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ON THE DAVISON CONVOLUTION
OF ARITHMETICAL FUNCTIONS

BY
PENTTI HAUKKANEN

ABSTRACT. The Davison convolution of arithmetical functions f and g
is defined by (fog)(n) = Zdlnf(d)g(n/d)K(n,d), where K is a complex-
valued function on the set of all ordered pairs (n, d) such that n is a positive
integer and d is a positive divisor of n. In this paper we shall consider
the arithmetical equations f) = g, f) = fg, fog = hin f and the
congruence (f o g)(n) = 0 (mod n), where f(’ ) is the iterate of f with
respect to the Davison convolution.

1. Introduction. Let K be a complex-valued function on the set of all ordered
pairs (n,d) such that n is a positive integer and d is a positive divisor of n. Then the
K-convolution of arithmetical functions f and g is defined by

(fog)m) =Y f(den/d)K(n,d).

dln

The concept of the K-convolution originates to Davison [3]. In the case in which
K (n,d) depends only on the g.c.d. (d,n/d) the concept is due to Gioia and Subbarao
([9], see also [8]). For further study of K-convolutions we refer to [4], [S], [7] and
[14].

An arithmetical function f is said to be quasi-multiplicative [12] if f(1) # 0 and

fQO)f(@mn) = f(m)f (n) whenever (m,n) = 1.

A quasi-multiplicative function is said to be multiplicative if f(1) = 1. It is easy to
see that an arithmetical function f with f(1) # 0 is quasi-multiplicative if, and only if,
f/f (1) is multiplicative. Rearick [16] defined an arithmetical function f to be semi-
multiplicative if there exist a non-zero complex-number ¢, a positive integer a; and
a multiplicative function f’ such that

f(m) = cf '(n/ay).
Clearly semi-multiplicative functions with a; = 1 are quasi-multiplicative.
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It is known ([3], [7], [14]) that the set of multiplicative functions forms an Abelian
group with identity with respect to the K-convolution if, and only if,
(a) K(n,n) = K(n,1) =1 for all n,
(b) K(mn,de) = K(m,d)K(n,e) for all m,n,d, e such that d|m,e|n,(m,n) =1,
(c) K(n,d)K(d,e) = K(n,e)K(n/e,d/e) for all n,d, e such that d|n, e|d,
(d) K(n,d) = K(n,n/d) for all n,d with d|n.
For example, a regular convolution due to Narkiewicz [15] satisfies (a)-(d). If K =1,
we obtain the well-known Dirichlet convolution, which is regular and satisfies (a)—(d).
Further, if K = U, defined by U (n,d) = 1 for d|n with (d, n/d) = 1, and O otherwise,
then we obtain the unitary convolution [2], which is also regular and satisfies (a)—(d).
Throughout this paper K is an arbitrary but fixed convolution satisfying (a)—(d).
The rth K-iterate of an arithmetical function f is defined by

f =fo---of (r factors ).
Clearly

fOm= 37 fanf@).. f@)Kna)K .. .ar,a).. K@ 1ar,a0).

ayay...a,=n

The inverse of an arithmetical function f with respect to the K-convolution is defined
by
fof TV =fVof =K,

where Ey(1) = 1, Ey(n) = O for n > 1. The inverse exists and is unique if, and only
if, f(1) # 0 (see [3]).

In this paper we consider the arithmetical equations f) = g, f") = fg, fog =h
in f and the congruence (f o g)(n) = 0 (mod r). For the arithmetical equations we
need the concepts given in the following preliminaries.

2. Preliminaries. We define an arithmetical function f to be quasi-K-multiplica-
tive if f(1) # 0 and

f@fn/dK(n,d) = f(1)f(n)K(n,d) for all d|n.

If, in particular, f(1) = 1, we say f to be K-multiplicative. It is easy to see that an
arithmetical function f with f(1) # 0 is quasi-K -multiplicative if, and only if, f /f(1)
is K-multiplicative. If K is the Dirichlet convolution, then K-multiplicative functions
are completely multiplicative functions. Moreover, if K is a regular convolution due
to Narkiewicz [15], we obtain the concept of multiplicativity due to Yocom [19].

For an arithmetical function f with f(1) = 1 we define (cf. [6]) a logarithm operator
by

(o)

—1 r+1 )
(logf)(n) = (Z( v —Eo>">) ().

r
r=1
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Further, for an arithmetical function f with f(1) = 0 we define (cf. [6]) an exponential
operator by

1
(expf)(n) = (Eo D f(’)) (n).
r=1

Note that for each »n the above sums are finite.
It can be proved (cf. [6]) that

(1) log(f 0 g) =logf +logg
and
2 logf = g if, and only if, f =expg.

