
ON THE SYMMETRIES OF SPHERICAL HARMONICS 

BURNETT MEYER 

INTRODUCTION 

Let © be a finite group of transformations of three-dimensional Euclidean 
space, such that the distance between any two points is preserved by all trans­
formations of the group. Such a group is a group of orthogonal linear trans­
formations of three variables, or, geometrically speaking, a group of rotations 
and rotatory inversions. Thirty-two groups of this type are important in 
crystallography and are known as the crystallographic classes. 

A function is said to have the symmetry of a given group if it remains invariant 
under all transformations of the group. Our problem is to determine all spherical 
harmonics of a given degree m and a given symmetry. It is sufficient to find a 
basis of these harmonics for all m and for all groups ©. 

Section I of this paper enumerates and classifies all groups of the desired 
type. In §11 we find the number of elements in a basis of all homogeneous 
polynomials of a given degree which have a given symmetry, applying a theorem 
of Molien. 

In §111 we find the number of elements in a basis of all spherical harmonics 
of a given degree which have a given symmetry. This is accomplished by 
associating with each group a generating function. 

In §IV we solve the problem proposed, using the results of §111. The required 
basis is found in terms of partial derivatives of 1/r, r denoting the distance from 
the origin. For certain simpler symmetries the basis is also expressed in terms 
of the associated Legendre functions. 

A particular case of this problem arose and was solved in another research 
problem, the aim of which was to compute approximately the electrostatic 
capacity of the cube (12, pp. 76-78). In generalizing this particular case, we 
were led to our results which were announced, without proof, in two notes 
(10; 11). 

Work in this problem has been done previously by Poole (13), Laporte (7), 
Bethe (1), Ehlert (4), and Hodgkinson (6), and recently by Stiefel (15). 
For the geometrical and algebraic background see Molien (9) and the biblio­
graphies in Coxeter (3a) and Speiser (14). 

The present paper differs in two respects from preceding work on the subject. 
First, all groups are treated in a uniform manner, whereas previous papers 
are restricted to certain groups. Second, the generating function of §111 enables 
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136 BURNETT MEYER 

us to discuss fully the question of linear independence and to link the subject to 
general theorems of group theory and analysis. 

The major portion of this paper consists of material contained in the doctoral 
dissertation of the author. He wishes to thank Professor George Pôlya for 
suggesting the problem and for his helpful guidance. In addition, some results 
are presented which were obtained recently by Professor Pôlya and by the 
author. 

I. GROUPS 

1. Rotations and rotatory inversions. The purpose of this section is to 
enumerate and classify all finite groups of distance-preserving transformations 
of three-dimensional Euclidean space into itself which leave one point fixed. 
The elements of such groups are either rotations or rotatory inversions. A rotatory 
inversion is a rotation followed by central symmetry with respect to a point 
on the axis of rotation. 

Without loss of generality the origin may be chosen as the fixed point. Our 
problem may then be restated in algebraic form: We seek all finite groups of 
orthogonal linear transformations in x, y, and z. 

The matrix of a rotatory inversion may be written JR, in which 

and R is a rotation. We sometimes use the term "rotatory inversion with angle 
0." This means a rotation through angle 0, followed by central symmetry with 
respect to the origin. 

2. Three types of finite groups. For proofs of statements in this section, 
see Weyl (17, pp. 77-80, 149-156). 

(a). Type 1: Groups consisting of rotations only. We first consider groups, 
all the elements of which are rotations. It has been proved by Felix Klein that 
there are only five classes of groups of this type. They are (Sw, 3 \ , SE, O, and 3 , 
the cyclic, dihedral, tetrahedral, octahedral, and icosahedral groups, respectively. 
In the following paragraphs we will indicate how the rotational axes of each 
group are to be placed with respect to the x, y, and z axes. 

For the group 6TC, the w-fold axis will be taken as the s-axis. 
For 3X, the w-fold axis will also be the s-axis and one of the 2-fold axes will 

be the x-axis. 
All rotations of the group D transform a cube (or a regular octahedron) 

into itself. In this paper the cube will be placed with its centre at the origin 
and with its faces parallel to the coordinate planes. 

The tetrahedral group, £ , consists of the rotations which transform a regular 
tetrahedron into itself. The tetrahedron will be placed so that its 3-fold axes 
coincide with the 3-fold axes of O, and the 2-fold axes will be taken as the 
coordinate axes. 
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The icosahedral group, 3 , consists of the rotations which transform a regular 
icosahedron (or a regular dodecahedron) into itself. We shall place the icosa-
hedron, as explained in Coxeter (3 , pp. 52-53), with its centre a t the origin, 
and the coordinate axes passing through the midpoints of opposite edges in 
such a way tha t the edges through which the x-axis passes are parallel to the 
y-axis. 

(b). Groups containing rotatory inversions. There are two types of groups 
containing rotatory inversions. 

The groups of Type 2 are those with a centre of symmetry and are obtained 
by adjoining / to a group of Type 1. If g is the order of a rotational group ®, 
then 2g is the order of ®*, the group of Type 2 derived from @. The groups of 
Type 2 are (Sni, ®n«, %u ©<, and 3?*. 

The groups of Type 3 are derived from a rotational group ®2, which has a 
subgroup, ®i, of index 2. We denote by ®i[®2 the group consisting of the 
rotations of ®i and all elements of the form JR, R being a rotation in ®2 bu t 
not in ®i. 

3. Crystallographic classes. All finite groups of distance-preserving 
transformations have been enumerated in the preceding section. Certain of 
these groups are important in crystallography and are known as the crystallo­
graphic classes. The transformations in such groups must not only be distance-
preserving but they must also transform a point lattice into itself. I t can be 
shown (17, pp. 98-104) tha t of the groups previously discussed only those 
having all their axes of rotation or rotatory inversion of orders 2, 3, 4, and 6 
are crystallographic classes. There are thirty-two such groups. 

