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Abstract

We show that the operator-valued Marcinkiewicz and Mikhlin Fourier multiplier theorem are valid if and
~ only if the underlying Banach space is isomorphic to a Hilbert space.
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1. Introduction

Mikhlin’s multiplier theorem is of great importance in analysis. It says that a bounded
function m € C'(R \ {0}) such that tm’(¢) is bounded, defines an L? (R)-multiplier
for 1 < p < oo. In the context of partial differential equations vector-valued spaces
L?(R; X)) occur in a natural way, where X is a Banach space. Thus the function m
should take its values in £ (X). Our aim is to show that Mikhlin’s multiplier theorem
does hold for such operator-valued functions if and only if X is isomorphic to a Hilbert
space.

The phenomenon that operator-valued versions of certain classical multiplier the-
orems are only valid in Hilbert spaces was first observed by Pisier (unpublished) as
a consequence of Kwapien’s deep characterization of Hilbert spaces. More recently,
new versions of operator-valued multiplier theorems turned out to be most useful in
the theory of evolution equations (see the references and comments below) and it
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seems to us that it is important to elaborate in some detail why the classical result
merely holds on Hilbert spaces.
In another context, it helps to impose a Mikhlin’s condition of order k

0y m € C(R\ {0}; £(X)), sup  |i'm@ (@) < oo.

1€R\{0),0<!<k
In fact, Amann [1] discovered that if m satisfies (1) with k = 2, then m is a multiplier
for Besov spaces and in particular for the space C?(R; X), 0 < 6 < 1 (see also [2]
and [11]). We show here that imposing higher order Mikhlin’s conditions does not
help in the context of operator-valued L?-multipliers.

We also consider the groups T and Z instead of R. In fact, the case T corresponds to
Marcinkiewicz’s classical theorem and its operator-valued version is already treated
in [3] for the order-1-case.

Now we would like to comment on the new vector-valued multiplier theorems
which were found recently. It were Berkson-Gillespie [4] who introduced the notion
of R-boundedness (after implicit use of Bourgain [6]). They use R as an abbreviation
for Riesz, but in many subsequent papers people seem think rather of Rademacher
or ‘Randomized’ because the definition involves Rademacher functions. A multiplier
theorem of Marcinkiewicz type was established by Clément-de Pagter-Sukochev-
Witvliet [8] for multipliers of the form m(¢)I (I is the identity operator) clarify-
ing the role of R-boundedness. Then Weis [18] established Mikhlin’s theorem for
operator-valued functions (without restriction) replacing boundedness by the stronger
condition of R-boundedness. Then in [3] the corresponding periodic theorem (that
is, Marcinkiewicz’s theorem) was proved on the basis of results in [8]. Strkalj and
Weis [17] gave an R-version of the variational version of the Marcinkiewicz theorem.
Further important contributions were given by Clément-Priiss [9], Denk-Hieber-Priiss
[10], and Girardi-Weis [11].

2. Periodic multipliers

Let us first recall some notions. Let X be a Banach space. Denote by r; the j-th
Rademacher function on [0, 1]. For x € X, we denote by r; ® x the vector-valued
function ¢ +> r;()x. Let Y be another Banach space. We denote by .Z (X, Y) the
set of all bounded linear operators from X to Y. If X = Y we will denote £ (X, Y)
simply by Z(X). Afamily T C Z(X, Y) is called R-bounded if forsome g € [1, 00)
there exists a constant ¢, > 0 such that

n

Z’j ® Tjx;

j=1

n

2’1‘@)‘1

j=1

€]

=¢q

L0, 1Y) L9(0,1;X)
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forall i,..., T, € T, x;,...,x, € X and n € N. By Kahane’s inequality [14,
Theorem 1.e.13] if such constant c, exists for some g € [1, 00), then it also exists for
each g € [1, 00).

It is known that R-boundedness is strictly stronger than boundedness in operator
norm unless the underlying Banach space is isomorphic to a Hilbert space. More
precisely, each bounded subset in £ (X, Y) is R-bounded if and only if X is of
cotype 2 and Y is of type 2 (see [3, Proposition 1.13]). In particular, by a result of
Kwapien [14, pages 73-74], each bounded subset in £ (X) is R-bounded if and only
if X is isomorphic to a Hilbert space.

