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ON A DIRICHLET PROBLEM WITH p-LAPLACIAN AND
SET-VALUED NONLINEARITY
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Abstract

The existence of solutions to a homogeneous Dirichlet problem for a p-Laplacian differential inclusion is
studied via a fixed-point type theorem concerning operator inclusions in Banach spaces. Some meaningful
special cases are then worked out.
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1. Introduction

Let Q be a bounded domain in RY with a smooth boundary 9Q, let p € (1, +0), and let
Jj QxR — R be measurable in x € Q for every z € R. Consider the Dirichlet problem

=Apu=j(x,u) inQ,

1.1
M:O OnaQ, ( )

where A u:= div(|Vu|P~2Vu) denotes the p-Laplacian. If j is a Carathéodory’s
function then a number of existence and multiplicity results involving (1.1) are
available in the literature; see for instance the monographs [8, 9, 15], besides the
very recent paper [3]. Variational, subsupersolutions, as well as topological methods
represent the most exploited technical approaches. When j(x, ) turns out to be locally
essentially bounded only, (1.1) is usually replaced by

-A,u€dJ(x,u) inQ,

1.2
u=0 on GQ, ( )

with
J(x, &) = f Jjx, 0 dt, (x,&) e QxR, (1.3)
0
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and 0J(x, z) being the Clarke generalized gradient of J(x,-) at the point z€R.
Problem (1.2) has been the subject of numerous investigations, mainly based on the
critical point theory for locally Lipschitz continuous functions [4, 10, 14], sometimes
combined with subsupersolution arguments [2, 8]. By the way, setting

Jj(x, z) ;= lim essinf j(x, w), }'(x, z) := lim esssup j(x,w), (x,2)€QXR,
= 0—0% |lw—z|<6 6—0* lw—z|<é
(1.4)
the inclusion in (1.2) becomes
JOo ) S =Au < jx,u)  inQ, (1.5)

which reduces to —A,u = j(x, u) at each point u where j(x, -) is continuous.

In this paper, we simply point out that Problem (1.2), with J unnecessarily of the
type (1.3), can also be treated through an existence result for operator inclusions,
previously established in [1], provided p > N. One assumes that (x, z) — J(x, 2),
(x, 7) € Q X R, is measurable with respect to x € Q and locally Lipschitz continuous in
z € R. A further condition, compatible with any growth rate of J(x, -), fits our purposes;
see Theorem 3.1. Some meaningful special cases, namely Corollaries 3.2-3.3, are then
worked out.

The recent work [7] treats p-Laplacian differential inclusions via fixed points for
multifunctions in partially ordered sets. Amidst the results of [7] let us mention
Proposition 4.1, which provides extremal solutions to a problem like (1.5) under
hypotheses different from those employed here.

2. Preliminary results

From now on, Q denotes a bounded domain of the real Euclidean N-space (R", |- |)
with a smooth boundary 0Q, p € (N, +c0), p’ := p/(p — 1), || - | is the usual norm of
L1(Q), 1 < g < +o0, while Wé’p (€) stands for the closure of C'(€2) in WbLP(Q). On

WS’” (Q) we introduce the norm

1/p '
Il :=(L|Vu(x)|”dx) A

It is known that Wé ?(Q) compactly embeds in L”(€2) and one has
lall, < A7 Plull V€ Wy P(Q),

where A, indicates the first Dirichlet eigenvalue of the p-Laplacian [11]. Moreover,
since p > N, we actually get Wé’p () C L*(Q) as well as

lulloo < allull,  u € WyP(Q), 2.1)

for suitable a > 0; see, for example, [5, Ch. IX]. The constant a has been estimated
in [16, Formula (6b)] and, for convex €, in [6, Theorem 1].
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Let W17 (Q) be the dual space of Wé’p (Q). By [5, Theorem VI.4] the space LY (Q)
compactly embeds in W~ (Q). Thus, there exists b > 0 satisfying

Vw10 @) < bIVIly,  vE L7 (Q). 2.2)

ReMark 2.1. The constant b can be evaluated through A;. In fact,

-1/
< sup [lullplvily < A7 PVl
[luel|<1

f u(x)v(x) dx
<tlda

for all v € L” (Q), whence b < /lIl/P.

