
Canad. Math. Bull. Vol. 32 (4), 1989 

ON THE DAVISON CONVOLUTION 
OF ARITHMETICAL FUNCTIONS 

BY 

PENTTI HAUKKANEN 

ABSTRACT. The Davison convolution of arithmetical functions/ and g 
is defined by (fog)(n) = YÏ,d\nf(d)g(n/d)K(n,d), where A' is a complex-
valued function on the set of all ordered pairs («, d) such that « is a positive 
integer and J is a positive divisor of n. In this paper we shall consider 
the arithmetical equations / ( r ) = g, / ( r ) = fg, f o g = h i n / and the 
congruence ( / o g)(n) = 0 (mod n), where / ^ is the iterate of/ with 
respect to the Davison convolution. 

1. Introduction. Let K be a complex-valued function on the set of all ordered 
pairs (rc, d) such that « is a positive integer and d is a positive divisor of n. Then the 
#-convolution of arithmetical functions / and g is defined by 

if o g)(n) = Y.fi^gin/dWin, d). 
d\n 

The concept of the ^-convolution originates to Davison [3]. In the case in which 
K(n, d) depends only on the g.c.d. (J, n/d) the concept is due to Gioia and Subbarao 
([9], see also [8]). For further study of K-convolutions we refer to [4], [5], [7] and 
[14]. 

An arithmetical function/ is said to be quasi-multiplicative [12] i f / ( l ) ^ 0 and 

f(l)f(mn) =f(m)f(n) whenever (w, n) = 1. 

A quasi-multiplicative function is said to be multiplicative i f / ( l ) = 1. It is easy to 
see that an arithmetical function/ with/(l) ^ 0 is quasi-multiplicative if, and only if, 
/ / / ( l ) is multiplicative. Rearick [16] defined an arithmetical function/ to be semi-
multiplicative if there exist a non-zero complex-number c/, a positive integer af and 
a multiplicative function f such that 

/(/!) = cff
f(n/af). 

Clearly semi-multiplicative functions with af = 1 are quasi-multiplicative. 
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It is known ([3], [7], [14]) that the set of multiplicative functions forms an Abelian 
group with identity with respect to the ^-convolution if, and only if, 
(a) K(n, n) = K(n, 1) = 1 for all /i, 
(b) K(mn1 de) — K(m, d)K{n, e) for all m, AZ, d, e such that d\m,e\n, (m, n) — 1, 
(c) K(n,d)K(d,e) = K(n,e)K(n/e,d/e) for all n,d,e such that d\n,e\d, 
(d) K(n,d) = K(n,n/d) for all n,d with d\n. 
For example, a regular convolution due to Narkiewicz [15] satisfies (a)-(d). If K = 1, 
we obtain the well-known Dirichlet convolution, which is regular and satisfies (a)-(d). 
Further, if K = U, defined by U(n, d) — 1 for d\n with (d, n/d) = 1, and 0 otherwise, 
then we obtain the unitary convolution [2], which is also regular and satisfies (a)-(d). 

Throughout this paper K is an arbitrary but fixed convolution satisfying (a)-(d). 
The rth AMterate of an arithmetical function / is defined by 

y(r) — y o • • • o / (r factors ). 

Clearly 

f{r\n) = ] P f(a\)f(a2).. .f(ar)K(n,a\)K(a2 . ..ar,a2). ..K(ar-\ar,ar-i). 
a\d2...ar=n 

The inverse of an arithmetical function/ with respect to the /f-convolution is defined 
by 

/ o / ( - , ) = / ( - 1 ) o / = £0 , 

where £o(l) = 1, Eo(ri) = 0 for n > 1. The inverse exists and is unique if, and only 
i f , / ( l ) ^0 ( see [3 ] ) . 

In this paper we consider the arithmetical equations/(r) = g , / ( r ) =fg,f°g = h 
in / and the congruence ( / o g)(n) = 0 (mod n). For the arithmetical equations we 
need the concepts given in the following preliminaries. 

2. Preliminaries. We define an arithmetical function / to be quasi-A^-multiplica­
tive i f / ( l ) ^ 0 a n d 

f(d)f(n/d)K(n1d) =f(l)f(n)K(nJd) for all d\n. 

If, in particular, / ( l ) = 1, we say / to be £-multiplicative. It is easy to see that an 
arithmetical function/ with/(l) ^ 0 is quasi-^-multiplicative if, and only i f , / / / ( l ) 
is ^-multiplicative. If K is the Dirichlet convolution, then ^-multiplicative functions 
are completely multiplicative functions. Moreover, if K is a regular convolution due 
to Narkiewicz [15], we obtain the concept of multiplicativity due to Yocom [19]. 

For an arithmetical function/ with/(l) = 1 we define (cf. [6]) a logarithm operator 
by 

f °° r—iY+1 A 
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Further, for an arithmetical function/ with/(l) = 0 we define (cf. [6]) an exponential 
operator by 

(exp/)(*)= | £o + f ] ^ / ( r ) ) (/i). 

