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1. Introduction. Let Z(G) denote the integral group ring of a group G. 
Let *$ be the class of groups G with the property that for any isomorphism 
6: Z(G)->Z(H), we have d(g) = ±h, h G H, for all g € G. We study this 
class in § 2 and establish that it contains classes of torsion-free abelian groups, 
torsion abelian groups, and ordered groups. 

In § 4, we prove the following result. 

THEOREM. Let G be a group which contains a normal abelian subgroup A such 
that G/A £ fâ. Suppose that 6: Z(G) —>Z(H) is an isomorphism such that 
0(A(G, A)) = A(H, B) for a suitable normal subgroup B of H. Then G c^H. 
{Here A(G, A) is the kernel of the natural map Z(G) —> Z(G/A).) 

Jackson (3) and Whitcomb (6) proved the special case of this theorem 
when G is supposed to be finite metabelian. The lemmas needed are given in 
§3 . In § 5, we extend (to arbitrary finite groups) a result of Passman (4), 
proved by him for finite nilpotent groups. As a corollary, it follows that if two 
finite groups have isomorphic integral group rings, then they have isomorphic 
derived series. 

In the last section we give an easy proof of a theorem of Banaschewski. 

2. The class &. The following lemma was proved in (5). 

LEMMA 1. Let G be an abelian group. Suppose that y (j Z(G) is such that 
yn = lfor some natural number n. Then y = ±t, where t is a torsion element of G. 

LEMMA 2. Let G be a torsion-free abelian group. Then UZ(G), the group of units 
of Z(G), is given by 

UziG) = ±G = {±g\ge G}. 

Proof. We can suppose, without loss of generality, that G is finitely generated 
and hence free. Suppose that G = (xi, . . . , xn). For g = xfl. . . xn

an, set 
deg(g) = S ïo j j . Let y, JJL Ç Z(G) be such that 7/x = 1. Let m and t be the 
maximum degrees of terms appearing in y and /x, respectively. Due to the 
fact that Z(G) is free of zero divisors, it follows that 7JLC has a term of degree 
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m -\- t. Therefore m + t = 0. Similarly, supposing 5 and u to be the minimum 
degrees of terms appearing in 7 and /x, respectively, we conclude that s + u = 0. 
Thus s S m yields — s^ —m, i.e. u ^ /, and hence u = t and m = s. There­
fore, all the terms appearing in 7 have degree m and those in /x are of degree — m. 

Let us use induction on n> the number of generators of G. If n = 1, then 
clearly 7 = ±Xia i . If w > 1, we use the same argument as above on the 
degree in xu namely di(g) = e*i, and conclude that 7 = xd7i and M = x~d/xi, 
where 71, MI € Z(Gi), Gi = (x2, . . . , xn). 

Now by induction, 71 = ±gi , gi G G, and 7 = ±g , g £ G. 

Remark. The last lemma follows from the next but we have included the 
direct proof because of its independent interest. 

LEMMA 3. Let G be an ordered group. Then 

UZ{G) = ± G = {±g\g G G}. 

Proof. Let 7 = £ îa*gi , \i = Y,i°jhj be such that 7/x = 1. Suppose that 

gs = max {g,}, gi = min {g;J, 

ht = max {̂ î̂, hi = min {/^}. 

Then gs/^ = 1 = gihi. Since &i ^ hu it follows that /zr"1 ^ & r \ i-e. gi è gs, 
and therefore gi = gs. We conclude that 7 = d=g. 

An immediate consequence of these lemmas is the following result. 

PROPOSITION 1. *$ contains G if it is of any of the following types: 
(i) torsion abelian, 

(ii) torsion-free abelian, 
(iii) ordered. 

3. Some lemmas. For any normal subgroup H of G, let pH: Z(G) —» Z(G/H) 
be the linear extension of the natural homomorphism G —-> G/i7. Then A(G, if) , 
the kernel of pH, is the ideal generated by {(1 — h)\ h G H). We shall write 
A(H) instead of A(G, H) if no confusion can arise. Furthermore, for ^g agg — 
7 G Z(G), we denote by ^(7) the integer Ylg aQ. We need the following lemmas. 

LEMMA 4. Suppose that g £ G is such that g = 1 mod(A(G))2. Then g G G', 
^^ derived group of G. 

Proof. Let us first suppose that G is abelian. We can assume that G is 
finitely generated, say, G = (gi, g2, . . . , gr). Let g = I I I gt

a*. Since 

g - 1^5><fe«- 1) mod(A(G))2, 
i 

we have 5Z*#*(gi — 1) 6 (A(G))2. Therefore 

(*) E a i ( g i - l ) = Z * ( g i " , . . - « " , - l ) ( g i f l , . . . « / r - D , * € Z ( G ) . 
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Extend the endomorphism y f. gt —* g/**> of G to Z{G). Applying this to both 
sides of (*) we obtain: 

afei ~ 1) = L x»t(gj° ~ l ) ( g / ~ 1), x*t € Z((gi>), 

and therefore, 

fay - y)(gj - 1) = 0, where y(g, - 1) = £ **«&/ - l ) ( g / - !)• 

Suppose that a7- ^ 0, then since c(y) ^ 0, we can say that (aj — y) ^ 0. 
I t follows that gj has finite order nj and a;- — y = w ( l + gs + . . . + g/1'""1)* 
m Ç Z. Therefore ay = mwy and g = 1. 