IVlly-1.r () = sup
[leell<1

LetA: W(;’p (Q) — W~ (Q) be the nonlinear operator stemming from the negative
p-Laplacian, that is,

(A(u), v) := f IVu(x)|P2Vu(x) - Vv(x) dx, u,ve Wé’p(Q). (2.3)
Q

Theorem A.0.6 in [15] and an elementary argument ensure the following properties.

(p1) A is bijective and uniformly continuous on bounded sets.

(p2) Its inverse A~! turns out to be continuous.

(P3) IA@Ily-1r () = lallP~" in Wy (Q).

Let U be a nonempty set and let ® : U — W(l)’p (Q), ¥: U — L (Q) be two operators

such that the following conditions (i;) hold true.

(i;) Yisbijective and for any v, — vin L” (Q) there is a subsequence of {O(¥~!(vy))}
which converges to ®(¥~!(v)) almost everywhere in Q. Furthermore, a non-
decreasing function ¢ : Rj — R U {+00} can be defined in such a way that

Pl < e(Y@lly) VYuel. (2.4)

Finally, let F: Q x R — 2% be a convex closed-valued multifunction. Theorem 3.1
of [1] directly yields the next result.

THEOREM 2.2. Suppose (iy) holds true and, moreover, suppose that the following

conditions hold true.

(i) F(-, z) is measurable for all z € R.

(i3) F(x,-) has a closed graph for almost every x € Q.

(14) There exists r >0 such that the function m(x) := SUP | j<u(r) inf{ly| : y € F(x, 2)},
x € Q, belongs to LP (Q) and [lml|,y < 7.

Then the problem Y(u) € F(x, ®(u)) in Q possesses at least one solution ue U

satisfying ¥ (u)(x)| < m(x) for almost every x € Q.

For the notions on multifunctions (respectively, nonsmooth analysis) exploited in
the paper, we simply refer the reader to [1] (respectively, [12]), measurable always
means Lebesgue measurable, while the symbol m(E) will indicate the Lebesgue
measure of E.
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3. Existence of solutions

Keep the same notation of Section 2 and define, for every r € R?,
(1) := a(bt)'/ PV, (3.1

The function ¢ turns out to be monotone increasing in Rj. Let J : Q X R — R. We shall
make the following assumptions.

(a;) J(,2),z€R,is measurable.

(ap) Toevery M > 0 there corresponds k(M) > O such that

[J(x, z1) = J(x, 22)l < k(M)|z; — 22| almost everywhere in Q and
V21,22 € [-M, M].

(a3) For suitable &, r > 0 one has m(Q)'"V?k(a(br)!/?~V + &) < r.
By (ay) it makes sense to consider the generalized Clarke gradient J(x, z) of J(x, -) at
the point z € R.

Tueorem 3.1. If p > N and (ay)—(a3) hold true then there exists u € Wé’p (Q) satisfying
—A,u(x) € 8J(x, u(x)) almost everywhere in Q.

Proor. Set U := A™'(LP'(Q)), ®(u) := u, and () := A(u) for all u € U. Property (p;)
ensures that the operator ¥ : U — LP (Q) is bijective. Let v, — v in L” (Q). Because of
the compact embedding L” (Q) € W~"*'(Q) and (p,) we obtain, up to subsequences,
O '(v)) = O(P~'(v)) almost everywhere in Q. Hence, (i;) is verified once we
prove (2.4). Since p > N, gathering (2.1), (2.2), and (p3) together, one has

