ON THE ISOMORPHISM OF INTEGRAL
GROUP RINGS. II

SUDARSHAN K. SEHGAL*

1. Introduction. Let Z(G) denote the integral group ring of a group G.
Let % be the class of groups G with the property that for any isomorphism
0: Z(G) — Z(H), we have 6(g) = =h, h € H, for all g € G. We study this
class in § 2 and establish that it contains classes of torsion-free abelian groups,
torsion abelian groups, and ordered groups.

In § 4, we prove the following result.

THEOREM. Let G be a group which contains a normal abelian subgroup A such
that G/A € €. Suppose that 6: Z(G) — Z(H) is an isomorphism such that
60(A(G, A)) = A(H, B) for a suitable normal subgroup B of H. Then G ~ H.
(Here A(G, A) 1is the kernel of the natural map Z(G) — Z(G/A).)

Jackson (3) and Whitcomb (6) proved the special case of this theorem
when G is supposed to be finite metabelian. The lemmas needed are given in
§ 3. In § 5, we extend (to arbitrary finite groups) a result of Passman (4),
proved by him for finite nilpotent groups. As a corollary, it follows that if two
finite groups have isomorphic integral group rings, then they have isomorphic
derived series.

In the last section we give an easy proof of a theorem of Banaschewski.

2. The class %. The following lemma was proved in (5).

LeMmMA 1. Let G be an abelian group. Suppose that v € Z(G) is such that
" = 1 for some natural number n. Then v = ==t, where t is a torsion element of G.

LEMMA 2. Let G be a torsion-free abelian group. Then Uy g, the group of units
of Z(G), is given by
Uzey = £G = {£g|g € G}.
Proof. We can suppose, without loss of generality, that G is finitely generated
and hence free. Suppose that G = {x1,...,%,). For g = x®1...x,2, set
deg(g) = X1a; Let v, u € Z(G) be such that yu = 1. Let m and ¢ be the

maximum degrees of terms appearing in y and pu, respectively. Due to the
fact that Z(G) is free of zero divisors, it follows that yu has a term of degree
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m 4+ t. Therefore m + ¢ = 0. Similarly, supposing s and « to be the minimum
degrees of terms appearing in y and u, respectively, we conclude thats + » = 0.
Thus s < m yields —s = —m, i.e. u = ¢, and hence # = { and m = s. There-
fore, all the terms appearing in v have degree m and those in u are of degree —m.

Let us use induction on #, the number of generators of G. If » = 1, then
clearly v = =x#. If # > 1, we use the same argument as above on the
degree in x;, namely d1(g) = a1, and conclude that ¥ = x%y; and u = x %y,
where v1, u1 € Z(G1), G1 = (X2, . . ., Xu).

Now by induction, v; = =g1, g1 € G, and v = +g, g € G.

Remark. The last lemma follows from the next but we have included the
direct proof because of its independent interest.

LEMMA 3. Let G be an ordered group. Then
Uzey = £G = {£¢g| g € G}.
Proof. Let v = Y ia.g, » = >1b;h; be such that yu = 1. Suppose that

gs = max {gif, g = min {g4,
1Siss 1Siss

h; = max {hz}, hl = min {h,}.
1=ist 1=ist

Then gsh, = 1 = gihy. Since ky < h,, it follows that 27! = k.71, ie. g1 = g5,
and therefore g; = g,. We conclude that v = +g.

An immediate consequence of these lemmas is the following result.

PROPOSITION 1. & contains G if it is of any of the following types:
(i) torsion abelian,

(ii) torsiom-free abelian,

(iii) ordered.

3. Some lemmas. For any normal subgroup H of G, let py: Z(G) — Z(G/H)
be the linear extension of the natural homomorphism G — G/H. Then A(G, H),
the kernel of pg, is the ideal generated by {(1 — k)| & € H}. We shall write
A(H) instead of A(G, H) if no confusion can arise. Furthermore, for >, a¢,g =
v € Z(G), we denote by ¢(v) the integer >_, a,. We need the following lemmas.

LeEmMA 4. Suppose that g € G s such that g = 1 mod(A(G))% Then g € G,
the dersved group of G.

Proof. Let us first suppose that G is abelian. We can assume that G is
finitely generated, say, G = (g1, g2, . .., g). Let g = II] g,%. Since

g—1=3 aig;—1) mod(A(G))"

i

we have X ;a,(g; — 1) € (A(G))? Therefore
) Tag-D)=2x@E"...&"—DE™...g" -1, x¢cZ@).

i
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Extend the endomorphism +v;: g; — g;% of G to Z(G). Applying this to both
sides of (*) we obtain:

a;(g;— 1) = 2 x5(g — (g;,! = 1), xse € Z({g)),

and therefore,
(@)= 9)(es = 1) = 0, where 3(g, — 1) = T nuleyf — D ey’ - 1),

Suppose that a; # 0, then since c(y) 0, we can say that (a; — y) # 0.
It follows that g, has finite order n,and a; —y = m(1 + g; + ... + gri~1),
m € Z. Therefore a; = mn;and g = 1.

