
GRAPHS OF DEGREE THREE WITH A GIVEN 
ABSTRACT GROUP 

ROBERT FRUCHT 

1. Introduction. In his well-known book on graphs [1] Kônig proposed the 
following problem: "When can a given abstract group be represented as the 
group of the automorphisms of a (finite) graph, and if possible how can the 
graph be constructed?" 

To understand this problem well let us begin with the precise definition of 
a graph and its group (of automorphisms). 

A (finite) graph is a finite set of points or vertices A, B, C, . . . , and edges 
or arcs which join certain pairs of these vertices; i.e. for each pair of distinct 
vertices P , Q, there is given an adjacency number Ip,Q — IQ,P such that 

T _ __ ( 0, if the graph does not contain an edge PQ 
P,Q Q.P \^ fi, ii the graph contains n edges joining P with Q. 

To exclude "isolated" vertices Kônig postulates also that each vertex is the 
endpoint of at least one edge; i.e. for each vertex A of the graph there is at 
least another vertex Q such that IA,Q ^ 0- (We will not consider the more 
general graphs—called by Kônig "Graphen im weiteren Sinne"—where an 
edge may have two coincident endpoints, i.e. where also adjacency numbers 
IP,P exist, some of them having the value 1.) 

The group of automorphisms of a graph, or shortly the group of a graph, 
may then be defined as the set of all the mappings of the graph into itself, i.e. 
of all the permutations of the vertices and edges which preserve incidence-
relations. 

An equivalent, but more algebraic definition of the group of a finite graph 
may be given for the more restricted class of the graphs having no pairs of 
edges forming a closed circuit ; in such graphs any two vertices are either ad
jacent or "neighbours"—and in this case there is just one edge joining them— 
or not adjacent. For this more restricted class of graphs where the adjacency 
numbers only can be 0 or 1, the following definition of their group may be given : 

Let to every vertex Pi of the graph correspond a variable x»; then the graph 
will be fully described by the quadratic form X) Ipi,pkXiXk, and the group of the 

graph will be nothing else than the group of all the permutations of the Xi 
which leave that quadratic form unaltered. 

Returning now to Konig's problem, it might be stated more concisely in 
the following terms: Given any finite group £> find a graph G whose group is 
simply isomorphic to $ . 
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It has been shown by the author [2] that this problem has always a solution 
by giving for any group § of order h > 1 the construction of a graph with 
2hz — h2 vertices; this number may be reduced to h(n -\-l)(2n + 1), when one 
knows n elements of the group § which generate the whole group. For the 
case h = 1 the author gave in the same paper an example of a graph with 7 
vertices; later on Kagno [3] succeeded in finding a graph with only 6 vertices 
which has no non-identical group. 

It is obvious that for some special groups there are also graphs with fewer 
vertices than h(n + 1) (2n + 1) ; e.g. for the symmetric group ©# with h = NI 
and n = 2, we have a graph with only N vertices, namely the "complete 
iV-point" in which any two distinct vertices are joined by an edge. 

But it turns out that also in general the number of vertices needed by the 
author in his former paper for the construction of a graph with given abstract 
group is rather excessive, and the main object of this paper is to give a new 
solution of Konig's problem by a graph with fewer vertices and fulfilling also 
the additional condition of being * 'regular of degree 3" or "cubical." 

As to the last condition it must be remembered that degree of a vertex A 
is called the number of edges having one of their endpoints in A, i.e. the sum 
S ^ A . P » where P runs through all the vertices of the graph; and when all the 
p 

vertices of a graph are of the same degree r, Kônig calls the graph "regular of 
degree r." Recently the graphs which are regular of degree 3 have been called 
"cubical" by Tutte [4], and we will use this shorter name too. The outstanding 
interest these cubical graphs deserve in the theory of graphs seemed to us to 
justify a study of Konig's problem for this special class of graphs, and the 
rather surprising result (Theorem 4.1) was that in spite of this new condition 
of regularity of degree 3 there is always a cubical graph with only 2h{n + 2) 
vertices whose group is simply isomorphic to a given abstract group § of order 
h > 2 and generated by n of its elements; for h = 1 or 2 there are cubical 
graphs with 12 or 10 vertices respectively (Theorems 2.3 and 2.4). 

