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Abstract

We show that the operator-valued Marcinkiewicz and Mikhlin Fourier multiplier theorem are valid if and
only if the underlying Banach space is isomorphic to a Hilbert space.

2000 Mathematics subject classification: primary 42A45,42C99, 46C15,47A56.
Keywords and phrases: Operator-valued Fourier multiplier, Hilbert space and Rademacher boundedness.

1. Introduction

Mikhlin's multiplier theorem is of great importance in analysis. It says that a bounded
function m e C'(K \ {0}) such that tm'(t) is bounded, defines an Z/(K)-multiplier
for 1 < p < oo. In the context of partial differential equations vector-valued spaces
LP(R\X) occur in a natural way, where X is a Banach space. Thus the function m
should take its values in S£{X). Our aim is to show that Mikhlin's multiplier theorem
does hold for such operator-valued functions if and only if X is isomorphic to a Hilbert
space.

The phenomenon that operator-valued versions of certain classical multiplier the-
orems are only valid in Hilbert spaces was first observed by Pisier (unpublished) as
a consequence of Kwapien's deep characterization of Hilbert spaces. More recently,
new versions of operator-valued multiplier theorems turned out to be most useful in
the theory of evolution equations (see the references and comments below) and it
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seems to us that it is important to elaborate in some detail why the classical result
merely holds on Hilbert spaces.

In another context, it helps to impose a Mikhlin's condition of order k

m e C*(R \ (0};if(X)), sup \\t'm(l)(t)\\ < oo.(1)

In fact, Amann [1] discovered that if m satisfies (1) with k = 2, then m is a multiplier
for Besov spaces and in particular for the space Ce(R;X),Q<Q<l (see also [2]
and [11]). We show here that imposing higher order Mikhlin's conditions does not
help in the context of operator-valued Lp-multipliers.

We also consider the groups T and Z instead of K. In fact, the case T corresponds to
Marcinkiewicz's classical theorem and its operator-valued version is already treated
in [3] for the order-1-case.

Now we would like to comment on the new vector-valued multiplier theorems
which were found recently. It were Berkson-Gillespie [4] who introduced the notion
of R-boundedness (after implicit use of Bourgain [6]). They use R as an abbreviation
for Riesz, but in many subsequent papers people seem think rather of Rademacher
or 'Randomized' because the definition involves Rademacher functions. A multiplier
theorem of Marcinkiewicz type was established by Clement-de Pagter-Sukochev-
Witvliet [8] for multipliers of the form m(t)I (/ is the identity operator) clarify-
ing the role of /?-boundedness. Then Weis [18] established Mikhlin's theorem for
operator-valued functions (without restriction) replacing boundedness by the stronger
condition of R-boundedness. Then in [3] the corresponding periodic theorem (that
is, Marcinkiewicz's theorem) was proved on the basis of results in [8]. Strkalj and
Weis [17] gave an /^-version of the variational version of the Marcinkiewicz theorem.
Further important contributions were given by Clement-Priiss [9], Denk-Hieber-Priiss
[10], andGirardi-Weis[ll].

2. Periodic multipliers

Let us first recall some notions. Let X be a Banach space. Denote by r, the j -th
Rademacher function on [0, 1]. For A: e X, we denote by r; ® x the vector-valued
function r h-» rj(t)x. Let K be another Banach space. We denote by i f(X, K) the
set of all bounded linear operators from X to Y. If X = Y we will denote i f (X, Y)
simply by i f (X). AfamilyT c ^f(X, Y) is called R-boun ded if for some q e [1, oo)
there exists a constant cq > 0 such that

(2)
Li(0,\;Y) LH0,\;X)
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for all 7 i , . . . , Tn e T, xu ... ,xn e X and n e N. By Kahane's inequality [14,
Theorem I.e. 13] if such constant cq exists for some q e [1, oo), then it also exists for
each q e [1, oo).

It is known that /?-boundedness is strictly stronger than boundedness in operator
norm unless the underlying Banach space is isomorphic to a Hilbert space. More
precisely, each bounded subset in jSf (X, Y) is /?-bounded if and only if X is of
cotype 2 and Y is of type 2 (see [3, Proposition 1.13]). In particular, by a result of
Kwapien [14, pages 73-74], each bounded subset in ££(X) is R-bounded if and only
if X is isomorphic to a Hilbert space.

