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Abstract

The existence of solutions to a homogeneous Dirichlet problem for a p-Laplacian differential inclusion is
studied via a fixed-point type theorem concerning operator inclusions in Banach spaces. Some meaningful
special cases are then worked out.
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1. Introduction

Let Ω be a bounded domain in RN with a smooth boundary ∂Ω, let p ∈ (1, +∞), and let
j : Ω × R→ R be measurable in x ∈Ω for every z ∈ R. Consider the Dirichlet problem−∆pu = j(x, u) in Ω,

u = 0 on ∂Ω,
(1.1)

where ∆pu := div(|∇u|p−2∇u) denotes the p-Laplacian. If j is a Carathéodory’s
function then a number of existence and multiplicity results involving (1.1) are
available in the literature; see for instance the monographs [8, 9, 15], besides the
very recent paper [3]. Variational, subsupersolutions, as well as topological methods
represent the most exploited technical approaches. When j(x, ·) turns out to be locally
essentially bounded only, (1.1) is usually replaced by−∆pu ∈ ∂J(x, u) in Ω,

u = 0 on ∂Ω,
(1.2)

with

J(x, ξ) :=
∫ ξ

0
j(x, t) dt, (x, ξ) ∈Ω × R, (1.3)
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and ∂J(x, z) being the Clarke generalized gradient of J(x, ·) at the point z ∈ R.
Problem (1.2) has been the subject of numerous investigations, mainly based on the
critical point theory for locally Lipschitz continuous functions [4, 10, 14], sometimes
combined with subsupersolution arguments [2, 8]. By the way, setting

j(x, z) := lim
δ→0+

ess inf
|w−z|<δ

j(x, w), j(x, z) := lim
δ→0+

ess sup
|w−z|<δ

j(x, w), (x, z) ∈Ω × R,

(1.4)
the inclusion in (1.2) becomes

j(x, u) ≤ −∆pu ≤ j(x, u) in Ω, (1.5)

which reduces to −∆pu = j(x, u) at each point u where j(x, ·) is continuous.
In this paper, we simply point out that Problem (1.2), with J unnecessarily of the

type (1.3), can also be treated through an existence result for operator inclusions,
previously established in [1], provided p > N. One assumes that (x, z) 7→ J(x, z),
(x, z) ∈Ω × R, is measurable with respect to x ∈Ω and locally Lipschitz continuous in
z ∈ R. A further condition, compatible with any growth rate of J(x, ·), fits our purposes;
see Theorem 3.1. Some meaningful special cases, namely Corollaries 3.2–3.3, are then
worked out.

The recent work [7] treats p-Laplacian differential inclusions via fixed points for
multifunctions in partially ordered sets. Amidst the results of [7] let us mention
Proposition 4.1, which provides extremal solutions to a problem like (1.5) under
hypotheses different from those employed here.

2. Preliminary results

From now on, Ω denotes a bounded domain of the real Euclidean N-space (RN , | · |)
with a smooth boundary ∂Ω, p ∈ (N, +∞), p′ := p/(p − 1), ‖ · ‖q is the usual norm of
Lq(Ω), 1 ≤ q ≤ +∞, while W1,p

0 (Ω) stands for the closure of C∞0 (Ω) in W1,p(Ω). On
W1,p

0 (Ω) we introduce the norm

‖u‖ :=
(∫

Ω

|∇u(x)|p dx
)1/p

, u ∈W1,p
0 (Ω).

It is known that W1,p
0 (Ω) compactly embeds in Lp(Ω) and one has

‖u‖p ≤ λ
−1/p
1 ‖u‖ ∀u ∈W1,p

0 (Ω),

where λ1 indicates the first Dirichlet eigenvalue of the p-Laplacian [11]. Moreover,
since p > N, we actually get W1,p

0 (Ω) ⊆ L∞(Ω) as well as

‖u‖∞ ≤ a‖u‖, u ∈W1,p
0 (Ω), (2.1)

for suitable a > 0; see, for example, [5, Ch. IX]. The constant a has been estimated
in [16, Formula (6b)] and, for convex Ω, in [6, Theorem 1].
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Let W−1,p′(Ω) be the dual space of W1,p
0 (Ω). By [5, Theorem VI.4] the space Lp′(Ω)

compactly embeds in W−1,p′(Ω). Thus, there exists b > 0 satisfying

‖v‖W−1,p′ (Ω) ≤ b‖v‖p′ , v ∈ Lp′(Ω). (2.2)

R 2.1. The constant b can be evaluated through λ1. In fact,

‖v‖W−1,p′ (Ω) := sup
‖u‖≤1

∣∣∣∣∣∫
Ω

u(x)v(x) dx
∣∣∣∣∣ ≤ sup
‖u‖≤1
‖u‖p‖v‖p′ ≤ λ

−1/p
1 ‖v‖p′

for all v ∈ Lp′(Ω), whence b ≤ λ−1/p
1 .