Also in the case of cubical graphs it cannot be claimed that 2h(n + 2) ver
tices are always necessary, since for some special groups cubical graphs with 
fewer vertices are known; e.g. the "complete 4-point" for the group ©4 (h = 24, 
n = 2), Petersen's graph [5] with 10 vertices for ©5 (h = 120, n = 2), Kagno's 
graph [6] Hn with 6 vertices for the dihedral group of order 12, etc. 

The same general principle underlying the construction of a cubical graph 
may also be slightly modified to give a new solution of Kônig's problem in its 
primitive form (i.e. without postulating that the graph be cubical) ; instead of 
h(n + l)(2n + 1) the number of vertices needed for the construction will now 
(Theorems 3.2 and 4.2) be: 2hn for non-cyclic groups, and 3h for cyclic groups 
(n = 1) of order h > 3; if h = 3 it seems that a tenth vertex is indispensable. 

Finally it must be emphasized that Kônig's problem has been interpreted 
here in the sense that only simple isomorphism between the given group and 
that of the graph is required. If the given group is a permutation group "33̂  
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on N symbols, there would be also the problem of finding a graph with the 
same number N of vertices, and whose group is identical with tyN. However 
this more difficult problem has not always solutions; e.g. Kagno showed [6] 
that there are no graphs when tyN is a cyclic or an alternating group (N > 3), 
and gave for N < 6 a complete list of all the cases where a solution exists. It 
seems that the general case (N > 7) of this problem has not yet been treated. 

2. Types; cubical graphs with groups of order 1 and 2. In this section 
we are only dealing with cubical graphs having no adjacency number > 1. 

We begin with the introduction of the notion of the "type" (K, X, /x) of a 
vertex; this notion will prove to be useful in the investigation of the group of 
a cubical graph. 

In a cubical graph without adjacency numbers > 1 any vertex P has 3 
distinct neighbours, say Pi, P2 , P3. It may happen that there is no closed 
polygon or v-circuit that contains the two edges PP± and PP2', then let K = 00. 
(Here a closed polygon or ^-circuit is defined as a set of v edges, A\A2, A2A%, 
AZAÏ, . . . , AV-\AV, AVA\, such that no two of the v vertices A\, A2} A$, . . . , Av 

coincide.) Otherwise there will be one or more closed polygons containing the 
edges PPi and PP2 ; then let K be the least value of v for which such a z>-circuit 
exists. In an analogous manner define X for the two edges P P i and PP3, and 
/x for the two edges PP2 and PP%. Of course, since the enumeration of the 3 
neighbours of P was arbitrary, we always may suppose that K < X < /x. Then 
the number-triple (K, X, /x) will be called the type of the vertex P . 

As an example consider the cubical graph of Figure 1 which can be drawn 
in the plane; it has 12 vertices (and hence 18 edges). Let us begin with deter
mining the type of A. This vertex is endpoint of the edges AB, AE, and AM. 
The pair AB, AE occurs in the 4-circuit AEFBA (but in no z>-circuit with 
v<4); the pair AE, AM occurs in the 7-circuits AEFBCDMA and AEGHK-
LMA, but in no closed polygon with fewer than 7 vertices; finally the pair 
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AB, A M is contained in the 5-circuit ABCDMA, but in no ^-circuit with v < 5. 
Hence the type of the vertex A is (4, 5, 7). 

In an analogous manner the following table of types for each vertex of the 
graph of Figure 1 was obtained: 

A (4 ,5 ,7) 
B (4 ,5 ,6) 
C (5 ,5 ,6) 
D (3, 5, 5) 
E, F (3, 4, 5) 
G, H (3, 6, 7) 
J,K,L,M (3, 5, 6) 

The usefulness of this notion of type results from the following two theorems 
(whose proof is obvious) : 

THEOREM 2.1. A necessary (but not sufficient) condition that a vertex P of a 
cubical graph may be taken into another vertex Qby a permutation belonging to the 
group of the graph is that P and Q are of the same type. 

