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Browder’s Convergence for One-Parameter
Nonexpansive Semigroups

Shigeki Akiyama and Tomonari Suzuki

Abstract. 'We give the sufficient and necessary conditions of Browder’s convergence theorem for one-
parameter nonexpansive semigroups which was proved by Suzuki. We also discuss the perfect kernels
of topological spaces.

1 Introduction

Let C be a closed convex subset of a Banach space E. A family of mappings
{T(¢) : t+ > 0} is called a one-parameter strongly continuous semigroup of nonex-
pansive mappings (one-parameter nonexpansive semigroup, for short) on C if the fol-
lowing are satisfied:

(i) Foreacht > 0, T(t) is a nonexpansive mapping on C, that is,
IT(t)x = T(t)yll < [lx = |

holds for all x, y € C.

(i) T(s+t)=T(s)oT(t)foralls,t> 0.

(iii) For each x € C, the mapping ¢ — T(t)x from [0, co) into C is strongly contin-
uous.

There are six papers concerning the existence of common fixed points of {T(¢) :
t > 0}; see [1,2,4,5,9,11]. Recently, Suzuki [11] proved that (,-, F(T(t)) is non-
empty provided every nonexpansive mapping on C has a fixed point, where F(T(t))
is the set of all fixed points of T'(t). He also proved a semigroup version of Browder’s
[3] convergence theorem in [10, 12].

Theorem 1.1 ([12]) Let T be a nonnegative real number. Let {c,} and {t,} be real
sequences satisfying

(i) 0<a,<land0<t,forneN;

(i) lim,t, =75

(iii) t, # 7 forn € Nandlim, o, /(t, — 7) = 0.

Let C be a weakly compact convex subset of a Banach space E. Assume that either of the
following holds:
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* E is uniformly convex with uniformly Gateaux differentiable norm.

* E is uniformly smooth.

* Eis a smooth Banach space with the Opial property and the duality mapping J of E
is weakly sequentially continuous at zero.

Let {T(t) : t > 0} be a one-parameter nonexpansive semigroup on C. Fix u € C and
define a sequence {u,} in C by

(1.1) u, = (1 — ) T(t)u, + o, u

for n € N. Then {u,} converges strongly to Pu, where P is the unique sunny nonexpan-
sive retraction from C onto [ ),~, F(T(t)).

See [6,7,15] for the notions such as the Opial property, etc.
In this paper, we give the sufficient and necessary conditions on {«,,} and {t,}.

2 Sufficiency

Throughout this paper we denote by N the set of all positive integers and by R the set
of all real numbers.
In this section, we generalize Theorem[L.1]

Theorem 2.1 Let {a,} and {t,} be real sequences satisfying

(1) 0<a,<land0<t,forneN;

(ii) {t.} is bounded;

(iil) lim, o, /(t, — 7) = 0 forall T € [0, 00), where 1/0 = oo.

Let E, C, {T(t) : t > 0}, P, uand {u,} be as in Theorem LIl Then {u,} converges
strongly to Pu.

Proof Let {f(n)} be an arbitrary subsequence of {n}. Since {t,} is bounded, so is
{tfm}. Hence there exists a cluster point 7 € [0, 00) of {t(,}. From (iii), there
exists v € N such that tf,) # 7 and t¢,) # 0 forn € N with n > v. We choose
a subsequence {g(n)} of {n} such that g(1) > v and {tfog(m) } converges to 7. From
(iii) again, we have
lim X fog(n)
n=00 Lfogn) = T

=0.

By Theorem [LT} {ufog(n)} converges strongly to Pu. Since {f(n)} is arbitrary, we
obtain that {u,} converges strongly to Pu. [ |

As a direct consequence of Theorem 2.1} we obtain the following.

Corollary 2.2 Let {«,} and {t,} be real sequences satisfying onditions (i)—(iii) of
Theorem 211 Let {T(t) : t > 0} be a one-parameter nonexpansive semigroup on a
bounded closed convex subset C of a Hilbert space E. Let P be the metric projection from
C onto (\,~, F(T(t)). Fixu € C and define a sequence {u,} in C by (L1). Then {u,}
converges strongly to Pu.

