words, that S(ϕ) is negative in the
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immediate neighbourhood on the left and right of ϕ = 0. The conditions for that are
S(0) = 0, S′(0) = 0 and S′′(0) < 0, where primes denote derivatives of S with respect
to ϕ. Here S(0) = 0 is obtained by adjusting the integration constants; S′(0) = 0 fol-
lows from charge neutrality in equilibrium; and the concavity implied by S′′(0) < 0
requires that

V 2 � V 2
a = f

1 − β + (1 − f )σ
. (2.12)

This sets the acoustic velocity Va as the minimum soliton velocity. Thus, solitary
waves are superacoustic.

One can easily check that S(ϕ) → −∞ for ϕ → +∞. Since S(ϕ) < 0 near the ori-
gin, positive roots, if they exist, must occur in pairs. When V is sufficiently increased,
the pair of positive roots closest to the origin becomes a double root.

In this model, S(ϕ) does not have enough flexibility to have positive roots beyond
that. Hence, the range of positive roots ends at the double root. In more complicated
plasma models that is not necessarily the case but such scenarios are outside the
scope of the present paper.

We can also introduce a limit on the negative side,

ϕlim = − 1
2 V 2, (2.13)

obtained from (2.7) at infinite dust compression (nd → +∞). To have a negative root
of S(ϕ) (before infinite dust compression occurs), one must have that S(ϕlim)� 0,
which yields another limit on possible values of V .

To illustrate the shape of S(ϕ) given in (2.10), we carefully select a set of
compositional parameters:

β = 4/7, σ = 1/20, f = 0.61. (2.14)

For the non-thermality parameter (β) there is an upper limit of 4/7 in light of
how the underlying microscopic Cairns distribution (Cairns et al. 1995) has been
defined. Selecting β = 4/7 produces a quite strong non-thermality. Further details
can be found in the corresponding soliton papers (Verheest & Pillay 2008a,b). With
respect to σ = Ti/Te, one expects the heavier ions to have a lower temperature than
the electrons which makes σ = 1/20 a reasonable choice.

The choice of the third parameter ( f ) is motivated by our goal to compare the
results from the application of SPA and RPT and the ensuing Gardner equation. As
shown in § 3, respecting the conceptual constraints underlying the derivation of the
Gardner equation, the coefficient B of the quadratic nonlinearity should be close to
zero whereas the coefficient C of the cubic nonlinearity should be at least an order of
magnitude larger than B. Specifically, f has been selected so that the compositional
parameters (2.14) produce B � 0.01 and C � 0.5.

Continuing with SPA and inserting (2.14) into (2.12) yields Va = 1.16679.
Choosing then slightly larger values, namely V = 1.170, V = 1.176 and V = 1.182,
enables us to plot the respective S(ϕ) as shown in figure 1. We clearly see that
there are positive roots, giving solitons with amplitudes ϕpos = 0.167704, 0.347341
and 0.604500, respectively. These amplitudes are computed by numerically solv-
ing S(ϕ) = 0 with Mathematica’s FindRoot function. Using that same function, a
numerical solution of S(ϕ) = S′(ϕ) = 0 for V 2 and ϕ also shows that at Vdr = 1.18219
a positive double root ϕdr = 0.6526 is reached, signalling the end of the range of
solitons with positive amplitudes (the so-called ‘bright’ solitons).

https://doi.org/10.1017/S0022377825100615 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377825100615


6 F. Verheest and W.A. Hereman

FIGURE 1. Graphs of the Sagdeev pseudopotential (2.10) for f = 0.61, β = 4/7, σ = 1/20 and
V = 1.170 (left), V = 1.176 (middle) and V = 1.182 (right).

FIGURE 2. Graphs of bright solitons corresponding to the parameters given in figure 1.

Theoretically, there are either no or two positive roots, as discussed. So, the
velocity range for bright solitons is 1.16679� V < 1.18219. For graphical clarity
the larger of the two positive roots is not shown in the left-hand graph in figure 1 yet
it exists, although without physical meaning, as it cannot be reached from the initial
conditions at ϕ = 0.

There are also negative roots, giving rise to ‘dark’ solitons (with negative polarity
for ϕ), ϕneg = −0.177029, −0.270600 and −0.331836, respectively, for the same
compositional parameters. The range of negative roots is limited by the infinite
dust compression, which is obtained from S(ϕlim) = S(−V 2/2) = 0, yielding V =
Vlim = 1.43927 and, thus, ϕlim = −1.03575. Note that the dark solitons have larger
amplitudes (in absolute value) and occur over a larger range for V � Va , compared
with the range for the bright solitons which disappears long before the range for
dark solitons also ceases to exist.