THEOREM 2.2. If for some 3 numbers K < X < /x there is in a cubical graph 
just one vertex P of the type (K, X, /*), then P is left fixed by each permutation 
belonging to the group of the graph. 

As an application of these theorems we are now going to prove the 
THEOREM 2.3. The graph given by Figure 1 has a group of order 1. 
Proof. Let r be any mapping of the graph into itself. According to Theorem 

2.2 the vertices A, B, C, and D are left fixed by r. The Theorem 2.1 does not 
exclude the possibility that the vertex E could be changed into F by r, but it 
is easy to see that such an interchange of E and F is not possible, as E is a 
neighbour of the invariant vertex A, but F is not. Hence also E is left fixed 
by r, and F too. This last vertex has the neighbours B, E, and G, but since 
B and E are left fixed by r, also G is. Of the same type as G is only the vertex 
H, but as we already know that G remains invariant, also H must be left fixed 
by r. As to the 4 vertices of type (3, 5, 6) it is easy to see that J is left un
changed by r as the only common neighbour of C and H; K as the only common 
neighbour of H and J; L as the only common neighbour of D and K; finally M 
remains fixed, because all the other vertices of the graph are left unchanged 
by r. Thus r does not change any vertex, and as r was any mapping of the 
graph into itself, it has been proved that the group of this graph consists only 
of the identity. 

As another example of the use of types let us consider the cubical graph of 
Figure 2; it has 10 vertices (and 15 edges). We will now prove the 

THEOREM 2.4. The graph given by Figure 2 has a group of order 2. 
Proof. Here we have the following types: 

A,B,C,D (3,4, 5) 
E,F (3 ,5 ,6) 
G,H (4 ,5 ,6) 
J,K (4 ,5 ,5) 
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It is obvious that this graph admits (beside the identity) the following per
mutation of order 2: 

<r = ( A B C D E F G H J K \ . 
\ B A D C F E H G K J ) 

Let r be any mapping of the graph into itself; we must show that r is either 
a or the identity. Let us distinguish two cases: 

Case 1 : r leaves the vertex G unchanged. Of the same type as G is only 
the vertex H which in this case must be left fixed too. The 3 neighbours of 
the fixed-point G, namely A, F, J, are of distinct types; hence they cannot be 
permuted among themselves by r, but must be left fixed too. The same con
sideration for the neighbours of H shows that the same is true for B, E, K. 
Finally C must be left fixed by T, as it is the only common neighbour of the 
fixed-points A and E\ and D remains fixed, as it has "no other choice." Hence 
in this case r is the identity. 

Case 2: r interchanges G and H. (According to Theorem 2.1 there are no 
other possibilities.) Then consider the * 'product' ' T<J, i.e. the mapping r fol
lowed by the mapping a defined above. Since r takes G into Hy and a changes 
H into G, the product ra leaves G unchanged. Applying the considerations 
of case 1 to TO-(instead of T) we see that TO- must be the identity; hence 
r = o--1= a. 

It would be easy to see that another graph with 12 vertices and group of 
order 1 (but different from that of Figure 1) might be obtained from that of 
Figure 2 by joining the mid-points of the edges AG and CJ by an edge. 

3. Cubical graphs with cyclic groups. 
THEOREM 3.1. If & is the cyclic group of order h>2, there is a cubical graph 

with 6h vertices whose group is simply isomorphic to § . (For the case h — 2 see 
Theorem 2.4). 

Proof. Let h > 2. The quadratic form in 6h variables ai,bitCi,ditei,fi 
(i = 1,2, . . . , / * ) : 

h 

5Z (aibi+ aiei+ aifi+ b{Ci+ ddi+ Cifi+ eifi) 
i = l 

h-i 
+ L (£;e;+i+ djdj+i)+ bhei+ dxdh 

j=i 

defines (see introduction) a cubical graph with 6h vertices (which will be 
indicated by the same letters a*, bi, etc.); it has to be shown that its group is 
simply isomorphic to the cyclic group of order h. 