We note that we need condition (i) in order to define {u,}. In the remainder of
this paper, we discuss conditions (ii) and (iii).
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3 Necessity

In this section, we shall show that conditions (ii) and (iii) of Theorem [2.1] are best
possible, in the sense that we cannot relax these conditions on {a,} and {#,} any
more.

For real numbers s and ¢ with ¢ > 0, we define “mod” by

smodt =s— [s/t]t,

where [s/t] is the maximum integer not exceeding s/t.

Lemma 3.1 Let {c,} and {t,} be real sequences satisfying condition (i) of Theorem
21 Assumelim sup, t, = co. Then for every nonnegative real number v, there exists a
positive real number T such that

ay

li —_— =
l,ﬂs;l)p (t,modT) —v

Proof We shall define two real sequences {¢, } and {7,} and a subsequence { f(n)}
of {n} satisfying the following.

i) O0<e,<landv+1+¢e, <.

(i) g/ ((tpm mod 7) —v) > nforT € 1, — &u, Tul.

(111) [Tn — En, Tn] D) [Tn+1 — En+l, 7—n+1]-

We denote t f(,) by s, and af(,) by 3, for n € N. We choose f(1) satisfying s; > 2v+2.
We put

e1:=0/2€(0,1) and 7Ti=s5—v>v+2>v+1+e.

If T € [11 — &1, 7], then since
S1 S1 S 51 s1
=—<-=Z < —— =2,

S1— v 1 T T — &1 51/2

1<

wehave 0 < (ssmod7) —v =5 —7—v =7 —7 < g < 3, which implies
(ii). We assume that ,,, 7, and f(n) are defined for some n € N. We choose f(n + 1)
satisfying f(n+1) > f(n) and s, > 27, (T, — €,)/€,. Then we have

Sn+l Sn+1
Spp1 > Ty and — > —
Tn — En Tn

+ 2.

Hence there exist real numbers p and g such that

Sn+l Sn+1

Th—en<p<qg<T, and = +1eN.
p q
We put
(Sur1 —0)q Bt1 9
n+tl — — d ntl = 7 N -
Tl Snrt B PP P
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Then it is obvious that 7,,4; < g. Since
p—v—LCm/n+1)>p—v—-1>27,—¢,—v—1>0,

we have

Suel — U — B /(n+1) Sur1 P Snr1 — U — B /(n+1)
Th+l — En+l1 = 4 =

Sn+l Sn+l — P Sn+l
Surl — U — Buy/(n+ 1) >p
Sn+1 — P
Therefore,
Tn—En S P < Tyl —Epr1 < g1 <4< Tye
So we note

(spr1mod 7) — vV = Sp41 — TSpp1/q — v

for 7 € [Tye1 — €1, Ta1]. Since
(sis1 mod Typ1) —v =0 and  (s,41 mod (Tus1 — €n1)) — U = Burr /(n +1),

we have
0<(spyymod7) —v < By /(n+1)

for 7 € [Ty+1 — €ut1, Tus1]. Therefore we have defined {e,}, {7,} and {f(n)} which
satisfy (i)—(iii). Cantor’s intersection theorem yields that there exists 7 € R such that
7 € (N2, [Ta — €, Tul. By (ii), we have

Qp

lim sup > lim sup el > lim n = oo. ]

n—oo (tpmodT) —v n—oo (S,modT) —v T n—oo

Lemma 3.2 Let {«,} and {t,} be real sequences with condition (i) of Theorem 21l
Assume

(3.1) lim _ >0 and limt, =71

n— 00 |tn — T| 1n— 00

for some T € (0, 00). Then there exists a subsequence { f(n)} of {n} such that either

Qf(n .
(3.2) lim — ™ >0 and lim (tf,) mod7) =0
n—oo t(yy mod T 1—00
or
(3.3) lim —— W 0 and  Tim (¢, mod 7) = T
’ n—00 (tf(n) modT)—T oo 1™
holds.
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Proof If there exists a subsequence { f(n)} of {n} such that t,,) > 7 foralln € N,
then
tin mod T =ty — T = |t5(n) — 7|

for sufficiently large n € N. Thus (3.2) holds. If there exists a subsequence { f(n)} of
{n} such that ¢,y < 7 foralln € N, then

(tpmy mod 7) — 7 =ty — T = —[tfm — T
for all n € N. Thus (38.3)) holds. [ |

Lemma 3.3 Let {«,} and {t,} be real sequences with condition (i) of Theorem 2.1
Assume o

lim = >0 and lim t,=0.

n—oo n n—oo
Then holds for every positive real number T and every subsequence { f(n)} of {n}.
Proof Obvious. [ |

Lemma 3.4 Let {c,} and {t,} be real sequences with condition (i) of Theorem[2.1]
Assume that the conjunction of conditions (ii) and (iii) of Theorem 2.1l does not hold.
Then there exist a positive real number T and a subsequence { f(n)} of {n} such that

either (3.2)) or (3.3) holds.

