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Points at Infinity, etc., in a plane.

By P. PINKERTON, M.A.

1. The object of this paper is to correlate the geometrical and
analytical aspects of the elements of the theory of points at infinity,
etc., in a plane. I t is assumed that the reader is acquainted with
the method of tracing the graphs of rational functions of x, by using
the artifices of change of origin and approximation by Ascending
or Descending Division (see Chrystal's Introduction to Algebra,
Ch. XXV.).

2. When we write tan—= oo, geometrically we mean (1) that a

right-angled triangle can be constructed, the ratio of whose sides is
equal to n, where n is any pre-assigned positive number, however
large, and (2) that the difference between the greater of the acute
angles of the triangle and a right angle continually tends to zero as
n increases. The full notation is Lt. tan0 = « . Algebraically, we

have tan— = r -r 0, where r is the length of the radius vector which,

by revolving according to the general definition of the tangent

of an angle, traces out the angle — radians. But r-f-0 is not a

particular or special case of the algebraic operations which obey
the Laws of Algebra; for, if it were, we might reason thus:

0 x 8 = 0 and 0 x 9 = 0, .-. 0 x 8 = 0x9, .-. 0 x 8-=-0 = 0 x 9-^0,

.-. 8x(0-f0) = 9x(0H-0), .-. 8 = 9. Thus tan^J- has no algebraic

value, i.e., is not equal to a number which obeys the Laws of
Algebra. We call r -r 0 a limiting case of an algebraic operation,
and write, in this case, r-=-0 = », the full notation being again
r-r-0= L r - r x = « . Again a tangent to a circle is a limiting case

of a secant of a circle; it is not a secant, for it lacks some of the
properties of a secant. Correspondingly in analysis; if x,y, and x&3
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are the coordinates of the points in which a secant cuts the circle
x2 + y2 = a2, then the secant has for equation

When xjyi coincides with x^, we get the equation

involving limiting cases of algebraic operation; and we have to
" evaluate " the equation

k y _y = L * J^'

under the conditions x? + y,5 = a:,2 + y2
2 = a2, to find the equation to

the tangent at x$l. The introduction of limiting cases into Geometry
finds its equivalent in the introduction of limiting cases of algebraic
operation into Analysis.

3. Let A, B be two fixed points on a given straight line, and let
1 be a variable number, finite both ways, and positive or negative.
Through A and B draw AX, BY parallel straight lines such that
AX/BY = t, account being taken of the directions of AX, BY as
well as of their magnitudes (AX, BY, in fact, being steps). The line
XY meets the line AB unless t = + 1. Let P be the variable point
of intersection; then, clearly, AP/BP = AX/BY = t, AP, BP being
steps. Also if it be supposed possible to find another point Q such
that AQ/BQ = «, we shall have AP/BP = AQ/BQ, .-. (AP-BP)/BP
= (AQ-BQ)/BQ, .-. AB/BP = AB/BQ, .-. BP = BQ; so that Q is
the same point as P, BP and BQ being steps. Hence one and only
one point P can be found such that AP/BP = t, provided <=t= + 1 .
The nearer t is to +1 the further is P from A (or B). To make
the possible values of t complete, we introduce as a convention the
limiting case of a point on the line, corresponding to t = + 1. Since
in the case of actual points on the line, there is one and only one
point for each value of I, so we make the convention that there is
only one point on the line whose "position-ratio" is equal to +1 .
This point is called the point at infinity on the line. It is to be
observed that the point at infinity on a straight line is not a point
in sober fact on the line, any more than a tangent to a circle is a
secant. Indeed we have not defined the point at infinity on a line
to have position, but only a "position-ratio," the value of the
" position-ratio," viz., + 1, corresponding to no position on the line.
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Analytically, let B be taken as an origin of coordinates on the line
AB, and let the coordinates of A and P be a and x respectively.

x -aThen if AP/BP = t, we have, to determine x, the equation = t,

so that x— , if t 4= 1. If t = 1, there is no value of x; we have

the anomalous equation 0. x = a. But making use of limiting cases
of algebraic operation, we write x = a -i- 0 = a>. If, then, points at
infinity are in question, we cannot omit from an equation such a
term as mx when m = 0, but only when actual (finite) points are in
question.