I I . INVARIANT POLYNOMIALS 

1. The generating function of Molien. Let ® be one of the finite groups 
of orthogonal linear transformations in x, y, and z discussed in §1. Given a 
non-negative integer w, we consider those homogeneous polynomials of degree 
m which have the symmetry of ®; tha t is, they are invariant with respect to 
all transformations of ®. We define an invariant basis of degree m for ® as a 
finite subset of these polynomials, the elements of which are linearly independent 
bu t on which all other invariant polynomials of degree m are linearly dependent. 

The number of polynomials constituting such a basis depends on m and ®, 
bu t not on the particular subset chosen; we call this number gm. The purpose 
of this section is to determine gm for arbitrary m and for all the groups discussed 
in §1. 

Molien (9) solved this problem by finding a generating function 

g(t) = É gjm-

Since his derivation can be simplified somewhat, a proof will be given in the 
following section. 
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2. Molien's theorem. In the following proof due to Burnside (2, p. 300) 
we use the terminology and notation of Macduffee (8, pp. 17-19). 

Let © be an abstract group of order n, and let T be a representation of it 
by linear transformations of k variables; such a representation is said to be of 
degree k. Let the matrices of r be A i, A2, . . ., An. 

We denote by ft(t) the polynomial det (E — tAt), which we shall call the 
characteristic polynomial of A t. Then 

ft(t) = det (JE - tAt) = E[ (1 - X/) = 1 - x(At)t + . . . , 

in which %(̂ 41) is the trace and the X; are the characteristic roots of A t. 
Now consider Pm(A,), the rath power-matrix (8, pp. 84-87) of A t. The charac­

teristic roots of Pm {A i) are all the possible products of the rath degree of powers 
of Xi, X2, . . . , X*;. The trace of Pm(Ax) is, then, the sum of all possible products 
of the rath degree of powers of the A's; that is, it is the coefficient of tm in the 
expansion of 

1 = 1__ 

a -"xx/xf- \2t)... (i - \kt) Ti{t) 
in powers of /. 

The matrices Pm(Ai), Pm(A2)f . • • , Pm(An) form a group Tm, which is iso­
morphic with T; that is, it also represents ©. Our problem is now to find the 
number of independent invariant linear forms of Tm, since these are an invariant 
basis of r of degree m. But the number of independent invariant linear forms 
of a group of matrices is equal to the sum of the traces of the matrices, divided 
by the order of the group (14, pp. 158-161). Therefore, gm is the coefficient of 
tm in the expansion of 

1 A 1 
n^ifi(t) 

in powers of /. But since this proof is valid for all m we have proved 

MOLIEN'S THEOREM: Let gm be the number of elements of an invariant basis 
of degree m for a group @ of order n of orthogonal matrices. Let ft(t) (i — 1, 2, 
. . . , n) be the characteristic polynomials of the matrices of @. Then 

oo -i n -| 

g(t) = Ysgmt™ = - E T T T V 

3. Characteristic polynomials. We have seen that the generating function 
g(t) corresponding to the group @ is the arithmetic mean of reciprocals of the 
characteristic polynomials of the matrices which are the elements of @. 

Let A be the matrix of a rotation or a rotatory inversion of angle 6 of © 
with a given axis. We may perform the transformation A in the following 
manner: First, a rotation S may be performed that brings the axis of rotation 
or of rotatory inversion of A to coincidence with the s-axis; second, a trans­
formation A' may be performed, A! being a rotation or rotatory inversion with 

https://doi.org/10.4153/CJM-1954-016-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1954-016-2


ON THE SYMMETRIES OF SPHERICAL HARMONICS 139 

angle 6 about the s-axis; then the rotation 5 _ 1 is performed. Hence, A = S^A'S. 
Thus, A and A' are equivalent matrices and have the same characteristic 
polynomial (14, pp. 147-148). We may, then, in computing the contribution 
of any orthogonal matrix to the generating function, always take the axis of 
rotation or rotatory inversion as the 2-axis. 

The characteristic polynomial for rotation through an angle 0 is 

det 

fl 0 0 
0 1 0 J -t ( sin 0 cos 0 0 I ! = (1 - t) (1 - 2t cos 0 + t2). 

L \0 0 V 

For rotatory inversion with angle 0, the characteristic polynomial is 

det = ( 1 + / ) ( ! + 2 * cos 0 + *2). 

If it is necessary to distinguish between the generating functions of several 
groups ©i, @2, • • • > the notations g(t; ©i), g(t; @2), • • • will be used. 

4. Groups of Type 1. By computing the generating functions for a few 
small values of w, it is conjectured that the generating function for 6n is 

1 + f 
g(t; 6 n ) = (1 -t)(l~t2)(l - O * 

This may be verified by factoring the denominator of the above fraction into 
linear factors involving the nth roots of unity, expanding the fraction into a 
sum of partial fractions, and recombining these in pairs to obtain 

l ^ 1 1 
n^0 (1 - /){1 ~ 2/cos (2wv/n) + t2} ' 

The above expansion is clearly g (t ; (£»). The algebraic calculations in the fore­
going partial fraction expansion are elementary but tedious, as the cases of n 
even and n odd must be considered separately in the intermediate stages. 

The generating functions of all groups of Type 1 can be expressed as sums 
and differences of those of En for various values of n. Suppose that © is of order 
n and has p\ different gi-fold axes, p2 different gvfold axes, etc. Then, 

g(f, ©) = (l/n)[piqig(t; 6 , J 

+ P*q*g(t; 6,.) + . . . - (Pi + P2 + . . . - 1) g(t; (Si)]; 

observe that the group Si contains only the identity element. 

