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A Theorem of Sonine in Bessel Functions, with
two Extensions to Spherical Harmonics.

BY DR JOHN DODGALL.

(Read 13th December 1918. Received 15th March 1919.)

1. In his notable memoir on the Bessel Functions,* Sonine
proves the elegant result that

Jm(ka) JJkb) Jm(Xc) X-+l dk
o

{(a±b + c)(b + c-a)(c + a-b)(a + b-c)}m-i

- • m m - A ) a"bmcm

(m> - J), provided a plane triangle can be drawn with sides
a, b, c; otherwise the value of the integral is zero.

The present paper contains—
(i) a proof of Sonine's Theorem based immediately on the Theory

of the Potential;
(ii) a theorem in Spherical Harmonics, with proof precisely

analogous to the proof (i);
(iii) statement of a second theorem in Spherical Harmonics, totally

unlike the theorem (ii), except in this that both theorems
contain Sonine's result as a limiting case.

The two theorems in Spherical Harmonics are—
First,

( ^ ) ^ , PZ-, (cos a.) P^p (cos j8) Pm"+, (cos y)

Jir H{m- £) 2~™ sin™a.sin"/?sin™y

(m> -£) , provided a spherical triangle can be drawn with sides
a, /3, y; otherwise the value of the series is zero;

* Math. Annalen, Band xvi. (1880).
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Second,

o») A . ™ , o*) p~+, (/»)

When t — TO is 0 or a positive integer p, the hypergeometric
function here is a rational integral function of fi, and we have

V ^' 2" { ) ( ) ( p )

) ^ \
-3y ")

(5)
The integral (1) or the series (2) is convergent if m> - £,

unless one of the three a, b, c or OL, /3, y is equal to the sum of the
other two; in the latter case we must have m > £, and the value of
the integral or series is then zero.

The results (1) and (2) admit of specially simple treatment in
the symmetrical case (m = 0), and we will consider this case first.

2. Let z, p, 4> be the cylindrical coordinates of a point. The
function

* Of. a paper, "The Determination of Green's Fonotion by means of
Cylindrical or Spherioal Harmonics." Proc. Edin. Math. Soc, Vol. XVIII.,
1899-1900.

(3)
- 1), where n, p, g are positive integers whose sum is even.

If one of the three integers n, p, q is greater than the sum of the
other two, the value of the integral is zero, as the formula itself
shows.

The definition taken for i>? (/*) is *
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where z>0, is a harmonic function which is symmetrical about the
axis of z. Its value on the axis is

Hence

f e~Xz dz, or - .
J0 2

for two symmetrical harmonic functions having the same value on
the axis of symmetry are identical.

Again,
f°°
I e J0XpJ0XadX
Jo

is a symmetrical harmonic whose value on the axis is

f
o

This potential on the axis can be produced by unit mass on
the plane z = 0 at distance o from the axis; and it will be a
symmetrical potential if the unit mass is distributed uniformly
round the axis. Hence

e~ z J^XpJffXadX

is the potential at distance p from the axis due to unit mass dis-
tributed uniformly over the rim of the circle (z = 0, p - a).

Next,

I e ~ J0XpJ0 Xa Jo Xb dX
Jo

is a symmetrical harmonic whose value on the axis is

f
Jo
f
Jo

by the preceding case this value on the axis will be produced by
unit mass distributed uniformly over the rim of a circle of radius b
with centre distant a from the axis. Take o > { .

If now any element of this unit mass distant p from the axis
be distributed uniformly over the circle of radius p in the plane
2 = 0 with centre at the origin, the potential on the axis will not
be changed, and the potential will now be symmetrical.
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Hence we can easily calculate the density of the surface dis-
tribution on the plane a = 0 which will produce the potential given
when a > 0 by r Jo A./o Jo Xa «/„ \b d\.

Let C be the centre of the circle of radius 6, OC = a, P a point
on this circle, OP = p, angle OCP=if>. The circle of radius p about
0 cuts the circle about G at a second point P'. The two elements
at P and P1 have together a mass d\j//w, which is distributed
over an area 2irp dp, giving a surface density

_
2TT>P dp'

Now, geometrically,
ody

_ 2A
—bp~'

where A is the area of the triangle OPC.
(Otherwise, since p3 = a2 + 6! - 2a6 cos \p,

we have pdp = ab sin \p dtp.)

Thus 27TO- =
ir pdp

1

But, the potential for z > 0 being

Jo

- — )

Hence
f° ^- i

(7)
Jo

which agrees with (1).
3. This method can be extended at once to a spherical surface.
Let, r, 6, <j> be the spherical coordinates of a point.
The function

p=0
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where r > l , is a harmonic function which is symmetrical about
the polar axis. Its value on the axis is

2 r-*~\ i.e. - ! - ,
P=O r - I

which is the potential on the axis of unit mass at the point
( r = l , 0 = 0).