4. We now proceed to endow points at infinity with geometrical
and analytical properties, taking care that the process involves us
in no contradictions. Geometrically, we may suppose the point at
infinity on the line AB joined to a finite point in the plane not
having its position on AB. This line cannot meet the line AB
again; for we must escape the contradiction that two straight lines
have more than one point in common. The straight line must
therefore be considered as parallel to AB. A system of such straight
lines will be a system of parallel straight lines; that is, parallel
straight lines have their respective points at infinity in common, or
meet at infinity, as is the usual expression. This result also flows
from the geometrical construction of § 3. Analytically : let one of
a system of parallel straight lines be chosen as the a;-axis of a
Cartesian system of reference. Then the equation of any other may
be written in the form y = 0 . x + e; the term 0 . x not being omitted,
as points at infinity are in question (see § 3). To find the point of
intersection of y = 0 . x + c, and the a;-axis, we solve the equations
y = 0. x and y = 0. x + c, whence arises the anomalous equation
0. x + c = 0, showing (§ 3) that the point of intersection is the point
at infinity on the a;-axis. Therefore, a system of parallel straight
lines " meet at infinity."

5. Associated with any system of parallel straight lines, therefore
associated with any direction in a plane, is a point at infinity.
Hence associated with a plane is an assemblage of points at infinity.
This assemblage of points is met by any straight line in the plane in
one and only one point, and therefore is to be regarded as forming a
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straight line, called the line at infinity in the plane. Referred to a
Cartesian system of reference in the plane, the equation to the line
at infinity must be written 0 .x + 0 .y + c = 0. For an equation of
the first degree is in question ; this equation is satisfied by the
coordinates of no actual point in the plane, and the point^pair
common to O.x + 0.y + c = 0 and Ax + By + C = 0 is (oo, oc),(a>, 0) or
(0, oo), according as A 4= 0 and B =t= 0, or A = 0 and B * 0, or A + 0
and B = 0.

6. The necessity of preserving terms like 0. x in equations, or of
understanding that they are present if not actually written, where
points at infinity or infinite values of x are in question, may be
illustrated geometrically and analytically by considering the coaxal
system of circles determined by the equations

&=x* + y°- + 2gx+2fy +c=0,

and S'=

The equation, S + kS' = 0, represents the system of coaxal circles
except when k = - 1, when S + Mi' = 0 takes the form

which may be written

(0.x + 0.y + l){2(g

representing the line at infinity as well as the line given by

This limiting case of the system of circles, S + kS' = 0, thus appears
as two straight lines, one lying wholly at infinity, the other being
(as usually defined) the radical axis of the coaxal system defined by
the circles S = 0, S' = 0. Now if a secant through a point P cuts a
circle in A and B, the power of the point P with respect to the
circle is geometrically defined as PA. PB. When the point P lies
on the circle PA. PB = 0. But if the radical axis with the line at
infinity be included, as a limiting case, in the system of coaxal circles
defined by S = 0, S' = 0, and if P be taken on the radical axis
PA. PB assumes the form 0 x « —an indeterminate form, as is
geometrically obvious. For since P lies on the radical axis PA. PB
in the limiting case remains equal to the square on the tangent from
P to any circle of the system, and this is indeterminate, depending
on the position of P.
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7. The usefulness of the conventions, point at infinity and line 
at infinity, in connection with Menelaus' and Ceva's Theorems, 
Harmonic Ranges and Pencils, etc., is well known. The task of 
making what is found in text-books clear and intelligible may be left 
to the reader. The rest of this paper will be occupied with remarks 
on points at infinity on plane curves. 