Note that for each n the above sums are finite. 
It can be proved (cf. [6]) that 

(1) log( /og) = log/ + logg 

and 

(2) log/ = g if, and only if, / = expg. 

It can also be proved that 

(3) log(fg) = g(\ogf) 

for all Â'-multiplicative functions g. In fact, (log(/g))(l) = g(l)(log/)(l) = 0 and for 
n> 1 

00 (_iy+ 1 

log(fg)(n) = Y,^j— E (f8)Vi)...(fg)(dr) 
r=\ d\...dr=n 

x K(n, d\)K(d2 ...dr,d2)... K(dr-\dr, dr-\) 
00 / i y + i 

r=\ d\...dr—n 
du...4r^ 

xK(n,dl)K(d2...dr,d2)...K(dr-ldr,dr„l)g(dl...dr) 

= g(n)(\ogf)(n). 

3. Arithmetical equations. 

THEOREM 1. Suppose f is an arithmetical function such that f(1) = 1. Then f^ is 
multiplicative if, and only if f is multiplicative. 

PROOF. If/ is multiplicative, then/ ( r ) is multiplicative by (b). Conversely, suppose 
/ ( r ) is multiplicative. Then we proceed by induction on mn to prove that f(mn) = 
f(m)f(n) whenever (m, n) = 1. If mn = 1, the statement holds. Assume it holds for 
a,b with a < m, b < n, (a,b) = 1. We may omit the trivial case m = 1 or n — 1. 
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Thus 

f{r\mn)= ] T ] T f(albi)...f(arbr)K(mn,albi)K(a2b2...arbr,a2b2) 
a\...ar—mb\...br=n 

x ...K(ar-ibr-iarbnar-\br-i) 

= ^2 f(a\) •. .f(ar)K(m, ai)K(a2 ...ar,a2)... K(ar-\an ar-\) 
a\...ar—m 

x Y, f(bl)...f(br)K(n,bl)K(b2...br,b2)...K(br-lbnbr-l) 
b\...br=n 

- r(f(l))2r-2f(m)f(n) + rf(l)r-lf(mn) 

= f{r\m)f{r\n) + r(f(mn) -f(m)f(n)). 

As f(r\mri) = /(r)(m)/(r)(w), we have/(m«) =f(m)f(ri). Thus/ is multiplicative and 
the proof is complete. 

REMARK 1. Using Theorem 1 we can easily see that if/ is an arithmetical func­
tion such that / ( l ) ^ 0, then/ ( r ) is quasi-multiplicative if, and only if,/ is quasi-
multiplicative. 

It can be shown that if/ is semi-multiplicative, then/ ( r ) is semi-multiplicative or 
identically zero. Conversely, if / ( r ) is semi-multiplicative, then / is not necessarily 
semi-multiplicative. Take, for example, K — U, r = 2 , / ( l ) = 0,/(2) = /(3) = 1, 
f(n) = 0 for n ^ 4. Then / (2)(6) = 2, f{2\n) = 0 for n ^ 6. Hence / is not semi-
multiplicative but/ ( r ) is semi-multiplicative. 

THEOREM 2. Suppose g is a fixed arithmetical function such that g(l) ^ 0. Then the 
equation f^ — g has exactly r solutions inf. Iffo is one solution, then all solutions 
are given by 

(4) / = o;//o,i = l , 2 , . . . , r , 

uj\, a>2,..., ^r &e/wg f/ie rf/i r<9<9te o / ww/fy. One solution can be found by 

(5) fo(n) = g(l)l'r{txp[(l/r)\og(g/g(l))]}(n). 

The equation has a multiplicative solution if and only if g is multiplicative, in which 
case only one solution is multiplicative. 

PROOF. Clearly 

f(D = g(l)l/r, 
that is, 

/ ( l ) = LJtz for some / = 1,2,..., r1 

z being an rth root of g (I). Further, the values/(«), n ^ 2, can be found inductively 

r(f(DY'lf(n)+ J2 f(dx)...f{dr) 
d\...dr—n 
d\,...,drîÉn 

xK(n,di)K(d2...dr,d2)...K(dr-idndr-i) = g(ri). 
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So we deduce (4). 
In proving (5) assume firstly that g (I) = 1. Then there is a solution /0 for which 

/o(l) = 1. By (1), r(log/0) = logg. Thus, by (2), 

(6) /o = exp[(l/r)logs]. 

Now, consider the general case g (I) ^ 0. Then (g/g(l))(l) = 1 and hence applying 
(6) proves (5). 

The results concerning multiplicative functions follow now easily by Theorem 1. 
This completes the proof. 

REMARK 2. Theorem 2 can easily be extended to quasi-multiplicative functions as 
follows: The equation / ( r ) = g has a quasi-multiplicative solution if, and only if, g 
is quasi-multiplicative, in which case all the r solutions are quasi-multiplicative. By 
Remark 1 this is not valid for semi-multiplicative functions. 