Proof We consider the following four cases:

* limsup, t, = 0o

* limsup, t, < co and limsup, o, > 0

* limsup, t, < 00, lim, a; = 0 and lim sup,, v, /|t, — 7| > 0 for some 7 € (0, 00)

* limsup, t, < 00, lim, a, = 0 and lim sup,, &, /t, > 0.

In the first case, using Lemma[3.]] there exist a positive real number 7 and a subse-
quence { f(n)} of {n} such that

a
lim — " —
n—oo tf(yy mod T

It is obvious that lim,,(¢¢(,y mod 7) = 0. Thus (3.2]) holds. Next we note that it is
sufficient to show the existence of a subsequence {g(n)} of {n} such that we can apply
either Lemma or Lemma[33l In the second case, we can choose a subsequence
{g(n)} of {n} such that lim, cg(y > 0 and {t,(,)} converges to some nonnegative
real number 7. Then {ay(y } and {f,(,) } satisfy (B.I). So we can apply either Lemma
B2lor Lemma3.3] In the third case, we can choose a subsequence {g(n)} of {n} such
that lim,, aig(n) /|tgmy — 7| > 0. Then lim,, |ty,) — 7| = 0 holds. Hence we can apply
Lemma[3.2] Similarly, in the fourth case, we can apply Lemma[33] [ ]

Example 1 Let {«,} and {#,} be real sequences with condition (i) of Theorem 211
Let 7y be a positive real number. Let E be the two-dimensional real Hilbert space and

putC = {x € E: ||x|| < 1}. Fort > 0, define a 2 x 2 matrix T(¢) by

_|cos(yt) —sin(yt)
() = sin(vt)  cos(yt)
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We can consider that {T(¢) : ¢+ > 0} is a linear nonexpansive semigroup on C. Let
P be the metric projection from C onto (,~, F(T(t)), that is, Px = 0 for all x € C.
Put 4 = (1,0) and define a sequence {u,} by (LLI). Assume that the conjunction of
condition (ii) and condition (iii) of Theorem 2.1l does not hold. Then there exists -y
such that {u,} does not converge strongly to Pu.

Proof By Lemmal[3.4] there exist a positive real number 7 and a subsequence { f(n) }
of {n} such that either (382)) or (B3] holds. We note that both (82)) and (383]) do not
hold simultaneously. We put

v=47/T.
We also put
) lim,(tfy mod 7) /sy € [0, 00) if (3.2) holds,
= lim,, ((tf(,,) mod 7) — 7') /s € (—00,0] if (B3) holds.

In the case where (3.2)) holds, since
sin(7y tf(s)) = sin(7y ts(,y mod 4 7) = sin (fy (tf(my mod 7')) ,

we have in( ) ( ar)
sin(y ¢ tf(n) MO
lim W)y D0 TOCT

oo Qf(n) n—00 Q' f(n)

In the case where (3.3)) holds, since

.

sin(7y tf(y) = sin ((7 ti(ny mod 4 ) — 47T) = sin (7 ((tf(n) mod 1) — ’7') ) ,

we have

i tf(n trin d7)—

n— 00 af(n) n—o00 af(n)

Similarly, lim,, sin(7y t(s)/2)/af(n) = ¥ 1/2 holds in both cases. For n € N, we put a
2 X 2 matrix P, by

P, = @n |:an _bn:|
" 41— ay) sinz(wt,1/2)+01,,2 b, a,|’

where a, = a, +2(1 — «,) sinz(’ytn/Z) and b, = (1 — ) sin(vt,). It is easy to
verify that u,, = P,u for n € N (see [14]). We obtain

i Pon— L [T o=am] 1 fcos(d) —sin(f)
oo fn) = Ynr+1 |7n 1 o \/m sin(f)  cos(8) |’

where 6 := arctan(yn) € (—7/2,7/2). Therefore

. _ 1 cos(f) —sin(6) _
Jm i = ereEey [sin(@) cos(0) } u#0="Pu
holds. [ ]
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From Corollary[2.2land Example[T] we obtain the following.