Now let G be arbitrary and let 0: G —> G/G' be the natural map. Then 
g& = 1 mod(A(G/G'))2, therefore ĝ  = 1 and g Ç G'. This completes the proof 
of the lemma. 

COROLLARY 1. G/Gf ~ A(G)/(A(G))2. 

Proof. Let 6: G -> A(G)/(A(G))2 be given by (9(g) = (g - 1) mod(A(G))2. 
Then 6 is a homomorphism as gh — 1 = (g — 1) + (A — 1) + (g — \){h — 1). 
It is an epimorphism because of the same reason. By Lemma 4, the kernel 
of 6 is G', and the proof is complete. 

The next corollary was proved by Higman (2) for finite abelian groups. 

COROLLARY 2. Let G be an abelian group such that Z{G) O^L Z (H). Then G ~ # . 

Proof. Let 6: Z(G) —» Z(H) be the given isomorphism. Then c(d(g)) = =bl. 
Normalize 0 by defining M: Z(G) -+Z(H) by /x(g) = s(0(g))0(g) for g Ç G , 
and linear extension. I t is easy to see that /x is an isomorphism and c(n(g)) = 1 
for all g £ G. Now 

M(A(G)) = A(H) and G ~ A(G)/(A(G))2 ~ A(H)/(A(H))2 ~ ff. 

Similarly, we have the following result. 

COROLLARY 3. Z(G) ~ Z(H) =» G / C ^ # / # ' . 

LEMMA 5. Le£ N be a normal subgroup of G. Then 

y e Z(N), 7 = 0 mod A(G, G) A(G, N) =» 7 - 0 mod (A(iV, iV))2. 

Proof. Choose a set of coset representatives {g*} of G mod iV. Define for 
gtn Ç G, <r(gin) = w and extend this linearly to cr: Z(G) —>Z(N). Now 
7 = £<7i (»* — 1)» 7* € A(G, G), », € A7". Therefore 

7 = 7* = E T ' (*< - 1) and 7 G (A(iV, N))\ 
i 

COROLLARY 4. Le/ N be a normal subgroup of G. Then 

g£ G, g = 1 mod A(G, G) A(G, N) =» g Ç iV'. 

P rw/ . Since g - 1 s 0 mod A (G, G) A (G, TV), we have giV = N and g G N. 
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Now by Lemma 5, g — 1 = 0 mod A(N, N)2, and hence g € N' by Lemma 4. 

LEMMA 6. Let A be a normal subgroup of G. Then 

A/A' ~ A(G, A)/A(G)A(G, A). 

Proof. Define the map 0: A -> A(G, A)/A(G)A(G, A) by 0(a) = 1 - a. 
The kernel of 0 is ^4' by the last corollary. That 0 is an epimorphism follows 
from the fact that 

g(a-l)=a-l mod A(G)A(G, A). 

4. Proof of the main Theorem. 

PROPOSITION 2. Suppose that G has a normal abelian subgroup A such that 
G/A G (if. Suppose that there is a normalized isomorphism 0: Z(G) —» Z{H) 
such that 6(A(G, A)) = A(H, B) for a suitable normal subgroup B of H. Then 
B is abelian and H/B G fé7. 

Proof. Since 0(A(G, A)) = A(#, B), we have: 

Zip I A) ~ Z(G)/A(G, A) ~ Z{H)/A{H, B) ~ Z(H/B). 

Let X: Z(G/A) -» Z{H/B) be the isomorphism. Then X(g) = ft € # / B for 
all g G G/-4. Actually, \(G/A) = ff/.B. Now, given an isomorphism 
M: Z(H/B) ->Z(K), we need to prove that for S 6 ff/B, /x(Â) = k £ K. 
Consider MX: Z(G/A) -+Z(K). We know that h = X(|) for some g € G / 4 . 
Since GM 6 <*f, G*A)(f) = k,k £ K. I t follows that/* (Â) = k and H/B G # . 
Furthermore, B is abelian, since by Lemma 6: 

A/A' ~ A(G, A)/A(G)A(G, 4 ) ~ A(ff, B)/A(H)A(H, B) ~ iS/B'. 

Remark. I t is easy to see that if in the above proposition 4̂ = G', then 
B = H' satisfies the condition 6(A(G,A)) = A(H,B). 

Remark. If in the above proposition G/̂ 4 is ordered (in particular, torsion-
free abelian) we do not need to assume the existence of B, since in this case it 
can be proved that there always exists a B with the property 

6(A(G,A)) = A(H,B). 

THEOREM 1. Suppose that G has a normal abelian subgroup A such that 
G/A Ç *$. Suppose that there is an isomorphism 0: Z(G) —*Z(H) such that 
6(A(G, A)) = A(H, B) for a suitable normal subgroup B of H. Then G cm H. 