In Figure 3 this graph is given for the case h = 5; in this case the types of 
the vertices are (always for i = 1, 2, 3, 4, 5): 

ai and fi (3, 4, 5) 
bi (4, 7, 9) 
d (4, 7, 7) 
di (5, 7, 7) 
ei (3, 7, 8) . 
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In the general case of an h whatsoever the types would be the same except that 
of the vertices d{ which would be (h, 7, 7) or (7, 7, h) if h < 11, and (7, 7, 11), 
if h > 11. 

It is obvious that any cyclic permutation of all the suffices does not change 
the graph; we must therefore only show that any mapping r of the graph into 
itself is either the identity or some cyclic permutation of all the suffices, i.e. 
some power of the permutation a> which changes each ai into a ^ i (except ah 
which is taken into ai), each bi into 6»+i (except bh which is changed into 
èi), etc. 

Fig. 3 

In the proof we may distinguish two cases : 

Case 1 : r leaves b\ unchanged. Since the neighbours of &i, namely ai, cu 

£2, are of distinct types, they cannot be permuted among themselves by r, and 
are left fixed. The same argument holds for the neighbours of ai, leading to 
the conclusion that also ei and fi remain unaltered. Hence, since two of the 
3 neighbours of the fixed-point Ci, viz. bi and / i , do not change, also the third, 
du must be left unchanged by r; and the same is true for bh, the third neighbour 
of ei (beside a\ and/ i ) . Now the same chain of considerations may be repeated 
for the vertices with subscript h, leading to the conclusion that they remain all 
unchanged by r, and bh-i too. Then the same considerations may be repeated 
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for the vertices with subscript h — 1, etc., until the final conclusion is reached 
that no vertex is changed by r; thus r is the identity in this case. 

Case 2\ If r changes b\ into some other vertex, according to Theorem 2.1 
(and the list of types given above) that other vertex must be a b{ too (i = 2, 
3, 4, . . . , h), say bj. But there is also the mapping co7""1 which takes b\ into bj 
(as o) changes bi into 6î+i) ; hence the product r(o>;~1)~1 leaves b\ unchanged and 
is therefore the identity (see Case 1) ; that means that r = oo^1. 

Having thus proved the Theorem 3.1, it may be remarked that a graph with 
fewer vertices than 6/z can be found, when we remove the restriction that the 
graph is to be cubical : 

THEOREM 3.2. If ^ is the cyclic group of order h > 3, there is a graph with 
3h vertices whose group is simply isomorphic to § . 

If h = 2, there is of course the graph consisting only of two vertices joined 
by one edge. The case h = 3 seems to be exceptional, as I did not succeed in 
finding a graph with 9 vertices (or fewer); one with 10 vertices is given by 
Figure 4. 

A 
Fig. 4 

Proof of Theorem 3.2. Let xu y»-, %i (i = 1, 2, . . . , h) be 3h variables, and 
consider the graph defined by the quadratic form : 

h h-1 
E (*»?»+ yiZi)+ E (XjXj+1+ ZjXj+i)+ XiXh+ XiZh+ £ ZkZi] 

*-i i=i k<i 
for h = 5 see Figure 5. In this graph each vertex Xi is of degree 4, each vertex 
yi is of degree 2, and each vertex Zi is of degree h + 1. The proof that the 
group of this graph is simply isomorphic to the cyclic group of order h (if 
h > 3) is very easy. 