For 1 < p < oo, consider the Banach space Z/(0, 2n;X) with norm \\f \\p :=

(f* 11/ (0 llp dt)l/P. For / 6 L" (0, 2TT; X) we denote by

' / ( * ) : = - ! - / ' e-ik'f{t)dt.
In Jo

the k-th Fourier coefficient o f ' / , w h e r e k e 1. F o r & e l , x e X w e let ^ ( 0 = « ' * ' a n d

(ek®x)(t) = ek(t)x (t e K). A function/ € Z/(0, 2TT;X) is called a trigonometric
polynomial if/ is given by / = Ylkei e* ® •**» where x^ e X is 0 for all but finitely
many k el.

Let M = (Aft)te2 C -Sf(X, K) be a sequence and let 1 < p, q < oo. We say that
(Aft)tei is a periodic Lp-Lq-Fourier multiplier if there exists a constant C > 0 such
that

ek < c ® xk

keZ

for all X-valued trigonometric polynomials £ i e Z ek®xk. In this case, there exists a
unique operator M e -S?(L" (0, 2;r; X), L«(0, 2TT; K)) such that (Mf f(k) = M,f(k)
fork e I [3J. When/? = q, we say simply that (Mk)kez is a periodic Lp -Fourier multi-
plier. Fork 6 Z, we let (A'Af)(*) = Mt+1 - Mk and (AmM)(ik) = (A^A^- 'M))^)
for m > 2. Notice that AmM is a discrete analogue of the m-th derivative of M.

The classical Marcinkiewicz Fourier multiplier theorem has been extended to the
operator-valued case in the following way: let X and Y be UMD spaces and let
(Mkhez C -S?(X, r);ifboth{Mt : k e 1} and {k(Mk+i-Mk) : k e 1} are /^-bounded,
then (A/t)teZ defines a periodic Lp-Fourier multiplier for each 1 < p < oo[3]. Indeed,
(A t̂)*ez is a periodic Z/-L17-Fourier multiplier whenever 1 < q < p < oo.

We will need the following inequality of Pisier [15]. Let 1 < p < oo and let
A = {nk : k e N] Clbea Sidon subset [16, page 120]. Then there exists C > 0
such that for any Banach space X and for any finite sequence (yk)i<k<N of X, we have

(3) - . - I
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Note that if k > 1, then any subset {nk : k e N} satisfying nk+i/nk > X (k e N) is a
Sidon subset of Z [16, page 127].

The following result shows that one cannot replace /?-boundedness in the operator-
valued Marcinkiewicz theorem above by boundedness in operator norm unless the
underlying Banach space is isomorphic to a Hilbert space.

THEOREM 1. Let X be a Banach space. Then the following assertions are equiva-
lent:

(i) X is isomorphic to a Hilbert space.
(ii) For some 1 < q < p < oo, each sequence (Mk)k€i C S£(X) satisfying

(a) supt e 2 || Mt| | < oo,
(b) supteZ ||*'(A'M)(Jfc)|| < ooforle N,
(c) Mk = Ofor k < 0,

is aperiodic Lp -Lq -Fourier multiplier.
(iii) For all 1 < p < oo, each sequence (Mk)keI C &(X) satisfying

(a) supteZ || MA|| < oo,
(b) &upkeZ\\k{*lMHk)\\ < o o ,

is a periodic Lp -Fourier multiplier.

REMARK 2. For / = 1, the condition formulated in (iii) is the classical condition
considered by Marcinkiewicz in the scalar case. For arbitrary / 6 N we therefore
speak of the Marcinkiewicz condition of order I. For p = q and / = 1, Theorem 1
has been proved in [3, Proposition 1.17.]. However, a more refined choice of test
functions is needed here for the general case. The motivation to consider / > 1 stems
from the results on Fourier multipliers for spaces of Holder continuous functions
where, indeed, the Marcinkiewicz condition of order 2 suffices (see [2] and also the
Concluding Remarks at the end of this article). Theorem 1 shows that this is not the
case in the V-context even if we consider weaker multipliers by allowing q < p.
This has also been done by Kalton-Lancien in the context of maximal regularity for
Cauchy problems [13] (see also the Concluding Remarks 5 (b) below).