Proof. We can assume that 0 is normalized; then due to Proposition 2, B is 
abelian and H/B £ fê.Forg G G, let 0(g) = 7. Then since H/B £ ^ , we have: 

y = hx mod (A (fr ,B)) , h £ H. 
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Now 

= hi + X W&(1 "~ b) mod(A(iI) • A(J3)), where n6 = c(a6), 

^ i i + l - I l ^ mod(A(iJ) • A(B)), 
b 

^hxYlb-71" mod(A(H)- A(5)). 
6 

Thus for g £ G, if 0(g) = 7, there exists hy £ H such that 

7 ^ / z 7 mod(A(tf) • A(£)) . 

This hy is unique since if h' = h mod(A(#) • A(B)), then ft'/r1 Ç 5 ' = {1} 
by Corollary 4, and hence h' = h. Define X: G —» H by A (g) = fe7 G 77. Then 
X is a well-defined homomorphism. Notice that we have: 

2 -» 7 > hy > M > gM (g, £M € G), 

where 02 is the map obtained (as was 0i) by using 0_1 instead of 0. We see 
t h a t gn = g since 

O M - ^ H g ) = 020-1(^(g) + «), where 5 € A(H)A(B), 

= 02(g + |8), where 0-*(5) = j8 G A(G)A(,4), 

= g (due to uniqueness of gM). 

Thus 020
_10i0 = /<?, and similarly $i0020_1 = /#• I t follows that X = <£]0 is 

an isomorphism. 

5. Group rings of finite groups. Suppose that 0: Z(G) —> Z ( # ) is a 
normalized isomorphism, where G (and hence H) is a finite group. We proved 
in (5) that for any normal subgroup A of G, ^ ( £ f l 6 i a) = (]C&<EB &) a n d 
^4<->J3=<ï>(^4)isa one-to-one correspondence between normal subgroups 
of G and those of H. This correspondence preserves union, intersection, and 
order. This is a result of Passman (4) who also proved the next proposition 
for finite nilpotent groups. 

PROPOSITION 3. Suppose that $(A) = B. Then 
(i) Z(G/A)~Z(H/B), 

(ii) A/A'~B/B',and 
(hi) $(A') = B'. 

Proof. Since the annihilator of (^flÇA a) in Z(G) is A(G, A), it follows that 
6(A(G,A)) = A(H,B). Therefore 

Z(G/A) ~ Z(G)/A(G, 4 ) ~ Z(H)/A(H, B) ~ Z(H/B). 
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To prove (ii) we only have to notice that Lemma 6 yields: 

A/A' ~ A(G, A)/A(G)A(G, A) ~ A(H, B)/A(H)A(H, B) ~ B/B'. 

We now prove (iii). Suppose that $(A') = C. Then we have a sequence of 
isomorphisms 

Z(G/A') -» Z(G)/A(A') - Z(H)/A(C) - • Z(tf /C), 

where g —» g mod A (^4') —• 0(g) mod A(C) —» 0(g) mod C Thus we have the 
isomorphism X: Z(G/A') -> Z(H/C) given by X(g) = 0(g) mod C. Now 4 / 4 ' 
is a normal subgroup of G/-4' and $04/^4') is a normal subgroup of H/C. From 

M Z «) = ( S Ŵ mod w = ( Z *mod c ) > 
\ a€A / \ a€A / \ 1>£B / 

we conclude that $(A/Af) = B/C. Since A/A' is abelian, B/C is abelian and 
C D $ ' . Therefore, due to (ii) and equality of orders of A/A' and B/C, we 
have C = Br. This completes the proof. 

THEOREM 2. Suppose that G is a finite group and Z(G) ~ Z(H). Then the 
derived series of G and H are isomorphic. In particular, if G is solvable, then 
so is H. 

Proof. Suppose that Gt and Ht are ith terms of the derived series of G and H, 
respectively. Let 0: Z(G) —> Z(H) be the normalized isomorphism and 
$(Gi) = Ht. Then by Proposition 3 (iii), 3>(Gm) = Hi+1. Also 0(A(G, Gt)) = 
A(H, Ht), and by Lemma 6, 

Gi/Gi+1 ~ A(G, Gi)/A(G) • A(G, Gt) ~ A{H, Ht)/A(H) • A(H, Ht) ~Ht/HM. 

This completes the proof by induction. 

6. A theorem of Banaschewski. For y = Y,gç0agg G Z(G), let 7* = 
YtetGCLgg-1. Then 

(i) (7 + M)* = 7* + M*, 
(ii) (7/*)* = M*7*, and 

(iii) (ay)* = ay* for a Ç Z. 
We say that a map 0: Z(G) —> Z(iif) is *-preserving if 0(7*) = (0(7))* for 

all 7 G Z(G). We offer a simple proof of the following theorem proved by 
Banaschewski (1) for finite groups. 

THEOREM 3. Suppose that 0: Z(G) —> Z(H) is a *-preserving isomorphism. 
Then G ~ H. 

Proof. Let 6(g) = y = £ a*A; then 1 = 0(gg~1) = Hg)6(g*) = 77*. Now 

77* = (E a**) • s + Z A>* 

implies that £ ah
2 = 1 and 7 = ±&, h ^ H. Thus G c^. H. 
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