It can also be proved that

3 log(fg) = g(log f)

for all K-multiplicative functions g. In fact, (log(fg))(1) = g(1)(logf)(1) = 0 and for

n>1
e (_1)r+l
log(fg)(m) =Y —"— D (f)dy)...(fe)dy)
r=1 d..d,=n
d],“.,dﬁél

X K(n,d)K(dy...dr,dr) ... K(dr—1dr,dr_1)

0 qyr+l
=S8 @)
r=1

r
d1...dr='l
dlv---vdr#l

x K(n,d)K(d,...d,,dy).. K(d,—1d,,dr_1)g(d, ...d})
= g(n)(log f)(n).

3. Arithmetical equations.

THEOREM 1. Suppose f is an arithmetical function such that f(1) = 1. Then f is
multiplicative if, and only if, f is multiplicative.

Proor. If f is multiplicative, then £ is multiplicative by (b). Conversely, suppose
f is multiplicative. Then we proceed by induction on mn to prove that f(mn) =
f(m)f(n) whenever (m,n) = 1. If mn = 1, the statement holds. Assume it holds for
a,b with a < m, b < n, (a,b) = 1. We may omit the trivial case m = 1 or n = 1.
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Thus
fO(mn) = Z Z f(aiby)...f(a-b,)K(mn,a\b;)K(azb; ...a,b,,abs)

ay..a,=mby..b,=n

X... K(ar—lbrAIGrbry arAlbr—l)

= > fa)...f(a)K(m,a)K(a,...ar,a))...K(@r1ar,a,-1)

xS f®1)...fGIKNbK (b2 by by) ... K(b—1by,b,—1)
by...b,=n

— r(fQ" X (m)f (n) + rf (1)~ 'f (mn)
=fOm)fO(n) + r(f (mn) — f (m)f (n)).

As fO(mn) = fO(m) £ (n), we have f(mn) = f(m)f(n). Thus f is multiplicative and
the proof is complete.

Remark 1. Using Theorem 1 we can easily see that if f is an arithmetical func-
tion such that f(1) # 0, then f is quasi-multiplicative if, and only if, f is quasi-
multiplicative.

It can be shown that if f is semi-multiplicative, then f) is semi-multiplicative or
identically zero. Conversely, if £ is semi-multiplicative, then f is not necessarily
semi-multiplicative. Take, for example, K = U, r = 2, f(1) =0, f(2) = f(3) = 1,
f(n) = 0 for n = 4. Then f@(6) = 2, fP(n) = 0 for n # 6. Hence f is not semi-
multiplicative but £ is semi-multiplicative.

THEOREM 2. Suppose g is a fixed arithmetical function such that g(1) # 0. Then the
equation f) = g has exactly r solutions in f. If fy is one solution, then all solutions
are given by

C)) f=uwifo,i=12,...,r,
wi,wy,...,w, being the rth roots of unity. One solution can be found by
5) fo(n) = g()'/" {expl(1/r)log(g /g (IN1}(m).

The equation has a multiplicative solution if, and only if, g is multiplicative, in which
case only one solution is multiplicative.

Proor. Clearly
=g,
that is,
f(1) =wz for some i = 1,2,...,r,
z being an rth root of g(1). Further, the values f(n),n 2 2, can be found inductively
b
Ly e > f@d)...f(d)

dy..d,=n
dy,...,dr#n

x K(n,d\)K(d, ...d,,d>)...K(d,—\d,,d,_1) = g(n).
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So we deduce (4).

In proving (5) assume firstly that g(1) = 1. Then there is a solution fy for which
fo(1) = 1. By (1), r(log fo) = log g. Thus, by (2),
(6) fo=exp[(1/r)logg].

Now, consider the general case g(1) # 0. Then (g/g(1))(1) = 1 and hence applying
(6) proves (5).

The results concerning multiplicative functions follow now easily by Theorem 1.
This completes the proof.

ReMArk 2. Theorem 2 can easily be extended to quasi-multiplicative functions as
follows: The equation ) = g has a quasi-multiplicative solution if, and only if, g
is quasi-multiplicative, in which case all the r solutions are quasi-multiplicative. By
Remark 1 this is not valid for semi-multiplicative functions.