5. Groups of Type 2. It will be recalled that the group ©* has a subgroup 
©, which consists entirely of rotations. For every rotation of angle $ of ©, 
the group &t has a rotatory inversion of angle 0. But the contribution of a 
rotatory inversion of angle 0 to the generating function is obtained by changing 
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t to — tin the function corresponding to a rotation of angle 6. Hence, if n is the 
order of the group ®, 

g(t; ®t) = (l/2n)[ng(t; ©) + ng(-t; ®)] = |[g(/; ©) + g(-t; @)], 

that is, the even part of g(/; ®). 

6. Groups of Type 3. It will be recalled that the group ®i[®2 has the 
following structure: ®2 is a rotational group and ®i a subgroup of index 2. 
@i[®2 consists of the rotations of ®i plus a rotatory inversion with angle 6 
corresponding to each rotation of angle 6 belonging to ®2 but not to ®i. There­
fore, if ©i is of order n, 

g(t; ®i[®2) = (l/2n)[ng(t; ®i) + 2ng(-t; ®2) -ng(-t; ®i)] 

= h\g{t\ ®i) -g(-t; ®i)j + g ( - / ; ®2). 

The first term is the odd part of g(t\ ®i). 

III. T H E GENERATING FUNCTION 

1. Invariant harmonic basis. Let ® be one of the finite groups discussed 
in §1. We define an invariant harmonic basis of degree m for ® as a set of linearly 
independent spherical harmonics of degree m which are invariants of ® and 
on which all other invariant spherical harmonics of degree m are linearly 
dependent. Let hm be the number of elements in an invariant harmonic basis 
of degree m for ®. We wish to determine hm for arbitrary m. 

2. The main theorem. The main theorem of this section obtains a generat­
ing function for the hm; this generating function is surprisingly similar in form 
to the generating function of Molien, as is seen in the 

THEOREM. Let & be a finite group of orthogonal linear transformations in 
x, yy and z. Let 

oo 

in which hm is the number of elements in an invariant harmonic basis for ® of 
degree m. Then 

Ht) = (l - t*)g(t), 

in which g(t) is the generating function of Molien. 

3. Operations preserving invariance. Before proceeding to the proof of 
the main theorem, we shall need some lemmas. 

LEMMA 1. Let P(x, y, z) and Q(x, y, z) be homogeneous polynomials which are 
invariants of ®. Then P + Q and PQ are also homogeneous invariant polynomials. 

LEMMA 2. Let P(x, y, z) and Q(x, y, z) be homogeneous polynomial invariants 
of a group ® of orthogonal linear transformations. Then the polynomial 
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(i) 2 J ( x > y > 8 ) . p ( A , ± , ± ) Q ( j t i y i g ) 

is also a homogeneous polynomial invariant of @. 

Proof. Let A represent the matrix of any orthogonal transformation of @. 
By the chain rule of differentiation, it is easily seen that the operators 

d d_ ± 
dx' dy dz 

are contragredient with x, y, z (16, pp. 149-154). But since A is an orthogonal 
matrix, the operators are cogredient with the variables. Hence, the right member 
of (1) is an invariant of A, and, therefore, of every transformation in ®. 

Of course, the polynomial R(x, y, z) in the above lemma may turn out to be 
identically zero. 

Since x2 + y2 + z2 is an invariant of all orthogonal matrices, the above 
lemmas have the following special cases, which will be of importance in the 
following sections: 

LEMMA 3. If P(x,y, z) is a homogeneous polynomial invariant of ©, of degree 
m, then {x2 + y2 + z2)3 P(x,y,z) is also a homogeneous polynomial invariant of 
© of degree m + 2j; we letj denote a non-negative integer. 

LEMMA 4. If P(x, y, z) is a homogeneous polynomial invariant of © of degree 
m, then AP(x, y, z) is also a homogeneous polynomial invariant of © of degree 
m — 2; we let A denote the Laplace operator, 

dx dy dz 

4. Proof of the first part of the main theorem. We shall prove the main 
theorem in the form 

gm ~ hm + hm-2 + hm-4 + . . . . 

In this first part we shall prove that 

gm < hm + hm-2 + hm-4 + . . . . 

For any degree m, an invariant basis has gm elements and an invariant harmonic 
basis has hm elements. For brevity, let hm = a and gm = a + p. We shall choose 
first an invariant harmonic basis of degree m, say Hi, H2, . . . , Ha. Then 0 
homogeneous polynomials of degree m, say 7j, 72, . • • , Ip, are chosen so that 
the complete set 

H\t H2j . . . , Ha, I\, I2, • • . , 1$ 

form an invariant basis. 
Let P(x, y y z) be an invariant homogeneous polynomial of © of degree m. Then 

P = ajli + a2H2 + . . . + aaHa + bxh + b2I2 + . . . + bfiIfi. 

Furthermore, P is harmonic if and only if 61 = b2 = . . . = b$ = 0. That is, 
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AP = ftiA/i + b2AI2 + . . . + bfiAIp = 0 

only if i i = b2 = . . . ~b^ = 0. But this means that Ai\, A/2, . • . , Alp are 
linearly independent homogeneous polynomials of degree m — 2 and are in­
variants of © by Lemma 4 of the last section. Hence, fi = gm — hm K gm-2, or 
gm K hm + gm-2- By repeated application of this inequality to gm-2f gm-i, • • • 
we obtain 

gm ^ "m ~T~ flm-2 ~T ">m—4 • • • j 

and the first part of the main theorem is proved. 