Theorem 3.5 Let E be a Hilbert space whose dimension is more than 1. Let {«, } and

{tn} be real sequences satisfying condition (i) of Theorem 21l Then the following are

equivalent:

* Conditions (ii) and (iii) of Theorem 2l hold.

o If{T(t) : t > 0} is a one-parameter nonexpansive semigroup on a bounded closed
convex subset C of E, u € C, {u,} is a sequence defined by (LI and P is the metric
projection from C onto (,~.o F(T(t)), then {u,} converges strongly to Pu.

4 Additional Results

In [13], we improved Theorem [Tl as follows. In this section, we first compare The-
orem[2.1]with Theorem[4.1]

Theorem 4.1 ([13]) Let {a,} and {t,} be real sequences satisfying Conditions (i) and
(ii) of Theorem2.1land

(iii) s, :=liminf,, |t,, —t,| > 0 forn € Nand lim, o, /s, = 0.

Then the same conclusion of Theorem 2.1 holds.

Theorem[41\iii) is stronger than condition (iii) of Theorem[Z.I]because condition
(iii) of Theorem[2.1lis a sufficient and necessary condition. It is a natural question of
whether Theorem [4.11(iii) is strictly stronger.

Example 2 Define functions f and g from Ninto NU {0} and real sequences {c, }
and {t,} by

* f(n)=max{keNU{0}:k(k+1)/2 <n}

s gm)=n—f(n)(f(n)+1)/2

o, =472
Then {a,} and {t,} satisfy Conditions (i)—(iii) of Theorem 2.1} however, do not
satisfy (iii) of Theorem .11

Remark 1 The sequence {t,} is

1 1r1r 11 1 11 1 1 1 1 1 1 1 1

+ vy st st sy st st st oo s st o
427227 2 44722 0 457 237 2 477 22 487 23 0 497 247 2 4l

)

| =
N —

Proof We note thatifn = m (m+1)/2 for some m € N, then g(n) = m. It is obvious
that conditions (i) and (ii) of Theorem 2T hold. Since 27" is a cluster point of {#,}
for every v € N, we have

Sm(m+1)/2 = hm inf|t]- —tm (m+l)/2| = hrn inf\t]- — 2—m| =0
j—o0 j—oo

for all m € N. Hence Theorem [£1Jiii) does not hold. Let us prove condition (iii) of
Theorem[2] Fix 7 € [0, 00). We consider the following three cases:
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e7=0
e 7 =2""forsomer € N
e otherwise

In the first case, we have

—2n 472 n 472 n
< lim

m
n—oo 28N — y oo 2—n

lim = lim =0.

n—o0o tn — T n— 00 n

In the second case, considering the two cases of g(n) < v and g(n) > v, we have
|ty — 7] > min {477, 27" — 47"
forn € Nwithn > v (v +1)/2. Hence

a 47211
lim —2— < lim - =0.
n—oco [t, — 7| = n—cc min {4—”, 2—v=l — 4_”}

In the third case, we have

. o lim, 42" 0
lim < — = — =0.
n—oo |t, — 7| ~ liminf, [, — 7|  liminf, |t, — 7|
Therefore condition (iii) of Theorem[2.Ilholds. [ |

Finally we study Condition (iii) of Theorem[2.Ilmore deeply.

For an arbitrary set A, we denote by #A the cardinal number of A. For a subset A
of a topological space, we also denote by A the derived set of A. That is, x € A? if
and only if x belongs to the closure of A \ {x}. We recall that A is dense in itself if
A C A% We define A? by

AP = J{B C A: Bis dense in itself}.

AP is called the perfect kernel of A. A is called scattered if AP = &. We know that A? is
perfect under the relative topology for A. We also know that A \ A? is scattered, that
is, A can be written as the union of two disjoint sets, one perfect, the other scattered.
See [8,16].

Let « be an ordinal number. We denote by a* and a~ the successor and the
predecessor of «, respectively. We recall that « is isolated if o~ exists. « is limit if ™
does not exist.