PROOF, (i) =^ (iii). Assume that X is isomorphic to a Hilbert space, then considering
an orthonormal basis one easily verifies that each bounded subset in S£(X) is actually
R-bounded, so the result follows from the operator-valued Marcinkiewicz Fourier
multiplier theorem in [3].

(iii) => (ii) is trivial.
(ii)=>(i). Assume that for some 1 < q < p < oo, each sequence (Mk)keZ c -^(X)

satisfying supieZ ||Mt|| < oo, supteZ ||Jfc'(A'M)(ifc)|| < oo for / e N and Mk = 0 for
k < 0, is a periodic IZ-Z^-Fourier multiplier. Let N = (Nk)keN c 3f(X) be a
bounded sequence.
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Let y(R) be the Schwartz space. Let <f>i 6 y(R) be such that suppO/*,) c [2, 4]
and 0j(3) = 1. For n > 1, we let hn = I2"'1. Define <pn = <pi(-/hn). Then
supp((/>n) c [2hn, 4hn] and <f>n(3hn) = 1. Let <j> : R - • i f (X) be defined by

0(0 =
<t>n(t)Nn if 2hn <t < 4hn for some n > 1;

10 otherwise.

Let M = {<t>(k))k€l. We claim that

(4)

(5)

sup||0(*)| |<oo,
kel

sup||*'(A'M)(*)|| < oo,

for / e N. Indeed (4) is clearly true. We will only give the proof for (5) when 1 = 2,
the proof for the general case is similar.

First notice that when 4hn < k < 8hn — 2 for some n e H, or k < 0, then
(A2M)(£) = 0. While when 2hn-2<k< 4hn for some n e N

= {<f>n{k + 2) - <pn(k))Nn

for some r)\,r)2 € R. We deduce that

sup \\k2(A2M)(k)\\ < sup | sup | < 4sup | | ^ | | sup |0','

Thus M = (4>(k))k€l is a periodic Lp-L9-Fourier multiplier by assumption. Hence
there exists C > 0 such that for n € N and xux2, ... ,xn e X, we have

and, in particular,

< c

< c

By (3), this implies that the sequence (M*)*>i is R-bounded. It is easy to check that
if each countable subset of T is R-bounded then so is T. We deduce from this that
each bounded subset in S£(X) is actually /^-bounded. By [3, Proposition 1.13], this
implies that X is isomorphic to a Hilbert space. •
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3. Multipliers on the line

Let X be a Banach space and consider the Banach space V (R; X) for 1 < p < oo.
We denote by i£>(R; X) the space of all X-valued C°°-functions with compact support.
^ ( R ; X) will be the X-valued Schwartz space and we let S"(R; X) := i f (^"(R); X),
where ^ ( R ) denotes the C-valued Schwartz space. Let Y be another Banach space.
Then given M e / ^ ( R ; JS?(X, JO), we may define an operator T : &-*&(&; X) -*•
«*"(R; JO by means of

T<p := &-xM&<j> for all

where ^ denotes the Fourier transform. Since <^"-'0(R;X) is dense in Z/(R;X),
we see that T is well defined on a dense subset of LP(R;X). We say that M is an
Lp-Fourier multiplier on 1/ (R; X) if T can be extended to a bounded linear operator
fromZ/(R;X)toZ/(R; Y).

The classical Mikhlin Fourier multiplier theorem has been extended to the operator-
valued case by Weis. Let X and Y be UMD spaces, 1 < p < oo and let M e
C'(R\ {0}, if(X, JO). If both {A/(x) : x jk 0} and ( r f ' W : x £ 0} are ^-bounded,
then M defines a Lp-Fourier multiplier on LP(R; X) [18].

The following result shows that one cannot replace /?-boundedness in the operator-
valued Mikhlin theorem above by boundedness in operator norm unless the underlying
Banach space is isomorphic to a Hilbert space.