Case 1 : If any mapping T of the graph into itself leaves x\ unchanged, it 
must leave fixed also yi, the only neighbour of Xi having degree 2; hence r 
leaves unchanged also si, the other neighbour of y\. Now Z\ has only one 
neighbour of degree 4, namely x2, which must be left fixed too, etc. Going on 
in this way it is easily seen that r is in this case the identity. 
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Case 2: If r changes xx into another Xj (and there are no other possibilities 
if A > 3), then the product r ( 7 ^ ) - 1 will be the identity, when y is the sub
stitution changing each *,• into xi+l, each yt into yi+1, each Zi into zi+1 (being 
understood that for i = h the subscript h + 1 is to be replaced by 1). 

xt - 3 & C - — y3 

Fig. 5 

As a final remark on Theorem 3.2 we wish to emphasize that there may 
be graphs with still fewer vertices than 3A (at least for certain values of h > 3) 
This is readily verified when the order of the cyclic group is not a prime nor 
a pome power. E.g. let h = p*f (p and q being distinct primes); since § 
the cyclic group of order h, is then the direct product of a cyclic group of order 
pa and another cyclic group of order q8, and since these groups have (according 
to Theorem 3.2) graphs with 3p« and 3g* vertices respectively, these two 
graphs together form a (not connected) graph with only S(pa+ g") instead 
of Sh = 3/>Y vertices and belonging to the same group § . (By adding 9p*q* 
edges between each vertex of the one component and each of the other, also a 
connected graph with the same number of vertices and the same abstract 
group could be obtained.) 
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4. Cubical graphs with non-cyclic groups. 

THEOREM 4.1. If & is any finite group of order h ^ 3 which may be gener
ated by n of its elements, then it is always possible to find a cubical graph with 
2{n + 2)h vertices that has a group simply isomorphic to § . 

Proof. If n = 1, the group is cyclic, and the Theorem 4.1 is only a re
statement of Theorem 3.1. 

If n > 1, let the elements of the given abstract group $ be enumerated as 
follows: let Hh be the unit of the group, and Hi, H2, Hz, . . . , Hn the n elements 
generating the group; Hn+i, Hn+2, . • . , Hh-i will be the other elements of § . 

hH3 *5,H3 *5,H2 *17H2 

Fig. 6 

To obtain a cubical graph with a group simply isomorphic to § let us intro
duce (2n + 4)A variables XitHk (where the first subscript is a number i = 1, 
2, . . . , 2n + 4, and the second is an element Hk of the group, k = 1, 2, . . . , h). 
Let us use the abbreviation Qij for the * 'scalar product": 

h 

Qij^ L Xi,HkXj.Hk • 
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Then consider the quadratic form 

Q = Ql2+ Qu+ <2l5+ Q23+ <224+ Q»+ Ç36+ Ç4 ,2n+4+ Q67+ QlS 

+ (?89+* ' *+ (?2n+3,2n+4 + St 

where 5 stands as an abbreviation for 
h 

S = S (*5,2ïÀ;tf6,iïiiïfc+ X7tHkX8,H2Hk+' ' '+X2n+Z, HkX2n+i, HnHk)-k = l 

It is easy to see that each variable XitHk appears in Q just 3 times; hence 
the quadratic form Q defines a cubical graph G with (2n + 4)A vertices. We 
give it in Figure 6 for the example of the direct product of two cyclic groups 
of order 2 (h = 4, n = 2), i.e. the group with the following multiplication 
table: 

Ht H2 Hz Hi 

Hx m Hs Hi Hi 

Ht Hs m Hi H2 

Hz H2 Hi Hi Hz 
Ht Hi H2 Hz Hi 

(Of course for the construction of the graph only the first two lines are needed, 
as n = 2). 

t0 *6.H? 

to X5,Hh 

to X8,H2H, 

t0 X7,H;iH, 

Fig. 7 

For the more general case of any group generated by n = 2 elements we 
give in Figure 7 only a l 'corner* ' of the graph G, namely the vertices corres
ponding to the variables XÎ,H1 (with the second subscript equal to Hi). 