Now let G be arbitrary and let 8: G — G/G’ be the natural map. Then
gf = 1 mod(A(G/G’))?, therefore g = 1 and g € G'. This completes the proof
of the lemma.

CorOLLARY 1. G/G' >~ A(G)/(A(G))>.

Proof. Let 6: G — A(G)/(A(G))? be given by 8(g) = (g — 1) mod(A(G))2.
Then 6is a homomorphismasgh — 1= (g— 1)+ (h—1)+ (g—1)(2 — 1).
It is an epimorphism because of the same reason. By Lemma 4, the kernel
of 6 is G’, and the proof is complete.

The next corollary was proved by Higman (2) for finite abelian groups.
COROLLARY 2. Let G be an abelian group such that Z(G) ~ Z(H). Then G ~ H.

Proof. Let 6: Z(G) — Z(H) be the given isomorphism. Then ¢c(0(g)) = =+1.
Normalize 8 by defining u: Z(G) — Z(H) by u(g) = ¢(6(g))6(g) for g € G,
and linear extension. It is easy to see that u is an isomorphism and ¢(u(g)) = 1
for all g € G. Now

r(A(G)) = A(H) and G=~A(G)/(A(G))*~ A(H)/(A(H))* ~ H.
Similarly, we have the following result.
CoroOLLARY 3. Z(G) ~Z(H) = G/G' ~ H/H'.
LeMMA 5. Let N be a normal subgroup of G. Then
v € Z(N), v = 0mod A(G, G)A(G, N) = v = 0mod (A(N, N))2.

Proof. Choose a set of coset representatives {g;} of G mod N. Define for
gm € G, o(gm) =n and extend this linearly to ¢: Z(G) — Z(N). Now
v =2iviln; — 1), v: € A(G, G), n; € N. Therefore

v¥=1"=27@m—1) and ye (AW, N))"
COROLLARY 4. Let N be a normal subgroup of G. Then
g€QG, g=1mod A(G,G)A(G,N) =g € N'.
Proof. Since g — 1 = 0 mod A(G, G)A(G, N), we have gN = N and g € N.
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Now by Lemma 5, g — 1 = 0 mod A(JV, N)?, and hence g € N’ by Lemma 4.

LEMMA 6. Let A be a normal subgroup of G. Then
AJ/A' ~ A(G, A)/A(G)A(G, A).

Proof. Define the map 6: 4 — A(G, 4)/A(G)A(G, A) by 6(a) =1 — a.
The kernel of 8 is A’ by the last corollary. That 6 is an epimorphism follows
from the fact that

gla—1)=a—1 mod A(G)A(G, 4).

4. Proof of the main Theorem.

PRrROPOSITION 2. Suppose that G has a normal abelian subgroup A such that
G/A € €. Suppose that there is a normalized isomorphism 6: Z(G) — Z(H)
such that 0(A(G, A)) = A(H, B) for a suitable normal subgroup B of H. Then
B is abelian and H/B € €.

Proof. Since 0(A(G, A)) = A(H, B), we have:
Z(G/A) ~ Z(G)/A(G, A) ~ Z(H)/A(H, B) ~ Z(H/B).

Let \: Z(G/A) — Z(H/B) be the isomorphism. Then \(g) = h € H/B for
all g € G/A. Actually, N(G/A) = H/B. Now, given an isomorphism
u: Z(H/B) — Z(K), we need to prove that for h € H/B, u(h) = k € K.
Consider u\: Z(G/A) — Z(K). We know that & = \(g) for some g € G/A.
Since G/A € €, (u\)(g) = kb, k € K. It follows that u(h) = kand H/B € ¥.
Furthermore, B is abelian, since by Lemma 6:

AJA' ~ A(G, A)/A(G)A(G, A) ~ A(H, B)/A(H)A(H, B) ~ B/B'.

Remark. 1t is easy to see that if in the above proposition 4 = G’, then
B = H’ satisfies the condition 0(A(G, 4)) = A(H, B).

Remark. 1f in the above proposition G/A is ordered (in particular, torsion-
free abelian) we do not need to assume the existence of B, since in this case it
can be proved that there always exists a B with the property

6(A(G, 4)) = A(H, B).

THEOREM 1. Suppose that G has a normal abelian subgroup A such that
G/A € €. Suppose that there is an isomorphism 6: Z(G) — Z(H) such that
6(A(G, A)) = A(H, B) for a suitable normal subgroup B of H. Then G ~ H.