Proposition 4.2 Let A be a subset of a topological space. Let y be an ordinal number
with iy > A and iy > N. Put D = {o : a < ~v}. Define a net {A, }acp of subsets of
Aby
A ifaa =0,
Ao = Ag- N(A-Y  ifaisisolated,
N{Ap: B <a} ifaislimit.
Then A, = AP holds.
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Proof It is obvious that &« < [ implies A3 C A,. We can easily show by transfinite
induction A? C A, because A? C Bimplies A’ C BN B?. Arguing by contradiction,
we assume A? G A,. Since AP & B C A implies BN B G B,wehave Ay G A,.

Thus
tv=Ha: a<qy}=Ha: a <y}
=t{a: a <7, aisisolated}
<t HAa- \ Au : a <7, aisisolated}
=f§(A\A,)) <A,
which contradicts A < #v. Therefore we obtain A, = A®. ]

Proposition 4.3 Let {t,} be a real sequence and put A = {t, : n € N}. Then the

following are equivalent:

(i)  There exists a sequence { v, } of positive real numbers satisfyinglim,, o, /(t,—7) =
OforallT € R.

(ii) A isscattered, and f{n:t, = 7} < oo forall T € R.

Remark 2 1If {r,} satisfies the assumption of Theorem [4.] then A is obviously
scattered.

Proof In order to show (i) implies (ii), we assume that (ii) does not hold and let
{@,} be a sequence of positive real numbers. In the case where §{n : 1, = 7} = c©
for some 7 € R, it is obvious limsup, o, /(t, — 7) = 0o. So we consider the other
case where AP # @. We first choose f(1) € N such that t¢;) € AP, and put B, =
(tray — afqay, tra) + o). Then from tfp) € (AP)4, we have §(AP N B;) = co. So we
can choose f(2) € Nsuch that f(2) > f(1) and ts) € A? N B;. We put

B, =B N (tf(z) —QfR),tfa) T Ozf(z)).

Then since t¢) € (AP), we have (AP N B,) = co. So we can choose f(3) € N
such that f(3) > f(2) and 73 € AP N B,. Continuing this argument, we have
a subsequence {f(n)} of {n} and a sequence {B,}°°, of nonempty open intervals
satisfying

*B DB, DB;D -

* B, C [tf(n) — Oy, Efm) + Oéf(n)] foralln € N.

So {[tfm) — fmstsm + fu]} has the finite intersection property. Hence there
exists 7 € R such that 7 € (2, [t () — ¥f(n)» tf(m) + Q). Then we have

o
lim sup > lim sup W~

n— 00 ‘tn_7—| n— 00 ‘tf(n)_7—| -

Therefore (i) does not hold in both cases. We have shown (i) implies (ii). Let us prove
(ii) implies (1). We assume (ii). Let v be an ordinal number with §y = §R and put
D = {a: a < ~}. Define a net {A, }oep of subsets of A as in Proposition @2l By
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Proposition A, = @ holds. So we can define a function x from N into D such
that
t, € Aﬁ(n) and t, g An,(n)*-

Define a function ¢ from N into (0, co] by
d(n) = 1inf{jt, —s| : s € Auy \ {ta}},

where inf @ = co. We note d(n) > 0 because t,, & A,(,)+. We choose a real sequence

{a,} satisfying
0<a,<dn)/n and o, < .

Fix 7 € Rand ¢ > 0. Then there exists v € N such that 2/v < e. It is obvious that
n > v implies 2cv, /e < §(n). We shall show

sm>n>v,a,/|ty — 7| > €, a/|tm — 7| > € and t,, # t, imply k(m) < k(n).

Arguing by contradiction, we assume (m) > r(n). Then since t,, € Ay(m \ {t.}, we
have
th — tm| > 0(n) > 2ay/e.

Since «,, < ay;, we have
2ap/e < |ty —tw| < |ta — 7|+ |tm — 7| < @n/e + am/e < 2an/e,

which is a contradiction. Therefore we have shown x(m) < rk(n). Since there does
not exist a strictly decreasing infinite sequence of ordinal numbers, we have

H{neN:a,/|ty— 7| > e} < 0.

Since & > 0 is arbitrary, we obtain lim, «,/|t,, — 7| = 0. [ |
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