THEOREM 3. Let X be a Banach space. Then the following assertions are equiva-
lent:

(i) X is isomorphic to a Hilbert space.
(ii) For some 1 < p < oo, each function M e C°°(R;if(X)) satisfying

(a) M(x)=0forx < 0,
(b) suPjceR||M(*)|| <oo,
(c) sup,£R(l + |JC|)'||MWCX)|| < oo for I e N,

defines an V-Fourier multiplier on Lp (R; X).
(iii) For all 1 < p < oo, each function M e C'(R \ (0};i?(X)) satisfying the

conditions

(a) supxj40||A/(x)|| < oo,
(b) sup,/0||*M'(*)|| <oo,

defines an Lp-Fourier multiplier on Lp (R; X).

PROOF, (i) =• (iii). Assume that X is isomorphic to a Hilbert space. Then consid-
ering an orthonormal basis one easily verifies that each bounded subset in -S?(X) is
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actually R -bounded, so the result follows from the operator-valued Mikhlin Fourier
multiplier theorem of Weis [18].

(iii) =>. (ii) is trivial.
(ii) =$• (i). Assume (ii) holds. Let (Mk)k>0 c Sf(X) be abounded sequence and let

0 e 0(R) satisfying supp(0) c [1,2], sup^£R \4>(x)\ = 1 and 0(3/2) = 1. Define
M e

= JO if x < 1;
\<p(2-kx)Mk if 2* < x < 2*+1 for some it > 0.

Then sup,^ ||M(JC)|| = supt>0 \\Mk\\ < oo and for / e N,

xeR

< 2m (sup \xl4>(l)(x)\ sup ||Mt|| + sup \</>(t)(x)\ sup2~lk | |Mt|| ) < oo.
\x€lH k>0 xeR k>0 /

So M is an U-Fourier multiplier on LP(R;X) by assumption. By [9, Proposition 1]
this implies that the set {M(x) : x e R] is R-bounded. In particular, the sequence
(Mk)k>0 is ^-bounded. We deduce from this that each bounded subset in 3?(X) is
R-bounded, by [3, Proposition 1.13] X is isomorphic to a Hilbert space. •

4. Multipliers on T

Let X, Y be Banach spaces and consider the Banach space ip(Z;X) for 1 <
p < oo. Let T = {e" : 0 < t < 2n) be the torus. We consider the dense
subspace P of ip(l;X) consisting of all elements having a finite support. Then for
/ = (fn)nez e P, the Fourier transform of/ is a function on [—n, n] defined by
G?/)(r) = E«€i/««"'• Let M 6 L°°(-n,n;S?(X, Y)). Then the function M&f
is in L°°(—7r, ^; K). where « '̂~1 denotes the inverse Fourier transform. We deduce
that that Tf := &~\M&f) e co(l; Y) makes sense. We say that M is an Lp-
Fourier multiplier onip(l;X) if the mapping T can be extended to a bounded linear
operator from I" (2; X) to W (I; Y).

The classical Mikhlin Fourier multiplier theorem on lp (I) has been extended to
the operator-valued case by Blunck. Let 1 < p < oo, X be a UMD space, let M e
C'((-jr, 0)U(0, jr); J&?(X)) be such that both {M(t) : t e {-it, 0)U(0,7r)}and{(e"-
l)(e" + l)Af'(r) : / € (-w, 0) U (0, n)} are ^-bounded. Then M is an Lp-Fourier
multiplier on l"(Z;X) [5]. In particular, each M e C'([-7r,0) U (0, n]\ &(X))
such that both {M(t) : t ^ 0} and (rA/'(f) : t ^ 0} are /^-bounded, defines an
Lp-Fourier multiplier on lp (Z;X). Blunck has also established the /?-boundedness of
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U-Fourier multipliers on V (I; X): when M is an Lp-Fourier multiplier on V (I; X),
then [M(t) : t is a Lebesgue point of M} is R-bounded.

The following result shows that one cannot replace the /?-boundedness in Blunck's
result by the boundedness in operator norm unless the underlying Banach space is
isomorphic to a Hilbert space. As the proof is similar to that of Theorem 3, we omit it.