Let A : W1,p
0 (Ω)→W−1,p′(Ω) be the nonlinear operator stemming from the negative

p-Laplacian, that is,

〈A(u), v〉 :=
∫

Ω

|∇u(x)|p−2∇u(x) · ∇v(x) dx, u, v ∈W1,p
0 (Ω). (2.3)

Theorem A.0.6 in [15] and an elementary argument ensure the following properties.
(p1) A is bijective and uniformly continuous on bounded sets.
(p2) Its inverse A−1 turns out to be continuous.
(p3) ‖A(u)‖W−1,p′ (Ω) = ‖u‖p−1 in W1,p

0 (Ω).
Let U be a nonempty set and let Φ : U →W1,p

0 (Ω), Ψ : U → Lp′(Ω) be two operators
such that the following conditions (i1) hold true.
(i1) Ψ is bijective and for any vh ⇀ v in Lp′(Ω) there is a subsequence of {Φ(Ψ−1(vh))}

which converges to Φ(Ψ−1(v)) almost everywhere in Ω. Furthermore, a non-
decreasing function ϕ : R+

0 → R
+
0 ∪ {+∞} can be defined in such a way that

‖Φ(u)‖∞ ≤ ϕ(‖Ψ(u)‖p′) ∀u ∈ U. (2.4)

Finally, let F : Ω × R→ 2R be a convex closed-valued multifunction. Theorem 3.1
of [1] directly yields the next result.

T 2.2. Suppose (i1) holds true and, moreover, suppose that the following
conditions hold true.
(i2) F(·, z) is measurable for all z ∈ R.
(i3) F(x, ·) has a closed graph for almost every x ∈Ω.
(i4) There exists r > 0 such that the function m(x) := sup|z|≤ϕ(r) inf{|y| : y ∈ F(x, z)},

x ∈Ω, belongs to Lp′(Ω) and ‖m‖p′ ≤ r.
Then the problem Ψ(u) ∈ F(x, Φ(u)) in Ω possesses at least one solution u ∈ U
satisfying |Ψ(u)(x)| ≤ m(x) for almost every x ∈Ω.

For the notions on multifunctions (respectively, nonsmooth analysis) exploited in
the paper, we simply refer the reader to [1] (respectively, [12]), measurable always
means Lebesgue measurable, while the symbol m(E) will indicate the Lebesgue
measure of E.
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3. Existence of solutions

Keep the same notation of Section 2 and define, for every t ∈ R+
0 ,

ϕ(t) := a(bt)1/(p−1). (3.1)

The function ϕ turns out to be monotone increasing inR+
0 . Let J : Ω × R→ R. We shall

make the following assumptions.
(a1) J(·, z), z ∈ R, is measurable.
(a2) To every M > 0 there corresponds k(M) > 0 such that

|J(x, z1) − J(x, z2)| ≤ k(M)|z1 − z2| almost everywhere in Ω and

∀z1, z2 ∈ [−M, M].

(a3) For suitable ε, r > 0 one has m(Ω)1−1/pk(a(br)1/(p−1) + ε) ≤ r.
By (a2) it makes sense to consider the generalized Clarke gradient ∂J(x, z) of J(x, ·) at
the point z ∈ R.

T 3.1. If p > N and (a1)–(a3) hold true then there exists u ∈W1,p
0 (Ω) satisfying

−∆pu(x) ∈ ∂J(x, u(x)) almost everywhere in Ω.

P. Set U := A−1(Lp′(Ω)), Φ(u) := u, and Ψ(u) := A(u) for all u ∈ U. Property (p1)
ensures that the operator Ψ : U → Lp′(Ω) is bijective. Let vh ⇀ v in Lp′(Ω). Because of
the compact embedding Lp′(Ω) ⊆W−1,p′(Ω) and (p2) we obtain, up to subsequences,
Φ(Ψ−1(vh))→ Φ(Ψ−1(v)) almost everywhere in Ω. Hence, (i1) is verified once we
prove (2.4). Since p > N, gathering (2.1), (2.2), and (p3) together, one has

‖Φ(u)‖∞ ≤ a‖u‖ = a‖Ψ(u)‖1/(p−1)
W−1,p′ (Ω)

≤ a(b‖Ψ(u)‖p′)1/(p−1) = ϕ(‖Ψ(u)‖p′), u ∈ U,

with ϕ given by (3.1), and (i1) follows.
Now define F(x, z) := ∂J(x, z), (x, z) ∈Ω × R. A simple computation shows that

F(x, z) = [−J0(x, z; −1), J0(x, z; +1)], (3.2)

where, as usual,

J0(x, z; ±1) := lim sup
w→z,t→0+

J(x, w ± t) − J(x, w)
t

.