5. Proof of the second part of the main theorem. In this section we shall 
show that 

(2) gm > hm + hm-2 + hm-i + 

This result, combined with that of the last section, will prove the main theorem. 
The inequality (2) will be proved if we can construct 

hm ~f" hm-2 + "m-* 4" • • • 

invariant homogeneous polynomials of degree m which are linearly independent. 
For this construction, we take first hm independent invariant harmonics of 
degree m, then hm-2 invariant harmonics of degree m — 2 each multiplied by 
x2 _|_ y2 _|_ z2^ t n e n hm_A invariant harmonics of degree m — 4 each multiplied by 
(x2 + y2 + s2)2, and so on. Thus we obtain hm + hm-2 + hm-\ + • • • homogeneous 
polynomials of degree m, all invariant by Lemma 3. It remains to show that 
they are linearly independent. 

Let ^C_M be a linear combination of the hm-n harmonics selected above, 
containing /zm_M arbitrary constants, ju = 0, 2, 4, . . . . We wish to show that if 

(3) Xt+(xi + y2 + z2) JC-2 + (x2 + y2 + z2)2 ^ _ 4 + . . . = 0 

identically, all the hm + hm-2 + hm-± + . . . constants are necessarily zero. 
To this end we multiply equation (3) by ^C_M, in which n takes one of the 

values 0, 2, 4, . . . , and integrate the resulting equation over the surface of the 
unit sphere. Because of the orthogonality of surface harmonics of different 
degrees on the unit sphere, 

I I (<^C_M ^ C + ^C-ju ^C-2 + . . . + ^m-a + • • •) da = I I ^m-y. da = 0. 

Therefore, ^C-^ vanishes on the surface of the unit sphere. It follows, from 
the uniqueness theorem for harmonic functions, that ^C_M vanishes identically. 
But if J^m-n vanishes identically, then the hm-n constants it contains must all 
be zero. Now let JJL assume, in turn, the values 0, 2, 4, . . . . Thus, all the hm + 
hm-2 + hm-\ • • • constants involved vanish, and the second part of the main 
theorem is proved. 

6. Tables of generating functions. The factor 1 — /2 appears in the denom­
inators of all the generating functions g(t) found in §11. Since h(t) = (1 — t2)g(t), 
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TABLE I 
GENERATING FUNCTIONS OF THE FINITE GROUPS 

(The absence of planes of symmetry is indicated by — or 0, according as the 
group is purely rotational or skew.) 

n even n odd 

Si 

3 

© 

no 

Sn[£>B 

®n[©2n 35n* 

A(0 

r 

1 - i ° 

/4 1 - /6 

l ± i ! 
*4 i - e 

i + *6 

i - e 
i  

i - * 3 

l + *6 

<4 l - ? 
i 

i - f 
i + f 

- f 

l - / " 
l 

l - f 
i + f+1 

i -f 
l + f+1 

i-t2n 

i + t 
l - f 
1 + 2tn+1+f 

l-t2n~ 

15 

3 

6 

n + 1 

we find h(t) at once. Table I gives the generating functions h(t) for all finite 
groups. 

7. Further properties of h{t). Besides the basic property of h{t) just 
discussed, this function shows, in various ways, the structure of the abstract 
group and the geometrical properties of the symmetry. The proofs of the 
following theorems are omitted for brevity; the theorems may be verified by 
consulting Table I. 
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THEOREM 1. 

lim (1 - t)2h{t) = - , 

n being the order of the group. 
THEOREM 2. 

\imth(t) = 1 orO 

according as © is or is not of Type 1. 

THEOREM 3. The function h(t) is an even function if and only if © is of Type 2. 

THEOREM 4. Let 6 i C 0 , and let hi(t) and h{t) be their respective generating 
functions. Then 

A i ( / ) » A ( 0 . 
Besides the classification of the finite groups given in §1, the groups of Type 

2 and 3 may also be classified according to the number of planes of symmetry. 
The groups generated by planes of symmetry are 

6i[62 , <U$», ©««(weven), ©»[£*(» odd), £[Of O,, 3 , . 

They have, respectively, 1, n, n + 1, n + 1, 6, 9, and 15 planes of symmetry 
which divide the space into 2, 2rc, 4w, 4w, 24, 48, and 120 compartments, so 
that the number of compartments equals the order of the group. 

Groups of Types 2 and 3 which have no plane of symmetry are called skew 
groups. They are 6J6 2 n (n even) and 6wi (n odd). Let p denote the number of 
planes of symmetry in the group. 

THEOREM 5. 

\\mf+lh(t) = 1 

if y and only if, © is not a skew group. 

THEOREM 6. The function h(t) vanishes for a finite value of t, not a root of 
unity j if and only if © is skew. 

THEOREM 7. The function h(t) vanishes at no finite point if and only if © 
is generated by reflections. 

THEOREM 8. Let & be a group generated by reflections, @i the purely rotational 
subgroup of © of index 2, h(t) and h\{i) their respective generating functions. Then 

h(t) = (1 + f) h{t). 

IV. INVARIANT HARMONIC BASES 

1. Invariant basis and invariant harmonic basis. Let © denote one of 
the groups discussed in I, and let ^m denote the set of spherical harmonics 
of degree m which form an invariant harmonic basis of degree m for @. Then, 
by the proof of the second part of the main theorem of §111, the set 
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! * C (x2 + y2 + z2) ^C_2, (x2 + y2 + s2)2 ^C-4, . . .} 

is an invariant basis of degree m for @. In this manner, the problem of finding 
an invariant basis of degree m is reduced to that of finding an invariant harmonic 
basis of each of the degrees m, m — 2, m — 4 , . . . . 

The remainder of this paper will be devoted to finding invariant harmonic 
bases of arbitrary degree for each of the finite groups of §1. We shall construct 
the bases using the Maxwell representation of spherical harmonics in terms of 
partial derivatives of l/r. For the cyclic and dihedral groups and groups of 
Types 2 and 3 derived from them we shall develop an equivalent representation 
of the bases, which is simpler in certain respects, in terms of the associated 
Legendre functions. 