The soliton profiles as shown in figures 2 and 3 are based on numerical inte-
gration (with Mathematica’s NDSolve function) of Poisson’s equation (2.8) with
conditions at the maxima or minima. In figure 2, we used ϕ′(0) = 0 together with
ϕ(0) = 0.167704 (left), ϕ(0) = 0.347341 (middle) and ϕ(0) = 0.604500 (right). In
figure 3, we used ϕ(0) = −0.177029 (left), ϕ(0) = −0.270600 (middle) and ϕ(0) =
−0.331836 (right), each again augmented with ϕ′(0) = 0. However, note that the
scales in figures 1, 2 and 3 are different. It is seen that the amplitudes of both
the bright and dark solitons increase with V , but that the amplitudes of the bright
solitons increase faster than those of the dark solitons (in the ranges where both
polarities can be generated).

For V = 1.17, close to the acoustic speed Va , the bright and dark solitons have
more or less the same amplitudes (in absolute values). This is no longer true for
larger V , where the bright solitons have larger amplitudes than the dark ones. For
V = 1.182 the bright soliton is wider and flatter. This becomes more and more
noticeable as V further increases and approaches Vdr = 1.182192261826. Indeed,
for ϕ(0) = 0.6526 and V < Vdr but very close to Vdr, e.g. Vdr = 1.182192261825
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FIGURE 3. Graphs of dark solitons corresponding to the parameters given in figure 1.

(i.e. Vdr − V = 10−12), the solution ϕ(ζ ) is a wide flat-top soliton. A discussion of
these ‘flatons’ is outside the scope of this paper. The interested reader is referred to
Verheest, Hellberg & Olivier (2020) for additional information.

3. Reductive perturbation theory and Gardner equation

Application of RPT in plasma physics has led to a host of nonlinear evolution
equations of which three are prominent: the KdV equation itself, the mKdV equation
with a cubic rather than quadratic nonlinearity and the Gardner equation with both
quadratic and cubic nonlinearities. Each of these equations is completely integrable
and exactly solvable with a panoply of methods. Detailed studies of the structure,
properties and integrability of the KdV and mKdV equations (Drazin & Johnson
1989; Ablowitz & Clarkson 1991) go back to the 1960s and the decades that fol-
lowed (Gardner et al. 1967, 1974; Gesztesy, Schweiger & Simon 1991). The Gardner
equation is also completely integrable because it can be transformed into the mKdV
equation with a Galilean transformation. Hence, a solution of the mKdV equation
yields a solution of the Gardner equation, and vice versa. Using a generalised form of
the Miura transformation (also known as the Gardner transformation), the Gardner
equation can be transformed into the KdV equation, again confirming its complete
integrability. However, that transformation will only be real-valued if the coefficient
of the cubic term is positive (i.e. C > 0 below). Furthermore, the Gardner trans-
formation is non-reversible: from solutions of the Gardner equation one can obtain
solutions of the KdV equation, but not the other way around. A review of vari-
ous integrability criteria, aforementioned transformations and some solutions of the
Gardner equation can be found in Hereman & Göktaş (2024b). We refer the reader
to Nasipuri et al. (2025) who give multi-soliton and breather solutions of a Gardner
equation arising in an electron–positron–ion plasma model.

Application of RPT for weakly nonlinear waves rests on two pillars. First, a
stretching of the independent variables x and t :

ξ = ε(x − Mt), τ = ε3t, (3.1)

where M is a normalised velocity and ε is a bookkeeping parameter used to separate
the orders of magnitude (i.e. smallness) of the various terms. Second, as with any
perturbation method, expansions of the dependent variables into smaller and smaller
terms:

ni = 1 + εni1 + ε2ni2 + ε3ni3 + · · · ,

ne = 1 − f + εne1 + ε2ne2 + ε3ne3 + · · · ,

nd = f + εnd1 + ε2nd2 + ε3nd3 + · · · ,

ud = εud1 + ε2ud2 + ε3ud3 + · · · ,

ϕ = εϕ1 + ε2ϕ2 + ε3ϕ3 + · · · , (3.2)
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where the ‘constant’ terms already have been inserted. The expansions of ni and
ne follow from the definitions of the ion and electron densities in (2.1) and (2.2),
respectively, through the use of the expansion of ϕ in (3.2). Those for nd and ud

need an interplay between (2.3), (2.4) and (2.5). Inserting the stretching yields