For 1 < p < 00, consider the Banach space L? (0, 2x; X) with norm {|f ||, :=
(JZ1f (0)I1P dr)'””. For f € LP(0,2x; X) we denote by

Coa 1 =
[ = —/ e M f (1) dt,
2 0

the k-th Fourier coefficient of f , where k € Z. Fork € Z,x € X welet g,(t) = ¢*" and
(ee®x)(t) = e, (t)x (r € R). Afunction f € L?(0, 2rr; X) is called a trigonometric
polynomial if f is givenby f = Y, _; ex ® xi, where x; € X is 0 for all but finitely
many k € Z.

Let M = (M)iez C (X, Y) be asequence and let 1 < p, g < 0o. We say that
{M)iez is a periodic LP-L9-Fourier multiplier if there exists a constant C > 0 such
that

<C

Zek ® x

kel

Z e @ Mix,

keZ

L7(0,2n;Y) LP(0,2n:X)

for all X-valued trigonometric polynomials ), ; & ® x;. In this case, there exists a
unique operator M € £ (L” (0, 2rr; X), L(0, 27; Y)) such that (Mf Y (k) = M,f(k)
fork € Z[3]. When p = q, we say simply that (M})cz is a periodic L? - Fourier multi-
plier. Fork € Z, we let (A'M)(k) = My — M and (A™M) (k) = (A'(A™'M)) (k)
for m > 2. Notice that A™M is a discrete analogue of the m-th derivative of M.

The classical Marcinkiewicz Fourier multiplier theorem has been extended to the
operator-valued case in the following way: let X and Y be UMD spaces and let
Mz C ZL(X, Y);ifboth {M, : k € Z} and {k(M;,,—M,) : k € Z} are R-bounded,
then (M,)icz defines a periodic L? -Fourier multiplier foreach 1 < p < o0 [3]. Indeed,
(My)iez is a periodic LP-L9-Fourier multiplier whenever 1 < g <p < 0.

We will need the following inequality of Pisier [15]. Let 1 < p < o0 and let
A = {n, : k € N} C Z be a Sidon subset [16, page 120]. Then there exists C > 0
such that for any Banach space X and for any finite sequence (y)1 <<y Of X, we have

Zrk®yk Zem®yk Zrk®}’k
P

k k

< <cC

4

3) c!

2 2
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Note that if A > 1, then any subset {n, : k € N} satisfying ny,/n; > A (k€ N)isa
Sidon subset of Z [16, page 127].

The following result shows that one cannot replace R-boundedness in the operator-
valued Marcinkiewicz theorem above by boundedness in operator norm unless the
underlying Banach space is isomorphic to a Hilbert space.

THEOREM 1. Let X be a Banach space. Then the following assertions are equiva-
lent:

(i) X is isomorphic to a Hilbert space.
(ii) Forsomel < q < p < 00, each sequence (My)iez C £ (X) satisfying

(@) supye IMill < oo,
(b) supyz IK(A'M)(k)|| < oo forl €N,
(c) My, =0fork <0,
is a periodic LP-L9-Fourier multiplier.
(ili) Forall 1 < p < 00, each sequence (M) ez C L (X) satisfying

(a) SUpP;cz 1Ml < o0,
(b) sup,ez Ik(A'M)(k)|| < oo,

is a periodic LP-Fourier multiplier.

REMARK 2. For [ = 1, the condition formulated in (iii) is the classical condition
considered by Marcinkiewicz in the scalar case. For arbitrary ! € N we therefore
speak of the Marcinkiewicz condition of order I. For p = g and [ = 1, Theorem 1
has been proved in [3, Proposition 1.17.]. However, a more refined choice of test
functions is needed here for the general case. The motivation to consider / > 1 stems
from the results on Fourier multipliers for spaces of Holder continuous functions
where, indeed, the Marcinkiewicz condition of order 2 suffices (see [2] and also the
Concluding Remarks at the end of this article). Theorem 1 shows that this is not the
case in the L?-context even if we consider weaker multipliers by allowing g < p.
This has also been done by Kalton-Lancien in the context of maximal regularity for
Cauchy problems [13] (see also the Concluding Remarks 5 (b) below).