2. Invariant harmonic bases in the Maxwell representation. 

Operating basis. Let Q(x,y,z) be a homogeneous polynomial of degree m in 
x, y, z. Then 

Q(- -d- A 
v\dx' dyy dzf 

is a differential operator formed by replacing the variables of the polynomial by 
the appropriate partial derivators. Let r — (x2 +y2 + z2) *. The expression 

(1) r2m+1 o(— — A ~ 
U j V\dx' dy1 dz) r 
is a spherical harmonic of degree m or is identically zero. Furthermore, the 
above expression is identically zero if and only if Q(x,y,z) is divisible by x2 + 
y2 + z2 (5, pp. 127-129.) The polynomial Q(xj,z) will be called the operating 
polynomial corresponding to the spherical harmonic (1). If Q is an invariant 
of a group @ of orthogonal linear transformations, then the spherical harmonic 
(1) will be also an invariant of @ by Lemma 2, §111. 

These considerations lead to the following basic 

THEOREM. Let 

Qi(x,y,z)y Qi(x,yyz)} . . . , Qhm(x,y,z) 

be hm homogeneous polynomials of degree m which are invariants of @ and which 
are linearly independent mod (x2 + y2 +z2). Then the hm spherical harmonics 

form an invariant harmonic basis of degree m for ©. 

The statement that the Qt are linearly independent mod (x2 + y2 + s2) 
means that a linear combination of them, 

T,AtQ„ 
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is divisible by x2 + y2 +z2 only if A t = 0 for all i. We call Qh (?2, . . . , Qnm an 
operating basis of degree m for ©. 

3. Invariant harmonic bases for Sn, 3 \ , and derived groups. A result 
of §111, 

Ht; <£,) = ^ z ^ y ^ r ^ = (1 - t)-1 (1 + 0 ( 1 + f + t2n + . . .) 

= (1 - ty1 (1 + 2f + 2^2w + . . . ) , 

suggests that we seek an invariant operating polynomial for Sw of degree one, 
and two invariant operating polynomials of each of the degrees n, 2n, 3n, . . . . 
Let p = (x2 + y2) *. Since the rotation generating Sw, expressed in spherical 
coordinates, is 4> —» <j> + 2ir/n, the polynomials 

2, pw cos n<t>j pn sin w0, p2n cos 2w<£, p2w sin 2w#, . . . 

are clearly invariants of (Sn. For simplicity of notation, let 

Ci n , n /ti\ n—2 2 . /n\ n—\ 4 

n = p cos n<j) = x — (2) x ^ + (4) x 3> — . . . , 
C , = P" sin «</> = G) *"~1 y - G) x"-3

 y
3 + G) x"-6 / - . . . . 

We shall call z1 CU1 and C'n the fundamental operating polynomials for S^. 
We consider the expression 

(3) (1 - z)-1 (1 + Cn + Cn + C2n + C\n + ...) 

= (1 + z + z2 + . . .)(1 + Cn+ C'n + C2n + C\n + . . 0, 

or rather the double series resulting from term-by-term multiplication of the 
two infinite series in the last line, without any reference to convergence, as the 
set of its terms. Each term is an invariant operating polynomial for En. That is, 
our assertion is that an operating basis consists of the following 2[m/n] + 1 
polynomials: 

y±) Z , Z O w , Z Ls n , Z L^2n? z Is 2n> • • • • 

By the theorem of the last section, all that remains to be shown is that the 
polynomials (4) are linearly independent mod (x2 + y2 +z2). In this section 
and the next two, we shall find series analogous to (3) for all finite groups. Such a 
series constitutes a complete solution of our problem. 

It remains to show that the polynomials of the set (4) are linearly independent 
mod (x2 + y2 +s2) ; that is, we wish to show 

[m/n] 

(5) AoZm + £ zm~m{AvCn + B,C'„) = 0 mod(x2 + y2 + z2) 

only if A0 = A\ = ^42 = . . . = Bx = B2 = . . . = 0. 
Without loss of generality, we may assume that m is even, since if m is odd, 

we may multiply the congruence by z, obtaining an equivalent congruence. 
We first consider the case of n even. Then the left member of (5) is even in z. 

The congruence (5) is then equivalent to the equation 
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[m/n] 

(6) A,{-x2 - yy
m + £ ( - x 2 - yYm~n\A,Cn + B,C„) = 0 

v=l 

identically. Now if we let x = cos 0, y = sin 0, (6) becomes 
[m/n] 

(7) ( - l ) è m . 4 0 + £ (- l) è ( m _ m ) ' ( i4 , cos m4> + B. sin m0) = 0 . 

If equation (7) is multiplied, in turn, by 

(8) 1, cos 0, sin 0, cos 20, sin 20, . . . 

and the resulting equation is integrated from — T to TT, we see, by the orthogon­
ality of the set (8), that all the coefficients At and Bt must be zero, which was 
the aim of our proof. 

We now consider the case of n odd. Then, equation (5) has the form 

(9) Fi(x, y, z2) + zF2{xy y, z2) = 0 mod(x2 + y2 + z2). 

The above congruence remains true if we substitute — z for z, 

(10) Fi(x, y, z ) — zF2(x, y, z ) = 0 mod(x + y + z ). 

If we now add and subtract (9) and (10), we obtain 

^i(x,%*2) ^ 0 
(11) mod(x +y + z ). 

F2(x,y, z2) = 0 

The proof may now be completed in a similar manner to the case of n even, 
since both congruences of (11) are of the form (5) (with changed values for 
the parameters m and n). 