8. It has already been seen that, when an equation of the first 
degree takes the anomalous form 0. x + e = 0, it is to be interpreted 
as having its root infinite. If the equation 

a&" + alxn~1 + a.!xn-*+ ..+atx"-r+...+an_1x + an = 0, - (1) 

be transformed by putting x=l/y, we obtain the equation 

a.y* + an_ly"-1 + ...+aryr+...+atf* + aiy + a, = 0. - (2) 

Consider the coefficients a0, a,, etc., as varying according to some 
law; one root of (2) tends to zero as a„ tends to zero, provided a, 4= 0 ; 
two roots of (2) tend to zero if a„ and at tend to zero while a, does 
not tend to zero; r roots tend to zero as a,, a„ ..., ar_, tend to zero 
while ar does not tend to zero. But while y tends to zero, x tends 
to oo , if we introduce limiting cases of operation, as we have seen we 
must do if points at infinity and infinite values of x are in question. 
Hence if a., = 0 and a, 4= 0, we make the convention that one root of 
(1) is infinite; if a0 = 0 and a, = 0 while aj4=0, two roots of (1) are 
to be considered infinite; and so on. 

9. These analytical conventions may be graphically illustrated. 
The case of the equation 0. x + c = 0 has its equivalent in the 
geometrical convention that two parallel straight lines have their 
points at infinity in common. The cases 0. a? + px + q = 0(p 4= 0), 
and 0 .x* + Q .x + q = 0(q 4= 0), may be illustrated from the graph of 
y = (x- \)l(x + \), fig. 4. The quadratic equat jn 

(mx + c)(x+ 1) = a:- 1 - - - - (3) 
determines the abscissae of the points of intersection of the graph and 
the line y — mx + c. There are in general two such points. When 
TO = 0 and c =t= 1, equation (3) takes the form 0. x' + c(x + 1) = x - 1 ; 
there is one finite point of intersection, whose abscissa is determined 
by the equation c ( x + l ) = x - 1 , and one point of intersection at 
infinity. The branches of the graph that stretch to right and left 
tend to assume the form of a parallel to y = c(c=tl), consistently 
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with L(a; - l)/(x + 1) = 1. The abscissae of the points of intersection

of y = 1 and the curve are given by the equation 0.x* + 0.x + 2 = 0.
The straight line y = 1 never meets the curve at any actual points.
But we are at liberty to say that it meets the curve at two coin-
cident points—these points coinciding with the point at infinity on

degree behaving like an actual point of simple concavity towards a
straight line as tangent. We thus speak of a point of simple con-
cavity at infinity and call the " tangent" at the point an. asymptote.

10. Curves o£ higher degree than the second present similar
properties. Consider the graph of y — { - a? + 3.e + 2)/(cr + x + 1),
fig. 5. The abscissae of the points of intersection of the straight
line y = mx + e with the curve are given by the equation

(mx + c)(sr + x + 1) + X
2-Sx- 2 = 0. - - (4)

A cubic equation is in question. When the straight line y = mx + c
is parallel to the x-axis, m = 0; and equation (4) takes the limiting
form

0.xs + (c + l)x2 + (c-3)x + (c-2) = 0. - - (5)
If c + 1 4= 0, one root is infinite, and there are two actual points of
intersection. For x large, the curve tends to assume the form y = - 1,
which explains the infinite root. When c = - 1, equation (5) becomes

0. x3 + 0. a? + 4x + 3 = 0.
That is, the point at infinity on the curve in the direction of the
x-axis, is a point of simple concavity at infinity, and the equation to
the corresponding tangent or asymptote is y = - 1.