PROOF. (i) = (iii). Assume that X is isomorphic to a Hilbert space, then considering
an orthonormal basis one easily verifies that each bounded subset in .# (X)) is actually
R-bounded, so the result follows from the operator-valued Marcinkiewicz Fourier
multiplier theorem in [3].

(1ii) = (i1) is trivial.

(ii) = (i). Assume that forsome 1 < g < p < o0, eachsequence (M, )iz C Z(X)
satisfying sup,.z M« < 00, sup, IK'(A'M)(k)|| < oo for ! € N and M = O for
k < 0, is a periodic L?-L?-Fourier multiplier. Let N = (N )yen C Z(X) be a
bounded sequence.
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Let #(R) be the Schwartz space. Let ¢; € #(R) be such that supp(¢,) C [2, 4]
and ¢,(3) = 1. Forn > 1, we let h, = 2*"2, Define ¢, = ¢1(-/h,). Then
supp(¢,) C [2h,, 4h,] and ¢,(3h,) = 1. Let ¢ : R —> £ (X) be defined by

¢,(1)N, if2h, <t < 4h, for some n > 1;
() = [

0 otherwise.
Let M = (¢ (k))rz. We claim that
4 sup [|§ (k)| < oo,
keZ

®) sup [|K/(A'M) (k)| < oo,

keZ
for I € N. Indeed (4) is clearly true. We will only give the proof for (5) when I = 2,
the proof for the general case is similar.

First notice that when 4h, < k < 8h, — 2 for some n € N, or k < 0, then
(A*M)(k) = 0. While when 2k, — 2 < k < 4h, forsome n € N

(A*M)(k) = ($n(k +2) = 29,k + 1) + ¢ (k))N,,

k+1 1 k+1 k+1 1
(o () e (G0 e (G R

= (@) () + ¢7(M2))N,

2h2

for some n;, n; € R. We deduce that

1642
sup k2 (AZM) (k)] < SUP an?

Nl sup g7 ()] < 4SUP | Nall sup |7 (o)l

Thus M = (¢ (k))iez is a periodic LP-L%-Fourier multiplier by assumption. Hence
there exists C > O such that forn € N and x;, x5, ..., x, € X, we have

’

Y a®ehx| <C|> e®x
k a k
and, in particular,

Ze%,, @My, || <C Zeah ® x3p,

n>1 q n>1

By (3), this implies that the sequence (M,)i»1 is R-bounded. It is easy to check that
if each countable subset of T is R-bounded then so is T. We deduce from this that
each bounded subset in .Z(X) is actually R-bounded. By [3, Proposition 1.13], this
implies that X is isomorphic to a Hilbert space. O
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3. Multipliers on the line

Let X be a Banach space and consider the Banach space L?(R; X) for1 < p < 00.
We denote by Z(R; X) the space of all X -valued C*-functions with compact support.
& (R; X) will be the X -valued Schwartz space and we let #'(R; X) := Z (¥ (R); X),
where . (R) denotes the C-valued Schwartz space. Let Y be another Banach space.
Then given M € L} (R; £ (X, Y)), we may define an operator T : & '2(R; X) —
&'(R; Y) by means of

To :=F 'MF¢ forall £ e D(R;X),

where # denotes the Fourier transform. Since £ ' 2(R; X) is dense in L? (R; X),
we see that T is well defined on a dense subset of L7 (R; X). We say that M is an
L? -Fourier multiplier on L? (R; X) if T can be extended to a bounded linear operator
from L7 (R; X) to L?(R; Y).

The classical Mikhlin Fourier multiplier theorem has been extended to the operator-
valued case by Weis. Let X and Y be UMD spaces, 1 < p < oo and let M €
CHR\ {0}, Z(X, Y)). If both {M(x) : x # 0} and {xM'(x) : x # 0} are R-bounded,
then M defines a L?-Fourier multiplier on L? (R; X) [18].

The following result shows that one cannot replace R-boundedness in the operator-
valued Mikhlin theorem above by boundedness in operator norm unless the underlying
Banach space is isomorphic to a Hilbert space.