ε3 ∂nd

∂τ
− εM

∂nd

∂ξ
+ ε

∂

∂ξ
(ndud) = 0,

ε3 ∂ud

∂τ
− εM

∂ud

∂ξ
+ εud

∂ud

∂ξ
− ε

∂ϕ

∂ξ
= 0,

ε2 ∂2ϕ

∂ξ 2
+ ni − ne − nd = 0. (3.3)

Substituting the expansions (3.2) into the modified basic equations (3.3) gives to
second order the intermediate results:

nd1 = − f ϕ1

M2
, ud1 = − ϕ1

M
. (3.4)

The integrations have been performed with zero boundary conditions for ξ → ±∞,
which are typical for solitons viewed in a co-moving frame, where the wave is centred
at the origin and the wings vanish far away on both sides. These boundary conditions
were also used in § 2. They are known as soliton boundary conditions and quite
different from the conditions needed to generate nonlinear periodic waves (Olivier
& Verheest 2022; Verheest & Olivier 2024). With (3.4), Poisson’s equation (2.5) at
order ε then yields the dispersion relation

M2 = M2
a = f

1 − β + (1 − f )σ
, (3.5)

fixing the wave speed in (3.1). Note that Ma corresponds to the acoustic speed Va

derived in (2.12) in § 2, confirming the consistency between the two methods. Rather
than using the explicit expression (3.5) for Ma we will continue with the shorthand
Ma to keep the expressions more compact, in particular, those of the coefficients A,
B and C given below. At third order, the continuity and momentum equations yield

nd2 = − f ϕ2

M2
a

+ 3 f ϕ2
1

2M4
a

, ud2 = − ϕ2

Ma
+ ϕ2

1

2M3
a

. (3.6)

At order ε2 the Poisson equation then gives

1
2 B ϕ2

1 = 0, (3.7)

because the term in ϕ2 vanishes by application of the dispersion law (3.5). The
constant

B = 1 − (1 − f )σ 2 − 3 f

M4
a

(3.8)

in (3.7) is the coefficient of the quadratic nonlinearity which plays a crucial role in
the distinction between the KdV, mKdV and Gardner equations. To make the term
in (3.7) vanish, three possibilities should be considered: either B = 0, or ϕ1 = 0, or
B is so small (i.e. order ε) that the term in (3.7) should be included in Poisson’s
equation at order ε3. We now discuss these scenarios in more detail.
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To continue with ϕ1 �= 0 requires plasma models with enough parameters so that
B can be set to zero. This cannot be done, for example, for ion-acoustic solitons
in a simple plasma model where the ions are cold (no temperature effects) and the
electrons are governed by a Boltzmann distribution (no inertial mass effects). An
illustrative example is given in Appendix A.

3.1. The KdV equation
If B were non-zero (and finite), then the only possibility is to put ϕ1 = 0 and

recalibrate the description with ϕ2 as the important variable. This would lead to the
KdV equation:

A
∂ϕ2

∂τ
+ Bϕ2

∂ϕ2

∂ξ
+ ∂3ϕ2

∂ξ 3
= 0, (3.9)

describing a balance between slow time, nonlinear and dispersive effects. The
compositional parameters are absorbed into coefficient A, given by

A = 2 f

M3
a

, (3.10)

and B given in (3.8).
Originally derived for solitons on the surface of shallow water by Korteweg &

de Vries (1895), the KdV equation appears in various physical contexts because it
describes the propagation of nonlinear dispersive waves. In particular, it has been
used in plasma physics to model nonlinear ion-acoustic waves and solitons (Varghese
et al., 2025), resulting in a plethora of results in the literature for a great variety of
multispecies plasmas.

Of course, by suitable scalings, for example, X = ξ , T = τ/A and ϕ2 = U/B, (3.9)
can be replaced by

∂U

∂T
+ U

∂U

∂ X
+ ∂3U

∂ X 3
= 0, (3.11)

with all coefficients equal to one and U (X (ξ), T (τ )) = Bϕ2(ξ, τ ). However, working
with (3.9) has the advantage that the coefficients are directly related to the composi-
tional parameters which facilitates comparison with the plasma literature. Regardless
of the signs of A and B, using the discrete symmetries τ → −τ and ϕ2 → −ϕ2, (3.9)
can be transformed into the KdV equation where A and B are both positive. See
Singh & Kourakis (2025) for a similar discussion of a slight variant of (3.9).