The proof that the graph G defined by the quadratic form Q has a group 
simply isomorphic to the given abstract group § may be divided into two 
steps: firstly it has to be shown that G admits h different mappings into itself 
which constitute a group isomorphic to § ; in the second place it must be proved 
that there are no other mappings of G into itself. 
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First step: It must be shown that there are ft different permutations <n, 
0*2, . . . an of the variables Xi,Hk constituting a group simply isomorphic to § 
and leaving the quadratic form Q unaltered. This is not difficult, as these 
permutations may be given explicitly by the formula 

*m= ( Xi,Hk V (* = l , 2 , . . . , 2 » + 4; ft = 1 , 2 , . . . , ft) 
\ *i,HkHm / 

where m runs through 1, 2, . . . ft. It is obvious that <n, <r2, . . . , cm constitute 
a permutation group simply isomorphic to § , and it is also readily shown that 
each am leaves the quadratic form Q unaltered. Indeed it is easy to verify that 
each <jm leaves unchanged each of the {2n + 6) quadratic forms Qa which 
appear in the formula given above for Q, since <rm changes Qij into 

h h 

IL Xi,HkHmXj,HkHm= JL Xi,Hk,Xj,Hk> = Qij 
k=l k—1 

as with Hk also HkHm= Hv runs through the whole group § . Similarly it 
h h 

can be shown that also each of the sums ]£ X5,HkxstHlHkt H %7,Hk%s,H2Hk • • • 

(whose sum equals S) is left unchanged by <rm. Let us verify this e.g. for the 
h h 

second sum: X) X7,HkXs,H2Hk- It is changed by <rm into £ x7,HkHmXs,H2HkHmy 
i.e. it remains unchanged, as with Hk also the product HkHm runs through 
the whole group. 

Second step: It remains to be shown that any mapping T of the graph G into 
itself coincides with one of the ft permutations ci, 0-2, . . . , <rh-

For the sake of simplicity we will give this part of the proof only for the 
case n = 2, but the reader will easily see that it might be likewise given for 
any n > 2 ; however it would be still more tedious than for « = 2. 

With the aid of Figure 7 (and of Figure 6, when Hi or H2 are elements of 
order 2 in the group § ) the following types are found for the vertices Xi, HX of G: 

* i f f f l a n d * j l f l l ( 3 , 4 , 5 ) 

/( 4, e, 7) if m 
ZtHi \ ( 4,6,6) if m 

XA.HI ( 3 , 6 , 7 ) 

(( 4, *, *) if Hi is not of order 2 
X*'Hl \ ( 4, 6, 8) if Hi is of order 2 

(( 6, *, *) if Hi is not of order 2 
* 6 ' H l \ ( 6, 6, 9) if Hi is of order 2 

not of order 2 
order 2 

(( 6, *, *) if H2 is not of order 2 
X8'Hl \ ( 4 , 6 , 8) if H2 is of order 2 

/ ( 6, *, *) if H2 is nol 
X7'Hl l ( 4, 6, 8) if Jff, is of • 
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and the same values would hold for the other vertices XiiH]c (k = 2, 3, . . . , h). 

(The stars stand for higher values than those given for generating elements 
of order 2.) 

Since the only vertices of type (3, 6, 7) are xitHltx^>H2f . . . , x±tHh, these 
can be only permuted among themselves by any mapping r of the graph into 
itself. We must now distinguish two cases: 

Case 1: r leaves XA,H1 unchanged. In this case we wish to show that 

r = ah (identity). To this purpose let us consider in the first place the vertex 

#8,HV (If w > 2 we should begin with ,X2n+4,Hi)- ^ must remain fixed too, 

as the other two neighbours of XitHl (viz. X\,Hl and X2,Hi) have other types. 

Can these two neighbours of XA.HI ^ e interchanged by r? It is true that they 

have the same type (3, 4, 5); but x2tH1 has a neighbour of type (4, 6, 6) or 

(4, 6, 7)—namely XztHl—and XitHl has no such neighbour. Hence xi,Hl 

and X2,Hi c a n n ° t be interchanged by r, and therefore must be left fixed. The 

same will then be true of their "third neighbours" XzlHl and XstHv and of 

#6,Hi as the third neighbour of X$,HV Finally X7,HX must remain unchanged 

as the only common neighbour of the fixed-points XQtHx and Xs,Hr (U n > 2 

this part of the proof would be still longer, because it ought to be shown 

analogously that the whole "chain" x&fHvX7,HVXs,HV • • • » #2n+4,#i remains 

unchanged). 