THEOREM 3. Let X be a Banach space. Then the following assertions are equiva-
lent:
(1) X is isomorphic to a Hilbert space.
(i) Forsomel < p < 00, each function M € C*(R; L (X)) satisfying
(@ M(x)=0forx <0,
() sup, g M) < oo,
(© sup, a1+ xD'IIMOP )|} < 0o forl €N,

defines an LP -Fourier multiplier on L? (R; X).
(iii) Foralll < p < 00, each function M € C'(R\ {0}; £(X)) satisfying the
conditions
(@) sup, 4 IM)|l < oo,
(b) sup, 4 llxM'(x)]| < oo,
defines an L? -Fourier multiplier on L? (R; X).

PROOF. (i) = (iii). Assume that X is isomorphic to a Hilbert space. Then consid-
ering an orthonormal basis one easily verifies that each bounded subset in .Z(X) is
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actually R-bounded, so the result follows from the operator-valued Mikhlin Fourier
multiplier theorem of Weis [18].

(iil) = (ii) is trivial.

(ii) = (i). Assume (ii) holds. Let (M;)i>0 C Z(X) be a bounded sequence and let
¢ € 2(R) satisfying supp(¢) C [1, 2], sup, g |¢(x)| = 1 and ¢(3/2) = 1. Define
M e C*(R; Z(X)) by

M) 0 if x <1;
x) =
¢ x)M, if 2F <x < 2**! forsome k > 0.

Then sup, g [|M (x)|| = sup,» [|Mill < 0o and forl € N,

sup(1 + |x )| MO x)|

xeR

<2" (sup lx'¢® (x)| sup | M|l + sup |¢® (x)| sup 2‘”‘IIMklI> < 00.
xelR k>0 xeR k>0

So M is an L?-Fourier multiplier on L? (R; X) by assumption. By [9, Proposition 1]
this implies that the set {M(x) : x € R} is R-bounded. In particular, the sequence
(M)i0 is R-bounded. We deduce from this that each bounded subset in £ (X) is
R-bounded, by [3, Proposition 1.13] X is isomorphic to a Hilbert space. a

4. Multipliers on Z

Let X, Y be Banach spaces and consider the Banach space ¢”(Z; X) for 1 <
p <00 LetT = {¢: 0 <t < 27} be the torus. We consider the dense
subspace P of €7 (Z; X) consisting of all elements having a finite support. Then for
f = (fu)nez € P, the Fourier transform of f is a function on [—n, ] defined by
(FFID) =3, g fne™. Let M € L®(—n, ;£ (X, Y)). Then the function M Z f
is in L®(—m, m; Y), where Z ! denotes the inverse Fourier transform. We deduce
that that Tf = F'(MZf) € c(Z; Y) makes sense. We say that M is an LP-
Fourier multiplier on £7 (Z; X) if the mapping T can be extended to a bounded linear
operator from € (Z; X) to € (Z; Y).

The classical Mikhlin Fourier multiplier theorem on €7 (Z) has been extended to
the operator-valued case by Blunck. Let 1 < p < 00, X be a UMD space, let M €
C'((—=m, 0)U(O0, 7r); £ (X)) be such thatboth {M(¢) : t € (—m, 0)U(0, )} and {(e—
D" + DM'(t) : t € (—m,0) U (0, m)} are R-bounded. Then M is an LP-Fourier
multiplier on £7(Z; X) [5]. In particular, each M € C'([-m,0) U (0, n]; £ (X))
such that both {M(#) : t # 0} and {tM’'(z) : t # 0} are R-bounded, defines an
L?-Fourier multiplier on £° (Z; X). Blunck has also established the R-boundedness of
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L?-Fourter multipliers on £7(Z; X): when M is an L?-Fourier multiplier on ¢7 (Z; X ),
then {M (z) : t is a Lebesgue point of M} is R-bounded.

The following result shows that one cannot replace the R-boundedness in Blunck’s
result by the boundedness in operator norm unless the underlying Banach space is
isomorphic to a Hilbert space. As the proof is similar to that of Theorem 3, we omit it.