3.2. The mKdV equation
For certain plasma models, the parameters can be adjusted so that B = 0,

requiring a different scaling and leading to the mKdV equation (Nakamura &
Tsukabayashi 2009):

A
∂ϕ1

∂τ
+ Cϕ2

1

∂ϕ1

∂ξ
+ ∂3ϕ1

∂ξ 3
= 0, (3.12)

having a cubic rather than a quadratic nonlinearity, with coefficient

C = − 1
2

[
1 + 3β + (1 − f )σ 3

]+ 15 f

2M6
a

. (3.13)

The change of variables X = ξ , T = τ/A and ϕ1 = U/
√|C | transforms (3.12) into

∂U

∂T
+ sgn(C) U 2 ∂U

∂ X
+ ∂3U

∂ X 3
= 0, (3.14)
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for U (X (ξ), T (τ )) = √|C | ϕ1(ξ, τ ) and where sgn(C) denotes the sign of C . For
C > 0, (3.14) (and any scaled version of it) is called the focusing mKdV equa-
tion which has soliton solutions of any order (see e.g. Ablowitz & Clarkson 1991;
Hereman & Göktaş 2024b). The focusing mKdV equation has been extensively stud-
ied in plasma physics (see e.g. Verheest & Hereman (2019) and Varghese et al.
(2025) and references therein). If C < 0, (3.14) is the defocusing mKdV equation
which, for example, describes the propagation of double layers or electrostatic shocks
in plasmas (Torven 1981). The defocusing mKdV equation admits shock-wave pro-
files (involving the tanh function) and table-top solutions (see Hereman & Göktaş
(2024b) and references therein). It is impossible to convert the defocusing mKdV
equation into the focusing one by using discrete symmetries (ξ → ±ξ , τ → ±τ and
ϕ1 → ±ϕ1, regardless of all possible combinations of signs).

Both the KdV and focusing mKdV equations support waves that collide elastically
(solitons), in principle for as many solitons as wanted (Ablowitz & Clarkson 1991;
Hereman & Göktaş 2024a). A comparative study of ion-acoustic waves in dusty
plasma modelled by the KdV- and mKdV-type equations can be found in Verheest,
Olivier & Hereman (2016) and Kalita & Das (2017). As an aside, replacing the
quadratic and/or cubic terms with quartic and higher-order nonlinearities would
destroy the complete integrability, and consequently the typical soliton interactions
would be lost (Verheest, Olivier & Hereman 2016).

3.3. The Gardner equation
We now turn our attention to the intermediate case where B is not strictly zero

but small enough so that quadratic as well as cubic nonlinearities are present and
both play a significant role. This mixed (or combined) KdV and mKdV equation is
often referred to as the Gardner equation (Zabusky & Kruskal 1965; Gardner et al.
1967, 1974) which we derive next.

The momentum and continuity equations at fourth order yield

nd3 = − f
[ 5ϕ3

1

2M6
a

− 3ϕ1ϕ2

M4
a

+ ϕ3

M2
a

+ 2
M3

a

∫
∂ϕ1

∂τ
dξ
]
,

ud3 = − ϕ3
1

2M5
a

+ ϕ1ϕ2

M3
a

− ϕ3

Ma
− 1

M2
a

∫
∂ϕ1

∂τ
dξ. (3.15)

Substituting these expressions into Poisson’s equation at order ε3, one first
encounters

A
∫

∂ϕ1

∂τ
dξ + B ϕ1ϕ2 + 1

3C ϕ3
1 + ∂2ϕ1

∂ξ 2
= 0 (3.16)

after setting ϕ3 = 0. The coefficients A, B and C in (3.16) are given in (3.10), (3.8)
and (3.13), respectively. Given the smallness of B (close to the critical case B = 0
leading to the mKdV equation (3.12)) the term Bϕ1ϕ2 is of higher order and should
be discarded. The same argument holds for the term in (3.7), which should have
been ‘upgraded’ to the next higher order and therefore be included. Hence, (3.16)
should be replaced by