Hence

o , (

when r > 1; and similarly

when r < 1.
Again,

2 r-*-1 Pp (cos 6>)i>,, (cos a)
j>=0

is a symmetrical harmonic function whose value on the axis is
2 r-^P

p=0

This potential on the axis can be produced by unit mass on
the sphere r = 1 at angular distance a. from the axis; and it will
be a symmetrical potential if the unit mass is distributed uniformly
round the axis. Hence

2 r-*-1 Pp (cos 6) Pp (cos ex.), (r > 1)
j>=0

is the potential at angular distance 6 from the axis due to unit
mass distributed uniformly over the rim of the circle ( r= 1, 0 = <*•).
Next,

2 r^~' Pp (cos 6) Pp (cos <x) Pp (cos /3), (r > 1)
2>=0

is a symmetrical harmonic whose value on the axis is
2 r-*-1 Pp (cos a.) Pp (cos £) ;

p = 0

by the preceding case this value on the axis will be produced by
unit mass distributed uniformly over the rim of a circle of angular
radius /3 with centre at angular distance a. from the axis. Take
«• i /?. If, now, any element of this unit mass at angular distance
$ from the axis be distributed uniformly over the rim of the circle
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(r=\, 6 = 6), the potential will be symmetrical, and its value on
the axis will not be changed.

Let 0 be the point (r = l, 0 = 0), C the pole of the circle of
radius P, P a point on this circle, and, in the spherical triangle
OCP,

0C = OL,CP = (3,0P= 6, angle OCP = xf>.

The circle of radius 6 about 0 cuts the circle about C at a
second point P'. The two elements at P and P have a mass dif'/ir,
which is distributed over an area 2ir sin 6 dd, giving the surface
density

1 <ty
<T~2Tzsin6 dd'

But
cos 6 = cos a. cos P + sin a. sin /? cos ^,

sin 6 dd — sin a. sin j8 sin \
so that

1
<T =

2s-2 sin a. sin p sin ^
1

. O. + /3-6 . 6 + P-a. .
S m S m S m2 S m 2 S m 2 S m

Now, since the potential is
2 r~^ Pp (cos 6) Pp (cos a) Pp (cos /8), (r > 1)

p=0
and

2 r* Pp (cos 0) Pp (cos oc.) Pp (cos P), r < 1),
we have

/ r = 1 +

2 (2/> + 1) Pp (cos e; Pp (cos a.) Pp (cos j
p0

Thus

3

ir J (sin

2 (2p +
I

2

1)

»
si

Pp(coa6)

1
O. + 0 -

n 2
6 .
- si:

(coso.)Pp(cos/9)

e+p-a. . 6+
n 2 mn

OL -

2

...(9)
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or 0, according as <x, /?, 6 can form the sides of a spherical
triangle or not. This agrees with (2).

4. A modification of the argument of the two preceding
articles may be noted here, as the modified treatment will be
practically obligatory in the asymmetrical case.

The potential

e~Xz J0XpJ0XadX
Jo

being due to unit mass distributed uniformly over the rim of the
circle (z = 0, p = a), we have

f e-^J.XpJ.Xadk^^- f*
Jo l '7Tj - p8 - 2ap cos tj> + a2) '

Hence the value on the axis of the potential

f e-MJ0XpJ0XaJ0UdX

» Jo JW-2 + o2 - lab cos $ + 62) '

Put a2 - 2ab cos \f/ + bt = u2, and the last integral becomes
u du\ fa+6 1

7T Ja-6 aftsin^

But j ; f{u)2™du

y
is the potential on the axis due to surface density f(p) on the
plane z=-0 from p = c to p = d.

Hence in the present case

from p = a-b to p = a + b, where

which is the same result as in Art. 2.

5. In order to arrive at the general results (1) and (2) we have
to consider harmonic functions of the type

p e J<(p, z),
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which we will call harmonics of rank m. A harmonic of this type,
unless m happens to be an integer, requires for its full exhibition a
space winding about the axis of z, in-which the variable <f> ranges
from - oo. to + oo .

If D is the distance from (/>, <f>, z) to (/>', <j>, z'), the potential
1/Z> has a unit singularity of the first order not only at (p', <j>', e'),
lur also at ip. <f>' + 2kw, z'), where k is any integer. The
potential having unit singularity of the first order at (p't <j>', z')
alone is known, but instead of assuming this knowledge we prefer
to investigate independently an expression for an equally funda-
mental potential which has a linear distribution of singularities of

the first order, of linear density etm<^/a, on the rim of the circle,
(P = a,z = 0).