THEOREM 4. Let X be a Banach space. Then the following assertions are equiva-
lent:

(i) X is isomorphic to a Hilbert space.
(i) Forsomel < p < o0, each function M € C*([—n, n]; L(X)) satisfying

(a) Supxe[—;r,n] ”M('x)” < 0,
(b) Sup,¢_pq IXI'IMO )| < 00 forleN,
(¢) M(x) =0forx <0,
defines an LP -Fourier multiplier on €7 (Z; X).
(ili) Forall 1 < p < 00, each function M € C'([—x,0) U (0, n'}; L (X)) satisfy-
ing
(@) sup, 4 IM(x)|l < o0,
(b) sup, ., IxM'(x)|| < oo,
defines an LP -Fourier multiplier on £°(Z; X).

5. Concluding remarks

(a) One can actually show by using [3, Theorem 1.3] and the same argument as in
the proof of Theorem 1, that when X and Y are UMD-spaces, then the assertions (ii)
and (iii) in Theorem 1 are still equivalent for sequences in £ (X, Y). Similarly, using
[18, Theorem 3.4] (respectively, [S, Theorem 1.3]) one can show that when X and Y are
UMD-spaces, the assertions (ii) and (iii) in Theorem 3 (respectively, Theorem 4) are
still equivalent for functions with values in .2 (X, Y). Furthermore, these assertions
are equivalent to X having cotype 2 and Y having type 2. This contains our Theorem 1,
Theorem 3 and Theorem 4 by a result of Kwapien {14, pages 73-74], saying that a
Banach space X is isomorphic to a Hilbert space if and only if X is of cotype 2 and of
type 2.

(b) A restricted version of our results follows from the recent work of Kalton and
Lancien on the maximal regularity problem [12]. In particular, the counterexample
constructed in [12] can be used to show that the equivalences in Theorem 1 and The-
orem 3 are true within the class of UMD Banach spaces which have an unconditional
basis.

(c) In contrast to the L”-spaces case, the situation for Holder continuous function
spaces is quite different. It has been shown that the operator-valued Marcinkiewicz
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(respectively, Mikhlin) Fourier multiplier theorem holds true on C;‘e,([O, 27]; X) (re-
spectively, C*(R; X)) for every Banach space X and 0 < a < 1 and for each sequence
M = M)z C £ (X) satisfying a second order condition:

sup [| M|} + sup ||k(A'M) (k)| + sup |K2(A*M) (k)| < oo
kel kel kel

(respectively, each function M € C2(R \ {0}; (X)) satisfying a second order con-
dition: sup, o [|M (x)Il + sup, 4, llx M’ (x)|| + sup, 4o Ix2M”(x)|| < 00) (see Amann
(1] and [2]). Here C, ([0, 27]; X) denotes the space of all functions in C*(R, X)
which are 27-periodic. If the Banach space has a non-trivial type, then even the
Marcinkiewicz condition of order 1 suffices (see [2] and [11]).

(d) Periodic L?-Fourier multipliers (respectively, L?-Fourier multipliers on L? (R;
X)) of the form M = (mI);cz, where m;, € C for k € Z (respectively, M = f I,
where f € CY(R \ {0})) on L?(0,27r; X) (respectively, on L?(R; X)) have been
studied by Zimmermann [19], where I denotes the identity operator on X. Actually
Zimmermann’s results follow from the operator-valued Marcinkiewicz (respectively,
Mikhlin) Fourier multiplier theorem established in [3] (respectively, in [18]) as each
subset M C £ (X) of the form M = {AI : X € Q}is R-bounded whenever Q C Cis
bounded. Zimmermann’s results together with a result of Burkholder [7] show that the
scalar-valued Marcinkiewicz (respectively, Mikhlin) Fourier multiplier theorem holds
true for L? (0, 2m; X) (respectively, L? (R; X) ) for some 1 < p < o0 if and only if
X is a UMD space. A similar result characterizing UMD spaces via a scalar-valued
Fourier multiplier theorem on £7 (Z; X)) can be established based on results in [4].

(e) It is remarkable that in all three cases we consider here (Theorem 1, Theo-
rem 3 and Theorem 4), the sequence (M;)iez (or the function M) satisfying the
Marcinkiewicz condition (of order /) without being a Fourier multiplier consists of
operators of rank 1 (see [3, Proposition 1.13.]).
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