11. In the case of a curve passing through the origin of
coordinates, the appearance of the curve at the origin is obtained by
making successive approximations of the form y = ax, y = ax + ba?,
etc., and thus the nature of a simple concavity, a point of inflexion,
a cusp, a node, a conjugate point at any actual point is explained.
When x is large, the corresponding successive approximations to the
equation to the curve will be of the form

y = ax + b, y = ax + b-\ , y = ax + b+ — , etc.,
X Or

and from such equations are investigated the appearance of a curve
at infinity in any chosen direction.
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12. To investigate the appearance of a curve at infinity when
there is a simple concavity at a point at infinity in the plane of the

curve, consider the curve given by the equation y = ax + b-i

(fig. 6, c +ve). The curve has a simple concavity at the point at
infinity on the line y = ax + b, and also a simple concavity at the
point at infinity on the line x = 0. Hence corresponding to a simple
concavity at infinity, the curve approaches its asymptote from
opposite sides of the line at the two extremities.

13. The case of a point of inflexion at infinity arises in the curve

given by the equation y = ax + b + —, (fig. 7, c + ve). The line

y = ax + b meets the curve at points whose abscissae are given by
the equation c = 0, where a cubic is in question; that is, the line
meets the curve at three coincident points at infinity. And any
other straight line through the point of contact of curve and line,
being a parallel straight line, has an equation of the form
y = ax + k(k =t= b) and therefore meets the curve in two finite points (the
abscissae of which are determined from the equation (k-b)x* = c)
and in one point at infinity. The point at infinity in the. direction
y = ax + b has therefore precisely the characteristics of a point of
inflection at an actual point on a curve of the third degree, say the
origin on the curve y = x3, and is a point of inflection at infinity.
In such a case we see from the graph that the curve appears at both
ends of the asymptote y = ax + b, but on the same side of the line.

14. The same curve has a crisp at infinity in the direction given
by the equation x = 0. The line x = 0 meets the curve in three
coincident points at infinity. Any straight line through the point
of contact except x — 0 is given by the equation x = k, and the
ordinates of its intersection with the curve are given by the equation

y = ak + b + -j£, a linear equation when a cubic is in question.

Hence two of the points of intersection are coincident with the
point at infinity on x = k or x = 0, and the third is the finite point
(k, ak + b+l/k2). Hence this point at infinity is a double point.
I t is a cusp since the tangents at the point are real and coincident.
Any line through the point may be explained geometrically to meet
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each of the two branches, the particular line x = 0 touching one
branch and meeting the other. From the graph we see that at a
cusp at infinity, the curve appears only at one end of the asymptote,
and on both sides at that end.

15. There is a node at infinity on the curve given by the equation
y = ax + b + c/(x* - 1), fig. 8, c + ve. As in §13, there is a point of
inflection at infinity on y = ax + b, and the curve appears on the
same side of the line at both ends. But x +1 = 0 also meets the
curve in three coincident points at infinity, and so does x - 1 = 0.
Any other line through this point at infinity meets the curve there
in two coincident points (one on each branch), and in one finite
point. The point is a double point, and x ± 1 = 0 are real tangents
at the point, which is therefore a node. The curve appears at both
ends and on opposite sides of each asymptote.

16. There is a conjugate point at infinity on the curve whose
equation is y = ax + b + c/(x? +1), fig. 9, c + ve. x±i — Q are the
imaginary asymptotes at the point.

17. To illustrate the method of finding the asymptotes of a given
curve, consider that given by the equation xy(x + y) + x2 + y2 = 0.
The lines x-0, y = 0, x + y = 0 meet the curve in points whose
abscissae or ordinates are given by the equations y" = 0, x2 = 0, 2a? = 0
respectively. These are quadratic equations where cubic equations
are in question; therefore each of these lines meets the curve in one
point at infinity. Hence any straight line parallel to one of these
meets the curve in a point at infinity, since parallel lines have a
common point at infinity. To find asymptotes, it remains to select
(if possible) the particular parallels which meet the curve in two or
more points at infinity.