We pass to the group £)w. We assume that one of the 2-fold axes, perpendicular 
to the w-fold axis, is the x-axis, as explained in §1. Then we obtain the group 
£)n by adjoining to Ê» the matrix 

/ I 0 0 \ 
K = ( 0 - 1 Ol 

\ 0 0 - 1 / 

or 0 —» — 0 and 6 —> 7r — 0; that is, the group consists of the matrices of Ê» and 
the coset 2£Ên. Hence, an invariant of Ê» which is also an invariant of K will 
be an invariant of 35n. Upon applying the transformation K to the fundamental 
operating polynomials of Ê», we note that 

Hence, s2, C^, and s C ^ are invariants of 35n. 
In §111 the generating function for 3 \ was found to be 

Ht-, ©„) = ( 1 _ / ) ( 1 _ f ) = (i - t'r1 (i + O u + f + **• + . . . ) 

= (i - tY1 (i + f + f+1 + *2" + t2n+1 + ...)• 
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We consider now the expression 

(12) (1 - Z2)-1 (l + Cn + zC'n + C2n + zC\n + . . .) 

in the same way as we did (3), namely as the set of all the terms of the double 
series resulting from the term-by-term multiplication of the two factors. It 
is clear, by comparison of the above expression with the generating function, 
that we have the correct number of operating polynomials for each degree m. 
We have just seen that each term in the series is an invariant of S)n, and, since 
the above operating polynomials are a subset of those found for fëw, their 
linear independence mod (x2 + y2 + z2) has already been proved. 

Similarly, the invariant operating polynomials for the other groups derived 
from 6W will be a subset of those for Sn and may be found in a completely 
analogous manner. In all cases the symmetry elements of these groups will be 
placed, with relation to the coordinate axes, as explained in §1, 2. In Table II, 
the matrix which generates each group from an appropriate subgroup (either 
Ea or 3 \ ) is given. The transformation in spherical coordinates corresponding 
to this matrix is also given. Table III shows which of the invariant operating 
polynomials for 6W are also invariants for each of the groups. In this table, + 
means that the expression is an invariant; — means that the expression is not 
an invariant. In most cases (all except 35n< and ©n[3?2n) these expressions 
which are not invariants go over into their negatives upon application of the 
transformation adjoined to the subgroup. Finally, the series analogous to (3) 
and (12) are given in Table IV for each of the groups. For convenience, Tables 
II and IV also include the groups of the Cubic System which will be discussed 
in the next section. 

Thus we see that these three tables, together with Table I, present in tabular 
form, for each of the groups, a complete derivation of the invariant operating 
polynomials similar to that carried out in detail for 3 \ . 

4. Invariant harmonic basis for groups of the Cubic System. In §111 
we found that 

With this in mind we seek an invariant of X for each of the degrees three, four, 
and six. Geometrical considerations enable us to find these invariants. 

It is clear that in any purely rotational group @, the set of all axes of rotation 
must be permuted by any transformation of the group ; that is, the permutation 
group of these axes form a representation of ®. Moreover, it may be that the 
set of all rotational axes of the group may be decomposed into several disjoint 
subsets in such a manner that all rotations of the group permute the axes of each 
of these subsets among themselves. Suppose there are q axes in one of these 
subsets, with direction numbers au f3u yt (i — 1, 2, . . . , q). Then the expression 

Q 

n fax + pij + ytz) 
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TABLE II 

MATRICES ADJOINED TO SUBGROUPS TO GENERATE GROUPS 

n even 

2>„ 

<S.[3>. 

$.[$* 

o4 

Subgroup Generating matrix 

3>» 

©2 

Transformation 
in spherical 
coordinates 

0 -V 

-sin 

cos 

— sin o\ 

COS 

\ o 

J 

0-» - 0 
0 — • ir - ( 

0-* - $ 

0^> ir 

TT - e 

0 - » 7T - 0 

<£-></> + 
X 

0 - * IT - 0 

« odd 

3)K 

<5»[î>, 

<5,i 

33» i 

O 

©« 

is transformed into a constant multiple of itself by any rotation of ®. Proper 
choice of the direction numbers can easily be made in order that the above 
expression be an invariant. 
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TABLE III 

INVARIANCE OF OPERATING POLYNOMIALS FOR (5n WITH RESPECT TO DERIVED 

GROUPS 

u = 1, 3, 5, . . . 
v = 2, 4, 6, . . . 

n even Z2 2 ^un c 
*-* un 

2 C M W 6^ un l^vn c 
^ vn 

zLm 2C- vn n odd 

e. + + + + + + + + + + e„ 

s>. + — + — — + + — — + ©, 

6n[®„ + + + — + — + — + - «MU 

(£.« + — + + - — + + - — U&2* 

$.« + — + - — — + - — - S)n[©2n 

<£.[«*. + — — - + + + + - — £,< 

£U©2n + — — - — + + — - — S»i 

The regular tetrahedron is placed in the position described in §1, inscribed in 
a cube. Then it is clear that the 13 axes of rotation separate into three disjoint 
subsets—the three axes through the centroids of the faces of the cube, the four 
diagonals of the cube, and the six axes through the midpoints of the edges of 
the cube. Corresponding to these three sets of axes are the polynomials 

Oz = xyz 

0*4 = (x + y + z)(—x + y + z)(x —y + z){x + y — z) 

06 = (x2 — y2)(y2 — z2)(z2 - x2). 

Since 0*4 = — 2(x4 + yA + s4), mod (x2 + y2 + z2), in the following we shall 
use instead 

r\ 4 , 4 , 4 

04 = x + y + z . 
It can be easily shown that O3, 04, and 0 6 are invariants of X. It now seems 
reasonable to conjecture that the set of invariant operating polynomials for 
X is represented by the expression 

(1 - O3)-1 (1 - O4)-1 (1 + 06), 

in the sense illustrated in the foregoing section by the discussions of (3) and 
(12). To prove the above conjecture it remains to show that all terms of a given 
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degree m are linearly independent mod (x2 + y2 + z2). That is, we wish to 
show that 

(13) E at ' 0z
ai Ot + 0 6 £ c, ' Oz

yi 04
8' s 0 mod(x2 + y2 + s2), 

3a< + 4/3, = 6 + 3Y> + 40, = m (for all i and j ) , 

only if all a, and cy are zero. 