A
∫

∂ϕ1

∂τ
dξ + 1

2 B ϕ2
1 + 1

3C ϕ3
1 + ∂2ϕ1

∂ξ 2
= 0, (3.17)
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which, after differentiation with respect to ξ , yields the true Gardner equation:

A
∂ϕ1

∂τ
+ Bϕ1

∂ϕ1

∂ξ
+ Cϕ2

1

∂ϕ1

∂ξ
+ ∂3ϕ1

∂ξ 3
= 0, (3.18)

where for consistency, B should be small (i.e. same order as ϕ1) and C should be of
order unity. If in (3.18) B and C were both finite (i.e. order unity) the quadratic term
with coefficient B would dominate and the cubic term with coefficient C would be a
negligible correction! Thus, for consistency, the Gardner equation requires that |Bϕ|
is of the same order of smallness as |Cϕ2|. If not, one of the two terms dominates
and that would yield solutions reminiscent of the KdV or mKdV solitons. This is of
particular importance when the Gardner equation models a physical process where
the higher-order nonlinearities have been neglected.

Without loss of generality, we continue with B > 0 in (3.18) because, if B < 0,
replacing ϕ1 by −ϕ1 would make the coefficient of ϕ1((∂ϕ1)/(∂ξ)) positive again. The
change of variables X = Bξ/

√|C |, T = B3τ/(A|C |√|C |) and ϕ1 = BU/|C | allows
one to replace (3.18) by

∂U

∂T
+ U

∂U

∂ X
+ sgn(C) U 2 ∂U

∂ X
+ ∂3U

∂ X 3
= 0, (3.19)

for U (X (ξ), T (τ )) = (|C |/B) ϕ1(ξ, τ ). In analogy to the mKdV equation, (3.14) is
called focusing or defocusing depending on whether the sign of C is positive or
negative. No discrete symmetries of ξ, τ or ϕ1 will flip the sign of the coefficient of
ϕ2

1((∂ϕ1)/(∂ξ)). So, the cases C > 0 and C < 0 would have to be treated separately.
The Gardner equation has many applications (Hereman & Göktaş 2024b; Zhang

et al. 2014) ranging from fluid dynamics to plasma physics (Olivier & Verheest
2020). In the study of double layers and near-critical plasma compositions the defo-
cusing Gardner equation plays a role (Olivier, Verheest & Maharaj 2016). For the
plasma model treated in this paper and variants thereof only the focusing Gardner
equation is relevant (Xie & He 1999; Gill, Kaur & Saini 2005; Bacha & Tribeche
2013).

4. Comparison of the results from SPA and RPT

After having examined both methods from a theoretical point of view in the pre-
vious two sections, we are now ready to numerically compare the results obtained
from SPA with those from RPT. Although we restrict our comparison to the model
at hand, our approach is applicable to other multispecies plasma models with a
sufficient number of compositional parameters.

Recall that RPT requires that M = Ma with Ma defined in (3.5). Thus, in (3.1), Ma

is the linear wave speed with respect to the laboratory inertial frame for the ‘space’
variable (ξ ). Hence, the velocity v of soliton solutions of (3.18) is measured with
respect to that frame. By contrast, in SPA the soliton speed V refers to the inertial
laboratory frame as defined in (2.6). Regardless of the definition, for acoustic wave
modes the soliton speed is always superacoustic (that is, larger than the original
acoustic velocity).

Using model parameters (2.14), we compute (3.8), (3.10) and (3.13) and insert
these into (3.18) yielding

0.768044
∂ϕ1

∂τ
+ 0.0116414 ϕ1

∂ϕ1

∂ξ
+ 0.456023 ϕ2

1

∂ϕ1

∂ξ
+ ∂3ϕ1

∂ξ 3
= 0. (4.1)
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FIGURE 4. Graphs of bright solitons for the parameters given in figure 1 but computed with two
different techniques: Sagdeev’s pseudopotential approach yields the solid curves (copied from
figure 2) and the solution (4.2) of Gardner’s equation gives the dashed curves, using v = 0.00321
(left), v = 0.00921 (middle) and v = 0.01521 (right).