(1) Consider the points of intersection of x = k (& + 0) and
xy(x + y) + a? + y* = 0. The ordinates of these points are given by
y\\ + k) + K*y + A2 = 0. Choosing 1 + k = 0, we see that the ordinates
of the points of intersection of x +1 = 0, and the curve are given
by the linear equation y -f 1 = 0, where a cubic is in question.
Therefore x +1 = 0 meets the curve in two coincident points at
infinity and at the finite point ( - 1, - 1). That is, x + 1 = 0 is an
asymptote and its point of contact is a point of simple concavity at
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infinity, and the curve will appear at both ends of x + 1 = 0, and on
opposite sides. By symmetry, similar remarks hold regarding the
asymptote y + 1 = 0.

(2) The points of intersection of x + y = k (k + 0) and the curve have
their abscissae given by the equation x*(2 - k) + kx(k - 2) + fc2 = 0.
Hence the line x + y — 2 meets the curve in points whose abscissae
are given by the anomalous equation 4 = 0, where a cubic is in
question. The point at infinity on the line x + y - 2 is a point of
inflexion at infinity on the curve, and the curve will appear on the
same side of the asymptote x + y=2, at its two ends.

We should therefore (§§ 12, 13) expect the approximate forms of
the equation xy(x + y) + x- + «/* = 0 at infinity in the directions
x = 0, y = 0, x + y = 0 to be

x = - 1 + cjy, y = - 1 + cjx, y= - x + 2 + c/xr respectively.

The first approximation to the equation to the curve at infinity in
x' + y2

the direction x = 0 is obtained by writing x= Lt r-*-—1= - 1 .

For the second approximation, write

X = XJXI -. ; = ; — = — 1 ,

x=-i-y(* + y) y(j/-i) y
for y large, by Descending Division.

x? + y"
Again write x + y = Lt -—— = 2, which gives the first approxi-

y=-z - Xy
mation at infinity in the direction x + y = 0.

,T , ., . . s^ + r 2x* - ix + 4 4
Next write x + y = Lt — = ;— = 2 + —,

j,= -z+2 -xy xr -2x xr

for x large, by Descending Division.

Hence, in accordance with §§12, 13, the approximate forms of the
equation at infinity are x— - 1 - 1/y, y= - 1 - l/x, x + y=2 + 4/x*;
see fig. 10.

18. The parabola at infinity is of peculiar interest. Taking the
equation in the form y = ax2, we see that the point at infinity in the
direction given by x = 0 is a point on the curve. No straight line
in this direction touches the curve and a straight line in any other
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direction meets the curve in two finite points. Is there, then, no
line which meets and touches the curve at infinity, that is, is there
no asymptote ? Let us find the limiting form of the equation to the
tangent at the point (x\ y') when x' = k, y = » . Change the origin
to the point (x', y'); the equation becomes rj + y = a(£ + x'f, or
i} = 2ax'£ + a£2. The equation to the tangent at the new origin is
therefore JJ = 2ax'£ or y -y' = 2ax'(x - x'), which may be written in
the form 2/(1/2/') + 1 = 2a(x'/y'). x. In the limiting case we get
0. y + 1 = 0 . x, which is the ljne at infinity. Hence the line at
infinity touches every parabola.

19. The line at infinity may touch other curves, so that these
curves will touch certain parabolas at their points at infinity.
y(x- 2)* = x*(x- 1), fig. 11, is an example of a curve which has
parabolic contact at infinity. Using Descending Division, we may
write the equation in the form y = a? + 3x + 8 + R, where
R = (20a; - 32)/(ar! - ix + 4). Now Lt R H- 8 = 0, therefore y = a? is a

first approximation, y = re2 + 3a; a second, and y — x- + 3x + 8 a third.
All these approximate forms at infinity are parabolas with a point
at infinity in the direction of the y-axis. The first meets the curve
at one point at infinity, the second at two points at infinity, the
third at three points at infinity; y = xi + 3x + 8 is a parabolic
asymptote.
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