Hence all the vertices Xi)Hl (with the second subscript Hi) are left fixed by r. 

But XG,HI has the third neighbour x$,Hh which must remain unchanged too, 

and by a reasoning similar to that given above it will follow that also all the" 

vertices XitHh (with the second subscript Hh) are left fixed by r; the same will 

hold for all the vertices Xit H2HV since X7,Hl has the third neighbour Xg, i^Hp e t c # 

Going on in this manner until all the vertices of G are recognized as fixed, it 

will be possible to show that (in the case considered here) r is the identity. 

Case 2: r maps X4tHl into some other XitHr (r ^ 1). Then the multipli

cation table of the group § will always allow us to find a subscript 5 such that 
H s = Hr'Hr-, 

then the permutation 

«r. = ( Xt-B" ) 

will take Xi,Hl into X4tHlHs= x±,Hr, and crs
_1, the inverse permutation of as, 

will change XAtHr into X4,#r Hence the product T<J8~
1 will be a mapping of 

G into itself which leaves X4,#i unchanged, and (according to the result ob
tained in the foregoing case 1) must be the identity: T<TS~

1 = cru- Hence r = as. 
Having thus finished the proof of Theorem 4.1, it should be remarked that 

in the case of some special groups fewer than (2n + 4)h vertices may be needed 
to obtain a cubical graph whose group is simply isomorphic to a given abstract 
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group £>; e.g. for the direct product of two groups of order 2 our theorem gave 
us the cubical graph of Figure 6 with 32 vertices, but to the same abstract 
group belongs also the cubical graph of Figure 8 with only 8 vertices. Other 
examples were already mentioned in the introduction. 

Fig. S 

A general reduction of the number of necessary vertices is however possible 
when we remove the condition that the graph is to be cubical. 

THEOREM 4.2. If § is a non-cyclic group of order h and generated by n of its 
elements, one can find a graph with 2nh vertices whose group is simply isomorphic 
to § . (For cyclic groups see Theorem 3.2). 

This graph may be given by the following quadratic form in 2nh variables 
Xi.Hk(i = 1, 2, . . . , 2»; * = 1, 2, . . . , A): 

h 

H (Xl,Hk%2,Hk+ X2,HkXt,Hk + - • • + %*n-l.HkX2n.Hk) 
k = l 

h 

+ H (Xl,HkX2n,Hk+ X2,Hk%2n,Hk+- • • + X2n-2,Hk%2n, Hk) 

h 

+ Z %1.HK%1.HX+ S (^l.H fc^2 i£r1HJ fe+^8.HJ fcX4 fH2H ib + . . . + ^ 2 n - l f f l f c * 2 n i H n H J f e ) . 

(The meaning of the Hk is the same as above.) 
We omit the proof of Theorem 4.2, as it is similar to that of Theorem 4.1 

and can be readily supplied by the reader. 
As a final remark to the theorems of this section we wish to emphasize that 

the number of vertices we needed for the construction of a (cubical or general) 
graph with given abstract group of order h depends not only on h, but also 
on the number n of elements needed to generate the group. If we wish, how
ever, to obtain an upper bound for the number of necessary vertices depending 
only on the order h of the given group, we might proceed in the following way: 

Let h = pa(fry. . . (where p, q, r, . . . are distinct primes) ; then it can easily 
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be proved that it is always possible to generate a group of order h with 
n^a + l3 + y+. . . elements; hence 

2nS 2aX 2*X 2 7 X. . . ^ £ f tgV... . = h, 
and 

n S log A/log 2. 
(The base of the logarithms does not matter of course ; it needs only to be the 
same in numerator and denominator). Hence : 

THEOREM 4.3. To any abstract group of order h > 1 belongs a cubical graph 
with at most [2h(2 + log h/log 2)] vertices. 

In the same way it would be easy to prove the following theorem for non-
cubical graphs: 

THEOREM 4.4. To any abstract group of order h > 3 belongs a graph with 
at most [2h log h/log 2] vertices. 
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