THEOREM 3. Suppose g is a fixed quasi-K-multiplicative function such that g(n) ^ 
rg(l) for all n. Then the equation f^ =fg has r — 1 solutions f such that f (I) ^ 0. 
The solutions are given by 

f = (g(D)l/(r-l)E0. 

PROOF. At first, assume/(l) = g(l) = 1. Then, by (1) and (3), r(logf) = g(log/) 
or (logf)(n)(g(n) — r) — 0 for all n. Thus (log/)(n) = 0 for all n and consequently, 

by(2) , / = £0. 
Now, consider the general case:/(l) ,g(l) ^ 0. Then (///(1))(1) = fe/g(l))(l) = 

1 and hence we have/"//*( 1) = EQ. SO we can deduce the result. 

THEOREM 4. Suppose g and h are fixed and g(l) ^ 0. Then the equation f o g = h 
has a unique solution given by 

(7) f = hog(-l\ 

If g and h are quasi-multiplicative, then the solution f is quasi-multiplicative. If in 
addition, h(l)/g(l) = 1, then the solution f is multiplicative. 

PROOF. Each arithmetical function g with g (I) ^ 0 has a unique inverse with 
respect to the #-convolution. Hence we have (7). Further, suppose g and h are quasi-
multiplicative. We shall prove that/ is quasi-multiplicative. As (/og)(l) = / ( l )g ( l ) = 
A(l) ^ 0 and g (I) ^ 0, so / ( l ) ^ 0. We are to prove still that 

(8) f(l)f(mn)=f(m)f(n), 

whenever (m, n) = 1. Suppose (8) holds for d\m,e\n with de ^ mn. Then 

h(\)h(mn) = (f o g)(l)(f o g)(mn) = / ( l ) g ( l ) ^ J ] / ( ^ ^ ( m A z / ( ^ ) ) ^ ( ^ , ^ ) 
d\m e\n 

= 53/(rf)*(«/rf)«:(in, d) J2f(e)g(n/e)K(n, e) 
d\m e\n 

-f{m)f{n)g{\)2 +f(l)f(mn)g(l)2 

= h{m)h(n) -f(m)f(n)g(l)2 +/(l)/(mn)g(l)2 . 
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As h(\)h(mn) = h(m)h(n) and g (I) ^ 0, we obtain (8) and hence / is quasi-
multiplicative. If, in addition, h(l)/g(l) — 1, then/( l ) = 1 and consequently/ is 
multiplicative. This completes the proof. 

REMARK 3. If / o g — h and g, h are semi-multiplicative, / is not necessarily 
semi-multiplicative. Take, for example, K = U, /(2) = /(3) = 1, f(n) = 0 for 
n ± 2,3,g(3) = \,g(n) = 0 for n ± 3, h(6) = 1, h(n) = 0 for n ^ 6. 

REMARK 4. For material relating to arithmetical equations of the types of this paper 
we refer to [1], [11] and [18] which consider the Dirichlet convolution and the unitary 
convolution. In [10] the exponential convolution is considered. 

4. A congruence. 

THEOREM 5. Suppose f(n),g(ri) and K(n,d) are integral valued functions and f(n) 
is multiplicative. Then the congruence 

(9) (fog)(n) = 0(modn) 

holds for all positive integers n if and only if 

a 

(10) ^fip^gip^mWip^p1) = 0 (rnodp*) 
z'=0 

for all primes p and positive integers a, m with (p,m) = 1. 

PROOF. Suppose (10) holds. To prove (9) we can clearly assume n > 1. Then denote 
n = pam, where a ^ 1, (p, m) = 1. By (b) and the multiplicativity of/ we obtain 

a 

(fog)(n) = Y.fi^Kim.d^fiP^giP^^/dWip^p1). 
d\m i=0 

By (10) the inner sum = 0 (modpa). Thus using a similar argument for each prime 
divisor of n we have (9). 

Conversely, suppose (9) holds. Taking n = pam, where (p,m) — 1, we have by (b) 
and the multiplicativity of/(_1) 

g(pam) = J2(f°g)W(-l\n/d)K(n1d) 
d\n 

a 

= £ / ( ~ V"1")*(PV) YJV ° gWVf^im/dWim, d). 
i=0 d\m 

Now, applying the above identity, items (c) and (d) and equation (9) we obtain 
a 

YjfWsW^Kip0,?) = J2(f ° g)(pad)f(-l\m/d)K(m,d) 
/=0 d\m 

= 0 (mod/?"), 
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that is, we obtain (10). This completes the proof. 

REMARK 5. Subbarap [17] has proved Theorem 5 in the case of the Dirichlet con­
volution. He also briefly recounted the history of the present congruence type. Since 
Subbarao the present congruence type has been studied by Hanumanthachari [10] and 
McCarthy [13] in the cases of the exponential convolution and the unitary convolution, 
respectively. 
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