Proof. We can assume that 0 is normalized; then due to Proposition 2, B is
abelian and H/B € ¥.Forg € G,let8(g) = v. Thensince H/B € €, we have:

v=h mod(A(H, B)), M€ H.
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Now
'y=h1+2€;ab(1—b), a,,EZ(H),
b
=h+ 2 n(l —b) mod(AH) - A(B)), wheren, = c(a),
veB

=mh+1-=[]6" mod(A(H) - A(B)),

b

=mn]] o™ mod(A(H) - A(B)).

Thus for g € G, if 8(g) = v, there exists k, € H such that
vy =h, mod(A(H) - A(B)).

This &, is unique since if ' = h mod(A(H) - A(B)), then #'h~! € B’ = {1}
by Corollary 4, and hence &’ = k. Define \: G — H by \(g) = h, € H. Then
) is a well-defined homomorphism. Notice that we have:

] g!
¢y Pl P (Geeo),

where ¢, is the map obtained (as was ¢1) by using 6~! instead of 6. We see
that g, = g since

(p20~110) (g) = ¢2671(0(g) + 6), where s € A(H)A(B),
= ¢2(g + B), where 671(8) = 8 € A(G)A(4),
=g (due to uniqueness of g,).

Thus ¢2071¢10 = I, and similarly ¢10¢.0~! = I. It follows that X = ¢,6 is
an isomorphism.

5. Group rings of finite groups. Suppose that 0: Z(G) —» Z(H) is a
normalized isomorphism, where G (and hence H) is a finite group. We proved
in (5) that for any normal subgroup 4 of G, 6(Fscaa) = (s bd) and
A < B = ®(4) is a one-to-one correspondence between normal subgroups
of G and those of H. This correspondence preserves union, intersection, and
order. This is a result of Passman (4) who also proved the next proposition
for finite nilpotent groups.

ProrositioN 3. Suppose that ®(4) = B. Then
(i) Z(G/A) =~ Z(H/B),

(i) A/A’ ~ B/B’, and

(iii) ®(4’) = B'.

Proof. Since the annihilator of (3 4c4 @) in Z(G) is A(G, 4), it follows that
60(A(G, A)) = A(H, B). Therefore

Z(G/A) ~Z(G)/A(G,A) ~Z(H)/A(H, B) ~ Z(H/B).
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To prove (ii) we only have to notice that Lemma 6 yields:
A/A' ~ A(G, A)/A(G)A(G, A) ~ A(H, B)/A(H)A(H, B) ~ B/B'.

We now prove (iii). Suppose that ®#(4’) = C. Then we have a sequence of
isomorphisms

Z(G/A") — Z(G)/AA') — Z(H)/A(C) — Z(H/C),

where § — g mod A(4’) — 0(g) mod A(C) — 6(g) mod C. Thus we have the
isomorphism \: Z(G/A') — Z(H/C) given by A(g) = 0(g) mod C. Now A/A4’
is a normal subgroup of G/A’ and ®(4/A’) is a normal subgroup of H/C. From

x(Z d> = <Z 6(a) mod c> = (}_“, b mod c),

a€A a€A bEB

we conclude that ®(4/A4") = B/C. Since A/A’ is abelian, B/C is abelian and
C D B’. Therefore, due to (ii) and equality of orders of 4/A4’ and B/C, we
have C = B’. This completes the proof.

THEOREM 2. Suppose that G is a finite group and Z(G) ~ Z(H). Then the
derived series of G and H are isomorphic. In particular, if G is solvable, then
sois H.

Proof. Suppose that G; and H; are ¢th terms of the derived series of G and H,
respectively. Let 6: Z(G) — Z(H) be the normalized isomorphism and
®(G;) = H,. Then by Proposition 3 (iii), ®(G11) = H1. Also 0(A(G, G;)) =
A(H, H;), and by Lemma 6,

Gi/Gii~A(G,G,)/AG) - AG,G)~A(H,H,)/AH)-A(H,H,)~H,/H ..

This completes the proof by induction.

6. A theorem of Banaschewski. For v = Y ,cca,2 € Z(G), let v* =

2 sce apg". Then
i) (v +w* =v*+u,

(i) (yw)* = w*y* and

(iii) (av)* = av* fora € Z.

We say that a map 0: Z(G) — Z(H) is *-preserving if 6(v*) = (0(y))* for
all v € Z(G). We offer a simple proof of the following theorem proved by
Banaschewski (1) for finite groups.

THEOREM 3. Suppose that 0: Z(G) — Z(H) is a *-preserving isomorphism.
Then G~ H.

Proof. Let 0(g) = v = 3 axh; then 1 = 0(gg™!) = 0(g)0(g*) = yvv*. Now
W= (Za’) e+ ; Bk
o
implies that X" a;,> = 1 and v = &k, b € H. Thus G >~ H.
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