The analysis that follows is based on the well-known solitary wave solution of the
Gardner equation (3.18) in the form (see e.g. Hereman & Göktaş 2024b; Olivier,
Verheest & Maharaj 2016)

ϕ1(ξ, τ ) = 6k2

B[1 +√
1 + ((6C)/B2)k2 cosh(k(ξ − (k2/A)τ ))]

= 6Av

B[1 +√
1 + ((6AC)/B2)v cosh(

√
Av(ξ − vτ))] , (4.2)

since the wavenumber (k) and wave speed (v) are linked by v = k2/A.
To compare the graphs of the solutions of the Gardner equation with those based

on Sagdeev’s approach, as noted above, the velocities refer to different moving
frames, that is, V = Va + v. Hence, v = V − Va which we use below. As mentioned
below (3.5), M = Ma = Va. So, with regard to (2.6) and (3.1), ζ = x − V t = x −
Vat − vt = ξ − vτ , after setting the bookkeeping parameter ε equal to 1. When the
values for A, B and C are inserted in (4.2) the soliton profiles can be plotted.

In figure 4, we have combined the graphs obtained by SPA and RPT using
ζ = ξ − vτ as a single argument. Recall that Va = 1.16679. Hence, to compare with
the graphs in figure 2, we must evaluate (4.2) for v = 1.170 − 1.16679 = 0.00321,
v = 1.176 − 1.16679 = 0.00921 and v = 1.182 − 1.16679 = 0.01521. It is seen that
for larger V and corresponding v, the solitons obtained with SPA are taller and much
wider than those derived from Gardner’s equation but both have the usual property
that increasing amplitudes (corresponding to increasing velocities) result in reduced
widths. As V gets closer and closer to Vdr = 1.18219 the solutions of Gardner’s
equation deviate more and more from the solitons obtained from SPA with ampli-
tudes approaching ϕdr = 0.6526. From these comparisons one might conclude that
the solutions of Gardner’s equation are quite reliable up to ϕ � 0.2.

Unfortunately, we have been unable to compute dark soliton solutions of
Gardner’s equation that vanish at ±∞. Hence, a correspondence with the dark
solitons based on Sagdeev’s approach cannot be established.

5. Conclusions

In this paper we have investigated ion-acoustic waves in a dusty plasma with
Cairns-distributed ions and Boltzmann-distributed electrons. We have applied SPA
and RPT. The SPA method retains all nonlinearities of the model and therefore
yields the most accurate results but requires a numerical integration of Poisson’s
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equation to get soliton profiles. By contrast, the accuracy of the results from RPT
depends on the order of nonlinearity taken into account. The larger the number of
terms retained in the perturbation expansions the more accurate the results will be
but the harder it becomes to find analytic solutions along the way. Keeping terms up
to second order, RPT yields the Gardner equation (3.18) which still can be solved
analytically and therefore yields a closed-form expression of the soliton profile.

The derivation of the Gardner equation must be done with care. First, the plasma
model must have a sufficient number of compositional parameters for the Gardner
equation to be applicable. Second, we have shown that for consistency with the
perturbation treatment, the coefficient (B) of the quadratic term should be at least
an order of magnitude smaller than the coefficient (C) of the cubic term. If C is of
order unity and B were of the same order, the quadratic term would prevail over
the cubic term, which could then be neglected (leading to the KdV equation). Here
again, a multispecies plasma should have enough compositional parameters to allow
for a very small B and a positive C . Given the plethora of multispecies plasma
models available in the literature (see e.g. the references in Nasipuri et al. (2025)),
there certainly are models that satisfy this requirement.

For an appropriate set of compositional parameters, the solitons obtained with
SPA and RPT have been analysed and compared. Although such comparisons are
rarely done in the literature, they reveal important information about the range of
validity of the commonly used soliton solution of the Gardner equation. For the
model in this paper, the discrepancies between the two methods indicate that the
Gardner soliton is of limited use at higher amplitudes. We expect this also to be true
in various other multispecies plasma models where the Gardner equation is derived
via RPT. Careful investigation of the signs of the coefficients in the equation and
estimation of their magnitudes are warranted. A comparison of the results from
SPA and RPT is also recommended because it will provide additional insight in the
usefulness of analytic solutions.