Case I. If m is odd, 
3a4 == «f == m = 1 (mod 2) for all i, 

37;. = yj = w = 1 (mod 2) for all j . 

Hence, 0 3 is a common factor of the left member of (13), and we may divide 
the congruence by it since 

0 3 ^ 0 mod (x2 + y2 + z2). 

This reduces the problem to 

Case II. If m is even, 
o:f == m = 0 (mod 2) for all i, 

y j ~ m = 0 (mod 2) for all j . 

Hence, the left member of (13) is a polynomial in 03
2, 04, and 06. If now we 

make the substitution z2 = — x2 — y2 in (13), the resulting expression must 
vanish identically. Upon making this substitution and absorbing the constant 
factors in the at and cjf (13) becomes 

(14) 2^ au x3 ' + x y y {x +xy + y) 
i 

+ (** _ y)(x» + 2/)(2^2 + y*)E Cy(*V + *y)*T'(*4+ *y+?V' 

= 0, 

identically. Our assertion is that all the at and c} vanish. We assume the contrary 
and obtain a contradiction. 

We may assume that all the a^ Cj in (14) are different from zero; otherwise, 
we could simply omit the terms with vanishing coefficients. We may assume 
that «i < au 71 < 7y for i — 2, 3, . . . and j = 2, 3, . . . ; this is a matter of 
notation. Finally, we may assume that one of the numbers a\ and 71 is equal to 
zero; otherwise, we could divide by a suitable power of x*y2 + x2y*. Both «i and 
71 cannot vanish; otherwise, we should have 4/3i = 6 + 4ôi, 2(/3i — 81) = 3. 
But 3 is not an even number. 

Now we set y — 0 and obtain : 

a\X^x = 0, so that a\ — 0 if a\ = 0; 

£iX6+4Sl = 0, so that C\ — 0 if 71 = 0; 

a contradiction in either case. This proves our assertion. 
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For the other groups of the Cubic System, the series representing the in­
variant operating polynomials are derived in the manner shown in the last 
section. Tables I, II, IV, and V summarize these derivations completely. 

TABLE IV 

SERIES REPRESENTING OPERATING POLYNOMIALS OF THE FINITE GROUPS 

n even Polynomials « odd 

6 . (1 - 2)-1 (1 + Cn + C'n + Cin + C'h + . . . ) e» 

T>n (1 - 22)-1 (1 + Cn + zC'n + C2n + zC'u + •••) 3 \ 

G»[$» (1 - z)-1 (l + Cn + C2n + . . . ) (U®, 

e». (1 - z2)-1 (1 + Cn + C'n + Cin + C'a, + . . . ) &[<£*. i 

3 \ i (1 - 32)-1 (1 + Cn + Cin + . . . ) $>,[$*. 

<£.[<£». (1 - 22)-1 (1 + zCn + zC'n + Cu + C'2n + . . . ) e.. 

su©* (1 - 22)-1 (1 + zC'n +CU+...) $>ni 

X (1 - Oa)-1 (1 - O4)-1 (1 + 0.) z 

D (1 - O32)-1 (1 - 04)-> (1 + 03O6) 0 

no (1 - 0,)"1 (1 - O,)-1 £[© 

£* (1 - 03
2)- ' (1 - 0 4 ) - ' (1 + 0.) £« 

ot (1 - Oa2)-1 (1 - 04)-1 0 , 

3 (1 - /e)-1 (1 - /JO)"1 (1 + / » ) 3 

3< (1 - h)'1 (1 - J™)-1 3,-

5. The icosahedral groups. In §111 we found that 

1 + tlb 

With this in mind we wish to find an invariant of 3 for each of the degrees six, 
ten, and fifteen. Placing the icosahedron as explained in §1, we find these in-
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variants in a manner analogous to tha t used for the groups of the Cubic System. 
In the following, r = | ( 1 + A / 5 ) . The three invariants are 

T / 2 2 2 w 2 2 2 w 2 2 2\ 

h = (r x — y ) (r y — z ) (r z — x ) 
T / 4 , 4 , 4x / - 2 2 2 2 \ / - 2 2 2 2 w - 2 2 2 2N 

Iio = (x + y + z ) ( r x - T 3 f ) ( T y - T S ) ( T S - T x ) 

hh — xyz{rx + r~ly + JS)( —rx + T_1y + z)(rx — r~ y + s ) ( rx + T~ 3; — z) 

{x + ry + T~ 2) ( — x + ry + r~ 3) (x — T^ + r~ z) (x + ry — r~ z) 

(T~ x + y + T2)( — r~ x + 3> + rz){r~ x — y + rs)(r~ x + y — rz). 

We now conjecture tha t the set of invariant operating polynomials for 3 is 
represented by the series (1 — I^)~l (1 — / i o ) - 1 (1 + /15). 

To prove this conjecture it remains to show tha t all terms of a given degree 
m are linearly independent mod (x2 + y2 + s2). 

Case I. m even. We wish to show tha t 

(15) X) ajf'lj* s 0 mod(x2 + y2 + s2), 6a, + 100, = m 
i 

only if all a* are zero. 

Case II. m odd. We wish to show tha t 

ZisZ) aJ^IiQ8' = 0 mod(x2 + / + s2), 15 + 6a< + 100* = m 
i 

only if all at are zero. Since it can be shown tha t Iïb ^ 0, mod (x2 + y2 + s2), 
Case IT reduces to Case I. 