This potential may be constructed in the following way. Begin
with the ordinary physical case of matter distributed with linear

dens i t y e%m<^ja from <f> = <j>! t o (j> = <f>2) whe re -w <tf>1<<f>i<ir. T h e

potential is

_ 1 [*
j(1ap) it

t -<£)+ a2}

J{ cosh a. - cos (\f/ - <j>) } '

where

.(10).

z + p + a
cosha. = ' (11)

lap v 'We take «. as positive. Since
(cosh a. - 1) 2ap — zi + (p- of,

we have a.>0, except on the circle (z = 0, p = a).
Put

/ = - J — f * * d + (12)
J(2ap) J f t V J c o s h a - cos (^ -</>)} v '

Now regard ^ as a complex variable, and the integral / as a
complex integral taken along the straight path from ^ to <f>t in the
^ plane. The integrand has branch points where <f> = 2for + <j> ± ia..
In the >p plane draw crosscuts parallel to the imaginary axis, to
+ oo i from the branch points with positive imaginary part, and to
- oo i from the branch points with negative imaginary part. Then
take

j L_ f
JV»P)J 7{cosh a. - cos (f - <j>) } '
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the path being from fa + co i to fa, then from fa to fa,, then from
fa to fa + oo i. The contributions to «/ from the first and third
parts of the path are harmonic functions having no singularity
(outside the axis p = 0) when <f> lies between fa and fa, even when
a. = 0. Thus the harmonic function J has (outside the axis) the
same singularity as / , when <x. = 0 and <f> lies between fa and fa.

But, contracting the path of J until it just skirts the crosscut
through <j> + leu, we find

J = _ 2 _ r /»*.-»*,
J(2ap) J o */(cosh D - cosh <x)

J, being proportional to e""^, and having the singularity required
when <£ is between fa and fa, has the proper singularity for all
values of fa

In (13) put e~' = u.
Thus

«/ (ap) Jo J ("2 - 2M cosh a. + 1

In (14) put u — V u" - 2M cosh a. + 1 = w,
, du dw

so that
u — w cosh a. - w

and u = r :
2 (cosh a. — w)

then

J -1J (aP) J -1 2™ - i (cosh a. - w)m+i

Similarly, by putting in (14)

u + J n2 - 2u cosh a. + 1 = w,
find

J (ap) )e~a 2m-i(coshot.-M;)'»+i
By adding (15) and (16) and putting w = cost, we obtain

2*»-4 J (ap) Jo (cosh a. - cos <)m+i '

or, finally,
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6. We have proved that the function J of (18) is a harmonic
function having a linear distribution of singularities of the first

order of density eim^la on the rim of the circle (p = at « = 0).

Jis of the form p~ eim<t> /(/>, z), and

By integration, a surface distribution of singularities of the

first order with surface density <r (p) e m * from p=ptop = qonz = 0

will give a potential pm e""*" F(p, z), where

) 2 V " n

J P ( 2
8

+
Now it can be proved that a harmonic function of rank m

say pm e%m^ F(p, z) is determined by the value of F(p, z) on the
axis, just as in the case of a symmetrical harmonic. Hence in any
case where ^"(0, z) can be thrown into the form (20) we can read
off at once the value of the surface density on z = 0.

X(")d u

from p = p to p = q, and <r(p) = 0 outside those limits.

7. We have
-00

Jo

for each side, when multiplied by «""*, is a harmonic function of
rank m, taking the form

II(2m) pm

z2m+1

near p = 0.

Again,
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is a harmonic of rank m, taking, near p = 0, the form

m im<t>

d
i.e. by (22),

n(2m)
(2»nm)

or

since

n (2r») = - ^ 2

Comparing with (18) and (19) we infer that

and that each of the functions of (23) is a harmonic function
having a linear distribution of singularities of the first order of

linear density etm^/2ira on the rim of the circle (p = a, z = 0);
briefly, each is the potential due to a ring of sources on the rim of

the circle (p = a, z = 0) of linear density e'm^j2ira.

Consider next the harmonic function

p (24)
o

The form of this near p = 0 is

or, by (23),

2™nm * v Jo (*2 +

In (25) put a2 - 2ab cos t + b* = u%
and suppose a > 6 .

(25) becomes
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pmeinup i ra+b sin='»-i

J
Comparing with (21), we find

L . la—* 6"-'. - sin2-11,
m

2 V T I I (TO - J) 2™ Um ir p'

where t is given by

a2 - 2a6 cos t + 62 = p\

so that

• _ 2 A

A being the area of the triangle with sides a, b, c.
But, from (24)

I Jm \p Jm \a Jm Kb. A-™+1 dX
Jo

Hence

)(a + b - p ) } i

J^n(m-$)2Sm-1ambmpm

which is (1).