In Appendix A it is shown that simple ion-acoustic plasma models do not have
enough compositional flexibility to go beyond the KdV equation. Based on our
investigation we conclude that in simple plasma models the KdV or mKdV equations
are the relevant ones, not the Gardner equation.
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Appendix A. Simple ion-acoustic waves
In this appendix we use the simplest model of ion-acoustic solitons in a plasma con-

sisting of electrons with Boltzmann distribution, ne = eϕ , and cold ions. The model
is then governed by the ion equations expressing continuity:

∂ni

∂t
+ ∂

∂x
(ni ui) = 0 (A.1)

and momentum:
∂ui

∂t
+ ui

∂ui

∂x
+ ∂ϕ

∂x
= 0, (A.2)

coupled by Poisson’s equation

∂2ϕ

∂x2
+ ni − eϕ = 0. (A.3)

These equations also follow from the dusty plasma model discussed in the preceding
sections by putting f = 1 (so that σ disappears), β = 0 and interchanging the polarity
of the charged particles (ϕ → −ϕ). In this simplest model for ion-acoustic solitons
there are no compositional parameters to select since all have ‘disappeared’ in the
normalisation.

A.1. Sagdeev pseudopotential analysis
To apply SPA we again use ζ = x − V t to derive the cold ion density

ni = 1√
1 − ((2ϕ)/V 2)

, (A.4)

reminiscent of (2.7) and use that to obtain the Sagdeev pseudopotential

S(ϕ) = V 2

(
1 −

√
1 − 2ϕ

V 2

)
+ (1 − eϕ) . (A.5)

From

S′′(ϕ) = 1
V 2

(
1 − 2ϕ

V 2

)−3/2

− eϕ, (A.6)

one gets

S′′(0) = 1
V 2

− 1. (A.7)

Therefore the ion-acoustic speed is Va = 1. There are no negative roots and there
can only be one positive root before the limit ϕlim = V 2/2 is reached. The necessary
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Max. amplitude Max. amplitude Difference
V (SPA) v (KdV soliton) (KdV − SPA)

1.01 0.02978 0.01 0.03 0.00022
1.02 0.05912 0.02 0.06 0.00088
1.03 0.08803 0.03 0.09 0.00197
1.04 0.11653 0.04 0.12 0.00347
1.05 0.14463 0.05 0.15 0.00537
1.06 0.17234 0.06 0.18 0.00766
1.07 0.19967 0.07 0.21 0.01033
1.08 0.22663 0.08 0.24 0.01337
1.09 0.25322 0.09 0.27 0.01678
1.10 0.27947 0.10 0.30 0.02053
1.20 0.52438 0.20 0.60 0.07662
1.30 0.74222 0.30 0.90 0.15778
1.40 0.93827 0.40 1.20 0.26173
1.50 1.11647 0.50 1.50 0.38353

TABLE 1. Comparison of small solitary wave amplitudes computed with SPA and RPT.

FIGURE 5. Graph of the Sagdeev pseudopotential (A.5) for V = 1.01 (left) and a zoom near the
root ϕ = 0.02978 (right).

condition is S(ϕlim)� 0. Then

S(ϕlim) = V 2 + 1 − eV 2/2 = 0 (A.8)

yields V = Vlim = 1.5852 and ϕlim = 1.25643. Hence, 1 < V < 1.5852 is needed. For
each V in that interval, S(ϕ) = 0 then determines the value of the positive root. A
list of these roots (each corresponding to a value of V ) is given in table 1. Figures 5
and 6 illustrate the shape of the Sagdeev pseudopotential (A.5) for V = 1.01 and V =
1.2, respectively, together with zooms near the roots ϕ = 0.02978 and ϕ = 0.52438.
These roots are obtained by numerically solving S(ϕ) = 0.

The actual graph of ϕ(ζ ) can then be obtained by numerical integration of
Poisson’s equation (2.11) for S(ϕ) in (A.5), that is,

∂2ϕ

∂ζ 2
+ 1√

1 − 2ϕ

V 2

− eϕ = 0. (A.9)
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FIGURE 6. Graph of the Sagdeev pseudopotential (A.5) for V = 1.2 (left) and a zoom near the
root ϕ = 0.52438 (right).

A.2. Reductive perturbation theory
Turning now to the reductive perturbation approach, we use the widely used (see

e.g. Varghese et al. 2025 and references therein) stretching

ξ = ε1/2(x − Mt), τ = ε3/2t, (A.10)

and the expansions

ni = 1 + εni1 + ε2ni2 + · · · , (A.11)

ui = εui1 + ε2ui2 + · · · , (A.12)

ϕ = εϕ1 + ε2ϕ2 + · · · , (A.13)

yielding the following results:

ε3/2 : M
∂ni1

∂ξ
− ∂ui1

∂ξ
= 0,

ε5/2 : ∂ni1

∂τ
− M

∂ni2

∂ξ
+ ∂ui2

∂ξ
+ ∂

∂ξ
(ni1ui1) = 0,

ε3/2 : M
∂ui1

∂ξ
− ∂ϕ1

∂ξ
= 0,

ε5/2 : ∂ui1

∂τ
− M

∂ui2

∂ξ
+ ui1

∂ui1

∂ξ
+ ∂ϕ2

∂ξ
= 0. (A.14)

Finally, (A.3) gives

ε2 ∂2ϕ1

∂ξ 2
+ (1 + εni1 + ε2ni2) − (1 + εϕ1 + ε2ϕ2 + 1

2ε
2ϕ2

1) = 0. (A.15)

Elimination of the terms at order ε3/2 in (A.14) and order ε in (A.15) yields

ni1 = 1
M2

ϕ1 = ϕ1, (A.16)

and thus M = 1 in the stretching (A.10). So, M matches the ion-acoustic speed
(i.e. Va = 1) established before. The main difference is that in the SPA method V
represents the soliton speed with respect to the so-called laboratory frame.
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Continuing with the higher-order terms in (A.14) and (A.15), after elimination of
ni2, ui2 and ϕ2, leads to the well-known KdV equation:

2
∂ϕ1

∂τ
+ 2ϕ1

∂ϕ1

∂ξ
+ ∂3ϕ1

∂ξ 3
= 0. (A.17)

A.3. Comparison of the results from SPA and RPT
To compare solutions obtained by SPA with solutions of (A.17), we move to a

frame co-moving with the soliton with respect to the earlier stretching. Therefore,
we set

ζ = ξ − vτ (A.18)
and

V = 1 + v, (A.19)
which is the soliton velocity in the laboratory frame. Hence, v = V − 1 which is used
in the discussion below. Using (A.18), KdV equation (A.17) is transformed into

−2v
dϕ1

dζ
+ 2ϕ1

dϕ1

dζ
+ d3ϕ1

dζ 3
= 0, (A.20)

which has the well-known solution

ϕ = 3v sech2

(√
v

2
ζ

)
= 3v sech2

(√
v

2
(ξ − vτ)

)
, (A.21)

using (A.18). The maximum amplitude 3v = 3(V − 1) of (A.21) is reached at ζ = 0
and this amplitude increases linearly with V . In SPA, the amplitude of the solitary
wave is given by the value of the positive root of S(ϕ), and the graph of ϕ(ζ )
has to be obtained from a numerical integration of the Poisson equation (A.9).
The maximum amplitudes of the solitons computed with both methods for various
choices of V are given in table 1. The surprising conclusion is that the linearised
equations seem to overestimate the solitary wave amplitude when the nonlinearities
are fully included in the description.

There is a caveat: in the derivation of KdV solitons with RPT the nonlinearities
are limited to second order. Thus for consistency, one can only allow perturbations
of order 0.1 to 0.2. Therefore, solutions (A.21) with too large an amplitude might
not reflect physical reality. Although mathematically speaking, for large amplitudes
KdV solitons can have interesting properties, the KdV equation and its solutions
would then fail to accurately describe the physical model application.

One cannot know how reliable the KdV results are for a given model unless a com-
parison is made either with methods where the nonlinearities are kept in full or with
physical experiments. Fortunately, for ion-acoustic waves in plasmas the Sagdeev
pseudopotential method can be applied for a great many models. Nevertheless,
quantitative comparisons have rarely been made.

As seen in table 1 and figure 7 where v = V − 1, for very small amplitudes of ϕ
(computed with SPA) both curves coincide to a large extent, but when the maximum
amplitude of ϕ reaches 0.2 (and beyond) the KdV solutions tend to overestimate the
fully nonlinear solutions. This is perhaps not what one would expect because the
KdV description caps the nonlinearities at quadratic terms whereas SPA keeps the
nonlinearities as they appear in the model equations. Note also that as the ampli-
tudes increase with the velocities (mostly not linearly), the solitons become narrower
regardless of the method being used.

https://doi.org/10.1017/S0022377825100615 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377825100615


18 F. Verheest and W.A. Hereman

FIGURE 7. Comparison of the graphs of bright ion-acoustic solitons computed with SPA and
RPT. The solid curves come from numerical integration of Poisson’s equation for V = 1.01
(left) and V = 1.20 (right). The dashed curves show the sech squared profile in (A.21) with
v = 0.01 (left) and v = 0.2 (right).
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