T A B L E V 

INVARIANCE OF O P E R A T I N G POLYNOMIALS FOR X WITH R E S P E C T TO D E R I V E D 

G R O U P S 

Groups 03
2 0,0* 0, o4 °* 

$ 2 + + + + + 

X + + + + + 

0 + + - + -

£[D + - + + -

Ï . + — - + + 

— ' i + — - + — 

https://doi.org/10.4153/CJM-1954-016-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1954-016-2


154 BURNETT MEYER 

The remainder of the proof is similar to that of the preceding section and will 
be briefly indicated. As before, we assume all at different from zero and «i < at 

for i = 2, 3, . . . . Since 

U ^ 0 mod(x2 + y2 + z2), 

we may divide (15) by If\ obtaining an equivalent congruence in which 
«1 = 0. If in this congruence we first let z2 = — x2 — y2 and then let y = rx 
we obtain 

-32r 2 ( r 4 + r2 + l)(r~2 - / ) alX
01 = 0 

identically. Hence a,\ — 0, a contradiction to the assumption that there were 
any non-zero coefficients in (15). 

It is easily seen that 1$ and Iw are invariants of 3 t but In is not. Hence, the 
set of invariant operating polynomials for 3 1 is (1 — I§)~1 (1 — Jio)-1. 

6. Invariant harmonic bases using the associated Legendre functions. 
For the simpler groups, the cyclic, dihedral and related groups, representation 
of the invariant harmonic basis, in terms of the associated Legendre functions, 
is somewhat simpler to derive than in the Maxwell representation. It will be 
shown later that the same basis is obtained, except for constant factors, in 
both representations. 

It is well known that 

(16) Pm(cosd), 

Pm>i(cos 0)cos 0, Pm,2(cos 0)cos 20, . . . , Pm>m(cos 0)cos w0, 

POT>i(cos 0)sin 0, Pm,2(cos 0)sin 20, . . . , Pm,m(cos 0)sin rn0 

are a set of linearly independent surface harmonics of order m and all others 
are expressible as linear combinations of them. By multiplying each of the 
elements of the set (16) by rm, we obtain an invariant harmonic basis of degree 
m for Ëi. 

The cyclic group Sw is generated by the transformation 0 —* 0 + 2-w/n. 
Of the set (16), the elements 

(17) Pw(cos0), 

Pm,n(COS 0) COS W0, Pm<2n(cOS 0) COS 2 ^ 0 , . . . , P m > s n (cOS 0) COS SU<j>, 

Pm,n(cos 0) sin w0, Pw,2n(cos 0) sin 2^0, . . . , Pw>sn(cos 0) sin sncj) 

(sn < m < (s + l)n) 

are clearly invariants of En. There are 2[m/n] + 1 elements in the set (17), 
and, from III, hm = 2[m/n] + 1 for Sw. Hence, (17) is an invariant basis of 
surface harmonics of order m for 6n. 

The bases for the derived groups are found by selecting those elements of 
(17) which are invariants of the transformation generating the group from 
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Sn. It may be verified that in each case the basis obtained has the correct 
number of elements (that is, hm of the group in question). These derivations 
are summarized in Table VI. 

TABLE VI 

INVARIANT HARMONIC BASES IN TERMS OF THE ASSOCIATED LEGENDRE 

FUNCTIONS 

(In all formulas below, the argument "cos 6" is omitted in the associated 
Legendre functions.) 

w = 1, 2, . . . , [tn/n] 
u — 1 , 3 , . . . , [m/n] or [m/n] — 1 (whichever is odd) 
v = 2, 4, . . . , [m/n] or [m/n] — 1 (whichever is even) 

Group Basis 

6 , Pm, Pm,wn COS Wn<t>, Pm,wn s i n 7£W0 

35» (n even) m even 
m odd 

(n odd) m even 
m odd 

^ m , Pm,wn COS WW0 

PmiWJ„ sin wn<t> 
Pm, Pm.vn COS ZW0, Pm,un SUl WW0 

-Pm.tm cos uncj), Pm, vn sin »n0 

e»[£>« Pm, Pm,wn COS W » 0 

6nï m even 
m odd 

•P«. Pm,wn cos w»0, PWifWI sin wncj) 
None 

35n* (n even) m even 
m odd 

(w odd) m even 
m odd 

P w , P»,™ cos wn<j> 
None 
^m> -P»», *n COS Î W 0 , P m , M n s i n WW0 

None 

6J&2W m even 
m odd 

JPi», i V m cos m4>, Pm, vn sin v»0 
Pm,un cos w»0, PTOltm sin un<j) 

£)J£)2n (w even) m even 
m odd 

(n odd) m even 
m odd 

Pm, Pm,vn COS Vncf) 

Pm,un sin ^w$ 
Pm, Pm,vn COS Vn<t> 

Pm.un COS WW0 
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7. Equivalence of the two representations. For the groups 6n> 5)„ and 
those of Types 2 and 3 derived from them, we have found invariant harmonic 
bases in two different representations—in terms of the differential operators 
and in terms of the associated Legendre functions. In all cases, however, the 
bases obtained are the same, except for constant factors. 

This follows from the relationship (5, p. 134). 

dn~m(d , . a V l ( _ i ) » - » ( w _ W)f . . 

Now, set k = m, j = n — m, multiply the above equation by r2(>"f*,+1, and 
separate into real and imaginary parts : 

(18) rtW:W £ Q- \ = ( - \)'j\ r t t V » ( c o s *) cos **, 

and 

(19) r*<*«+i j £ c,t 1 = (_1)yi, f m ? w t ( c o s ,} sin ^ 

in which C* and C\ are the differential operators obtained by substituting 

A A A 
dx' dy1 dz 

for x, y, z in the operating polynomials previously defined. 
The equivalence of the two representations can easily be shown by use of 

(18), (19), and Tables IV and VI. 
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