THEOREM 4. Let X be a Banach space. Then the following assertions are equiva-
lent:

(i) X is isomorphic to a Hilbert space.
(ii) For some 1 < p < oo, each function M 6 C°°([—n, n]; J?(X)) satisfying

(a) supxel_XK]\\M(x)\\ <oo,
(b) s u p ^ ^ j |x|'||M«(*)ll < oo for I 6 N,
(c) M(x) = 0forx <0 ,

defines an V-Fourier multiplier on V (Z; X).
(iii) For all 1 < p < oo, each function M e C\[-n, 0) U (0, n];Sf(X)) satisfy-

ing

(a) sup^llMCOH < oo,
(b) sup^lljcM'GOH <oo,

defines an Lp-Fourier multiplier onlp(Z;X).

5. Concluding remarks

(a) One can actually show by using [3, Theorem 1.3] and the same argument as in
the proof of Theorem 1, that when X and Y are UMD-spaces, then the assertions (ii)
and (iii) in Theorem 1 are still equivalent for sequences in S£{X, Y). Similarly, using
[18, Theorem 3.4] (respectively, [5, Theorem 1.3]) one can show that when X and Y are
UMD-spaces, the assertions (ii) and (iii) in Theorem 3 (respectively, Theorem 4) are
still equivalent for functions with values in Jf (X, Y). Furthermore, these assertions
are equivalent to X having cotype 2 and Y having type 2. This contains our Theorem 1,
Theorem 3 and Theorem 4 by a result of Kwapien [14, pages 73-74], saying that a
Banach space X is isomorphic to a Hilbert space if and only if X is of cotype 2 and of
type 2.
(b) A restricted version of our results follows from the recent work of Kalton and

Lancien on the maximal regularity problem [12]. In particular, the counterexample
constructed in [12] can be used to show that the equivalences in Theorem 1 and The-
orem 3 are true within the class of UMD Banach spaces which have an unconditional
basis.
(c) In contrast to the Lp -spaces case, the situation for Holder continuous function

spaces is quite different. It has been shown that the operator-valued Marcinkiewicz
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(respectively, Mikhlin) Fourier multiplier theorem holds true on C£,r([0,2n];X) (re-
spectively, C"(IR;X)) for every BanachspaceX andO < a < 1 and for each sequence
M = (Mk)k<=z C S£(X) satisfying a second order condition:

sup \\Mk\\ + sup \\k(b}M){k)\\ + sup ||*2(A2M)0fc)|| < oo
ksl k€l kel

(respectively, each function M e C2(K \ {0};-£f(X)) satisfying a second order con-
dition: supx^0 \\M{x)\\ + s u p ^ ||xAf'(*)|| + sup^^o ||jc2Af"(JC)II < oo) (see Amann
[1] and [2]). Here C£r([0, 2n];X) denotes the space of all functions in C(R, X)
which are In -periodic. If the Banach space has a non-trivial type, then even the
Marcinkiewicz condition of order 1 suffices (see [2] and [11]).
(d) Periodic Lp-Fourier multipliers (respectively, V-Fourier multipliers on LP(R;

X)) of the form M = (mkI)k<Bl, where mk e C for k e 2 (respectively, M = f I,
where / e C'(K \ {0})) on Z/(0, 2:rr;X) (respectively, on LP(K;X)) have been
studied by Zimmermann [19], where / denotes the identity operator on X. Actually
Zimmermann's results follow from the operator-valued Marcinkiewicz (respectively,
Mikhlin) Fourier multiplier theorem established in [3] (respectively, in [18]) as each
subset M C _Sf (X) of the form M = [kl : X e Q] is fl-bounded whenever Q c C is
bounded. Zimmermann's results together with a result of Burkholder [7] show that the
scalar-valued Marcinkiewicz (respectively, Mikhlin) Fourier multiplier theorem holds
true for Lp(0, 2n;X) (respectively, LP(K;X) ) for some 1 < p < oo if and only if
X is a UMD space. A similar result characterizing UMD spaces via a scalar-valued
Fourier multiplier theorem on ip (Z; X) can be established based on results in [4].
(e) It is remarkable that in all three cases we consider here (Theorem 1, Theo-

rem 3 and Theorem 4), the sequence (Mi)teZ (or the function M) satisfying the
Marcinkiewicz condition (of order /) without being a Fourier multiplier consists of
operators of rank 1 (see [3, Proposition 1.13.]).
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