THEOREM 3. Suppose g is a fixed quasi-K -multiplicative function such that g(n) #
rg(1) for all n. Then the equation f = fg has r — 1 solutions f such that f(1) # 0.
The solutions are given by

f =)/ VE,

ProoF. At first, assume f(1) = g(1) = 1. Then, by (1) and (3), r(logf) = g(logf)
or (logf)(n)(g(n) —r) = 0 for all n. Thus (logf)(n) = O for all » and consequently,
by (2), f = Eo.

Now, consider the general case: f(1),g(1) # 0. Then (f/f(l))(l) = (g/g(l))(l) =
1 and hence we have f /f (1) = Ey. So we can deduce the result.

THEOREM 4. Suppose g and h are fixed and g(1) # 0. Then the equation f og = h
has a unique solution given by
o) f=hog™h.
If g and h are quasi-multiplicative, then the solution f is quasi-multiplicative. If, in
addition, h(1) / g(1) = 1, then the solution f is multiplicative.

Proor. Each arithmetical function g with g(1) # O has a unique inverse with
respect to the K-convolution. Hence we have (7). Further, suppose g and h are quasi-
multiplicative. We shall prove that f is quasi-multiplicative. As (fog)(1) = f(1)g(1) =
h(1)# 0 and g(1) # 0, so (1) # 0. We are to prove still that

® F)f(mn) = f(m)f(n),
whenever (m,n) = 1. Suppose (8) holds for d|m, e|n with de # mn. Then

h(1)h(mn) = (f o )A)(f o g)(mn) = f(1)g(1) Y ) " f(de)g(mn/(de))K (mn, de)

dlm e|n

=Y f(dg(m/d)K(m,d) ) " f(e)g(n/e)K(n,e)

dlm eln
—f(m)f(m)g(1)* + (1) f (mn)g (1)
= h(m)h(n) — f (m) f (g (1)* +£(1) f (mn)g (1)>.
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As h(Dh(mn) = h(m)h(n) and g(1) # 0, we obtain (8) and hence f is quasi-
multiplicative. If, in addition, h(l)/ g(1) = 1, then f(1) = 1 and consequently f is
multiplicative. This completes the proof.

RemArk 3. If f o g = h and g,h are semi-multiplicative, f is not necessarily
semi-multiplicative. Take, for example, K = U, f(2) = f(3) = 1, f(n) = 0 for
n#2,3,8(3)=1,g(n) =0 for n# 3,h(6) = 1,h(n) = 0 for n# 6.

REMARK 4. For material relating to arithmetical equations of the types of this paper
we refer to [1], [11] and [18] which consider the Dirichlet convolution and the unitary
convolution. In [10] the exponential convolution is considered.

4. A congruence.

THEOREM 5. Suppose f(n), g(n) and K(n,d) are integral valued functions and f (n)
is multiplicative. Then the congruence

©) (f 0 &)(n) =0 (mod n)

holds for all positive integers n if, and only if,

(10) 2 S @8 mKp*,p') = 0 (modp*)
i=0

for all primes p and positive integers a,m with (p,m) = 1.
Proor. Suppose (10) holds. To prove (9) we can clearly assume n > 1. Then denote
n = p°m, where a 2 1, (p,m) = 1. By (b) and the multiplicativity of f we obtain

a

(fog)m =Y fKmd) Y fPgp*'m/dKp®,p).

dlm i=0

By (10) the inner sum = 0 (modp?). Thus using a similar argument for each prime
divisor of n we have (9).

Conversely, suppose (9) holds. Taking n = p®m, where (p, m) = 1, we have by (b)
and the multiplicativity of -1

g(p°m) =Y (f 0 )df " (n/d)K (n,d)

d|n
a .
= O HKE,P) D (f 0 )P d) f D m/d)K (m, d).
i=0 dlm
Now, applying the above identity, items (c) and (d) and equation (9) we obtain

D @Y T mKE®,p) =Y (f 0 g)p*d)f " m/d)K (m,d)

i=0 d|lm
= 0 (mod p%),
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that is, we obtain (10). This completes the proof.

REMARK 5. Subbarao [17] has proved Theorem 5 in the case of the Dirichlet con-
volution. He also briefly recounted the history of the present congruence type. Since
Subbarao the present congruence type has been studied by Hanumanthachari [10] and
McCarthy [13] in the cases of the exponential convolution and the unitary convolution,
respectively. '
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