1Pl < allull = all ¥l 7,0, < Bl = @@, ue U,

with ¢ given by (3.1), and (i;) follows.
Now define F(x, z) := dJ(x, 2), (x, 7) € Q X R. A simple computation shows that

F(x,2)=[-J(x, z;=1), J°(x, z, +1)], (3.2)

where, as usual,

JO(x, z; 1) := lim sup Jx,wx1) = J(x, w)‘

w—z,t—0* t

Thanks to (a;) the functions x > J(x, z; £1) are measurable in Q for every z € R. So,
taking account of [13, Proposition 1.1], condition (ip) of Theorem 2.2 holds.
Let us next verify (i3). Pick {z;}, {ys} € R fulfilling

W=7, Yh—Yy, yYh€F(x,z;) YheN.
The upper semicontinuity of £ — Jo(x, {; £1), combined with (3.2), yield, as h — +oo,
—Jo(x, z-1)<y< Jo(x, z;+1), namelyye€ F(x, 2),

which represents the desired conclusion.
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Finally, to prove (i4) observe at first that
[00x, z; )| < k(M) YM >0,z€e(—M, M).
This implies

m(x):= sup inf{ly|:y € F(x,z)} < sup inf{ly|:y € F(x,2)} <k(p(r) + €)
ll<e(r) ld<e(r)+e

almost everywhere in Q2. Consequently, by (as),
e < m(Q)'Phip(r) + €) < 1.
Now Theorem 2.2 can be applied, and we obtain u € U C Wé’p () such that
=A,u(x) =¥ (u)(x) € F(x, u(x)) = 0J(x, u(x))

for almost all x € Q. O

A meaningful special case occurs when J is given by (1.3), where j: QX R - R
fulfils the following hypotheses.
(a4) jturns out to be measurable in each variable separately.
(as) To every M >0 there corresponds k(M) >0 such that |j(x, z)| < k(M) almost
everywhere in Q and for all z € [-M, M].
Indeed, under (a4)—(as), the function J satisfies (a;), (az), and we get

aJ(x, 2) = [j(x, 2), j(x, 2],

with j, ; being as in (1.4); see [12, Example 1]. Hence, Theorem 3.1 directly leads to
the following corollary.

CoroLLARY 3.2. If (a4)—(as), besides (az), hold true then there exists u € W(;’p (Q) such
that j(x, u(x)) < —A,u(x) < j(x, u(x)) for almost every x € Q.

In particular, when
lj(x, 2D <ci +cald’! Y(x,2) e QxR, (3.3)

where ¢y, ¢z > 0, from the above result we deduce the following corollary.

CoroLLARY 3.3. Let the function j comply with (as) and (3.3). Assume also that
m(Q) VPaP pe, < 1.

Then the conclusion of Corollary 3.2 holds.
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Remark 3.4. Applications of Theorem 3.1 and its consequences can basically be
constructed only if one knows explicit estimates of constants a and b. As already
observed in Section 2, thanks to [16, Formula (6b)] we get

N—l/p -1 1-1/p N 1/N
s (o) (T(1+3)) @,
T \p—

with I" being the gamma function. Since, for every u € Wé’p (Q),
lull, < () Pllullos < m() P allull,
Remark 2.1 provides

) N-UP 1 \I-1/p NN
bS/lll/p Sm(Q)l/PaS T(p—N) (m(Q)F(l + 5)) .
T \p—

Remark 3.5. Condition (3.3), with ¢, < Ay, appears also in [7, Proposition 4.1]. It is a
simple matter to realize that this result and Corollary 3.3 are mutually independent.

ReMARK 3.6. The main difficulty in treating the case Q:=RYM is to verify (ij).
However, if the operator A : W'"P(RY) — W17 (RV) given by

(A(u), vy := f (VulP2Vu - Vv + cOlul’2uv) dx  Yu,ve WHPRN),
RN

where ¢ € L*(R") and ess inf,cq c(x) > 0, takes the place of the one defined in (2.3),
it can be done, as we shall see in a future work.
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