Thanks to (a1) the functions x 7→ J0(x, z; ±1) are measurable in Ω for every z ∈ R. So,
taking account of [13, Proposition 1.1], condition (i2) of Theorem 2.2 holds.

Let us next verify (i3). Pick {zh}, {yh} ⊆ R fulfilling

zh→ z, yh→ y, yh ∈ F(x, zh) ∀h ∈ N.

The upper semicontinuity of ζ 7→ J0(x, ζ; ±1), combined with (3.2), yield, as h→ +∞,

−J0(x, z; −1) ≤ y ≤ J0(x, z; +1), namely y ∈ F(x, z),

which represents the desired conclusion.
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Finally, to prove (i4) observe at first that

|J0(x, z; ±1)| ≤ k(M) ∀M > 0, z ∈ (−M, M).

This implies

m(x) := sup
|z|≤ϕ(r)

inf{|y| : y ∈ F(x, z)} ≤ sup
|z|<ϕ(r)+ε

inf{|y| : y ∈ F(x, z)} ≤ k(ϕ(r) + ε)

almost everywhere in Ω. Consequently, by (a3),

‖m‖p′ ≤ m(Ω)1−1/pk(ϕ(r) + ε) ≤ r.

Now Theorem 2.2 can be applied, and we obtain u ∈ U ⊆W1,p
0 (Ω) such that

−∆pu(x) = Ψ(u)(x) ∈ F(x, u(x)) = ∂J(x, u(x))

for almost all x ∈Ω. �

A meaningful special case occurs when J is given by (1.3), where j : Ω × R→ R
fulfils the following hypotheses.
(a4) j turns out to be measurable in each variable separately.
(a5) To every M > 0 there corresponds k(M) > 0 such that | j(x, z)| ≤ k(M) almost

everywhere in Ω and for all z ∈ [−M, M].
Indeed, under (a4)–(a5), the function J satisfies (a1), (a2), and we get

∂J(x, z) = [ j(x, z), j(x, z)],

with j, j being as in (1.4); see [12, Example 1]. Hence, Theorem 3.1 directly leads to
the following corollary.

C 3.2. If (a4)–(a5), besides (a3), hold true then there exists u ∈W1,p
0 (Ω) such

that j(x, u(x)) ≤ −∆pu(x) ≤ j(x, u(x)) for almost every x ∈Ω.

In particular, when

| j(x, z)| ≤ c1 + c2|z|
p−1 ∀(x, z) ∈Ω × R, (3.3)

where c1, c2 > 0, from the above result we deduce the following corollary.

C 3.3. Let the function j comply with (a4) and (3.3). Assume also that

m(Ω)1−1/pap−1bc2 < 1.

Then the conclusion of Corollary 3.2 holds.
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R 3.4. Applications of Theorem 3.1 and its consequences can basically be
constructed only if one knows explicit estimates of constants a and b. As already
observed in Section 2, thanks to [16, Formula (6b)] we get

a ≤
N−1/p

√
π

( p − 1
p − N

)1−1/p(
Γ

(
1 +

N
2

))1/N

m(Ω)1/N−1/p,

with Γ being the gamma function. Since, for every u ∈W1,p
0 (Ω),

‖u‖p ≤ m(Ω)1/p‖u‖∞ ≤ m(Ω)1/pa‖u‖,

Remark 2.1 provides

b ≤ λ−1/p
1 ≤ m(Ω)1/pa ≤

N−1/p

√
π

( p − 1
p − N

)1−1/p(
m(Ω)Γ

(
1 +

N
2

))1/N

.

R 3.5. Condition (3.3), with c2 < λ1, appears also in [7, Proposition 4.1]. It is a
simple matter to realize that this result and Corollary 3.3 are mutually independent.

R 3.6. The main difficulty in treating the case Ω := RN is to verify (i1).
However, if the operator A : W1,p(RN)→W−1,p′(RN) given by

〈A(u), v〉 :=
∫
RN

(|∇u|p−2∇u · ∇v + c(x)|u|p−2uv) dx ∀u, v ∈W1,p(RN),

where c ∈ L∞(RN) and ess infx∈Ω c(x) > 0, takes the place of the one defined in (2.3),
it can be done, as we shall see in a future work.
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