8. To arrive at the theorem (2) we have only to go through the
steps of the process from (18) to (26), using spherical coordinates.

Beginning with (18) take the ring as (« = «', p = a). The
potential J becomes

o " ^ f sin»» tdt
Jo { (z - z'T+ p*-2apcos t + a*\™+h "

2a"

Put z = r cos 6, z' = c cos a., p = r sin 6, a = c sin <x.

Then the potential due to a ring of sources of linear density

e tm*/c sin a. on the circle (r = c, 9 = a.) is

J1 = 2rm cm sin" 6 sin" a. em<t>

{ * sin"™ tdt

o {ra - 2c r (cos 0 cos a. + sin 0 sin a. cos t + c?}m+i ^ '

https://doi.org/10.1017/S0013091500035380 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500035380


45

J' has the form rm sin'" 6 e'"1*/] (6, r), where

By integration a surface distribution of singularities of the
first order on r = c with surface density o- (6) e*m4> from 6 = y to
0 = 8 will give a potential rmsinm de*"1^ F1(6, r), where

f* sin-+'u,r(u)«fo
J7I y (r2 - 2cr cos u

If F, (0, r
I 7 (r3 - 2cr cost* + c2)m+i '

Then

from 6 = 7 to 0 = 8, and cr(0) = O, outside those limits.

9. The function
m i

P «

is a solid spherical harmonic, the centre of which is on the axis
of z at (p = 0, z = c).

Near p = 0, its form is
TO

If r >c this is

or
^ =«o U(2m+p)

r'n+l £0 n(2
Multiplying by cmll (2m), and attending to (4), we get

c'»r-sin"'6>

+ i V "^

where r > c. If r < c, interchange r and c.

https://doi.org/10.1017/S0013091500035380 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500035380


46

Again,

, ^

(r > c), is a harmonic of rank m taking near 0 = 0 the form

i.e. by (22)'

»n^ H (*»-&) c"r'"sin'"a.sin"'g

Jlrllm (ra

Comparing with (18)' and (19)', we find

H(2tn+P) tf»+* /OOB^P-

= — cm rm sin"1 o. sin"* 6
IT

Jo {r - 2cr(cos0cosa. + sin0sina.cos<) + ea}"'+*' " v

and each, when multiplied by e%m^, is the potential due to a ring

of sources of linear density e*m^/2irc ein a. on the circle (r = c,0 = a.).

Consider next the harmonic function

where r > c.

The form of this near 6 = 0 is

or, by (23)'

2mn»»

f ? ^ L ^ /25V
Jo {r2-2cr(cosa.cos/8 + sina.sin/?cos<) + c2}m+i ^ '

In (25)' put

cos a. cos /? + sin a. sin /3 cos < = cos u, and suppose a. > /8
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(25)' becomes

im*sinm() l
 m m • m_i • , o fa+/S sin2"1-1 <. sin u duimfcmr"1smm-1sin"v-1/?cmr"1smm-1a.sin"v-1/?f c r s m a . s i n / ? —s

2mUm ir ^ J B _ « ( r 2 - 2cr cos w + c?)m+i '

Comparing with (21)', we find

- (6)" = r . — c™ sin m~1 a. sin"*-1 B. sin2"1-11
W 2*JirU(m-$) 2-IIm ir c-'+^in'"!?

where t is given by

cos a. cos /J + sin a. sin /3 cos < = cos 6,

so that
/ . 6 + OL + P .

sin a. sin B sin < = 2 f sin ^ sin

and
1

O. + B-6 . 6 + B-a. . 6 + a.-B\i
sin ^ sin —- )

But from (24)' and the cognate equation for r < c,

^) - 2 (2m + 2p + 1) n ( 2 ^ + P ) PZ+P (cos (9) PZ+P (cos a) i ^ ^ (cos B).
0 *

Equating the two values of 4irc2<r(&) we find (2).

10. The theorem (3) is a generalization of a known theorem for
Zonal Harmonics, which was originally stated as an example in
Ferrer's Spherical Harmonics. A historical account of the Zonal
Harmonic Theorem, with indications of proofs, is given by Heine.*

The method by which, a good many years ago, I found (3),
though complete, is long and far from neat, and I do not give it
here. But I have thought it worth while to set down the state-
ment of the result in connection with the main subject of this
paper.

* Handbuch der Kugelfunctionen, Zwtittr Band, s. 368.
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