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Introduction. This paper may be regarded as a continuation of the investigations begun
in [2]; certain intrinsic lattice topologies are studied, especially the order and ideal topologies
in Boolean algebras, bicompactly generated lattices, and other more general structures. The
results of [1], [2), and [3] are shown to be closely related. It is proved that the ideal topology
on any Boolean algebra has a closed subbase consisting of all sublattices, whereas the order
topology on an atomic Boolean algebra has a closed subbase consisting of all sub-complete
lattices. It is also shown that the order topology on an atomic Boolean algebra is auto-
uniformizable (in the sense defined by Rema [3]) and, if the ground set is infinite, strictly coarser

than the ideal topology. The conditions Cl and C3 on a lattice, introduced by Kent [1], are
shown to be slightly stronger than the condition “ bicompactly generated ’, and in complete

lattices, where these conditions are satisfied, the order topology is shown to be coarser than
the ideal topology.

1. The ideal topology on a Boolean algebra.

DEeFINITION.  The ideal topology on a lattice L is the topology on L having an open sub-
base, consisting of the collection of all completely irreducible ideals and completely irreducible
dual ideals of L. In this section it will be proved that on a Boolean algebra B the ideal topology
has a closed subbase consisting of all ideals and dual ideals of B. The proof begins with a
lemma that makes use of the fact that on a Boolean algebra B the following conditions con-
cerning an ideal 7 of B are equivalent:

(i) 7is maximal.

(i1) 7 is completely irreducible.
(iii) 7 is maximal subject to not containing some element of B.
(iv) B-Iis a maximal dual ideal of B.

The notation x* = {yeL:y 2 x} and x* = {yeL: y < x}, where L is a lattice, is also used.

LemMa 1.1. Let B be a Boolean algebra and A — B. Denote by c(A) the closure of A under
the ideal topology on B. If A is closed under finite joins then x is in c(A) if and only if x is in
c(Anx*); moreover, x is in c(Anx*) only if x is a finite meet of elements from Anx*. Dually,
if A is closed under finite meets then x is in c(A) if and only if x is in c(Anx*); x is in c(Anx*)
only if x is a finite join of elements from Anx*.

Proof. Since Anx* < A4 it is clear that ¢c(Anx*) < ¢(4). Conversely, suppose x is in
¢(4) but not in ¢(Anx*). Then there exist maximal ideals I,, ..., I, of B such that xis in
I=I,n...nI, but InAnx* =0. If x isin c(4), then In4 # 0, and so InA generates an
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ideal J' of B. x is not in J', since x is in J' if and only if x is less than or equal to some finite
join of elements from /nA; when A4 is closed under finite joins this is equivalent to: x is less
than or equal to some element of InA, in which case InAnx* would be non-empty. Thus
x*nJ’ =0, and so there exists a maximal ideal JoJ’, which is disjoint from x*. Therefore
D = B-J is a maximal dual ideal of B containing x. Consequently DN/ is an open set in the
ideal topology, which contains x and is disjoint from A, contradicting the assumption that
x is in ¢(4). This proves that x is in ¢(4nx*). If x is not a finite meet of elements from
Anx*, then Anx* generates a dual ideal disjoint from x*, from which it follows that x is not
in c(Anx*). Therefore, x is in c(Anx*) only if x is a finite meet of elements from Anx*. The
dual argument, in the case that A4 is closed under finite meets, completes the proof.

CoROLLARY 1.2. On a Boolean algebra B the ideal topology has a closed subbase consisting
of all sublattices of B.

Proof. 1t follows immediately from the lemma that every sublattice of B is closed with
respect to the ideal topology on B. Therefore the topology on B having a closed subbase of
all sublattices of B is coarser than the ideal topology on B. Note that the ideal topology on
B has a closed subbase consisting of the collection of all completely irreducible ideals and dual
ideals of B, and so to prove the corollary, it suffices to observe that every ideal and dual ideal
of any lattice L is a sublattice of L.

THEOREM 1.3. On a Boolean algebra B, the ideal topology has a closed subbase consisting
of all ideals and dual ideals of B.

Proof. The topology on B, having a closed subbase of all completely irreducible ideals
and dual ideals, is coarser than the topology on B, having a closed subbase of all ideals and
dual ideals of B, which is in turn coarser than the topology on B, having a closed subbase of
all sublattices of B. By the preceding corollary, the first and last of these topologies coincide
with the ideal topology.

2. The T, and T, -topologies on a Boolean algebra.

A Boolean metric d on the Boolean algebra B is a mapping of B x B onto B defined by
d(a, b)=a+b=(anb’)v(a Ab), foranya, bin B. The Boolean algebra B together with the
metric d is an auto-metrized Boolean algebra. Rema [3] showed that, if D is any dual ideal of
B, then the sets U, = {(x, y):d(x, y} £ p; pe D} form a base for a uniformity which induces
a uniform structure on B; the resulting topology T, is called an auto-topology on B. A
Boolean algebra B, together with an auto-topology Ty, is an auto-topologized Boolean algebra.

Kent and Atherton [2] have exhibited a family of topologies on a lattice L, defined in
terms of ideals and dual ideals of L. Specifically, let 7 and D be respectively an ideal and a
dual ideal of L. The T,p,-topology on L is that topology which has an open subbase consisting
of all sets of the form a*nb*, where aeI and be D. The following proposition shows that on
a Boolean algebra every auto-topology is a T;,-topology.

THEOREM 2.1. Let B be a Boolean algebra and I an ideal of B. If D is the dual ideal of B
consisting of all complements of elements in I, then T,, = Ty and is therefore auto-uniformizable.
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Proof. A T, neighborhood base about an element a of B consists of all sets of the form
A,(a) = {xeB:d(a, x) £ p; pe D}, while a T;;, neighborhood base about a consists of all sets
of the form V_(a) = {xeB:anc < x < avp, where cel and pe D}. Note that V_(a) con-
tains a symmetric T;j, neighborhood V,,(a) of a, where b = cvp' and &’ = ¢’ Ap. Thus each
T, neighborhood filter has a base of symmetric neighborhoods, and to prove the theorem it
suffices to show that, if ¢'e D,then V_.(a) = A (a). Ifxisin A_(a),thenfrom(aAx)v(ad' Ax) <
¢’ it follows thatanc < x,x Savc andso xis in V_(a). Similarly, if x is in V_.(a), then
fromancSx=<avc itcan beshownthata’'Ax < ¢',anx’ < ¢, and so xisin A.(a); this
proves that V_.(a) = A.(a) and therefore T;, = T,

A well known representation theorem concerning lattices is that any distributive lattice
is isomorphic to a ring of sets, and hence can be embedded in some Boolean algebra. If L
is a distributive lattice, consider L as being embedded in the Boolean algebra B, and further
assume that /is an ideal of L such that a’ is in L for every a in I, complementation being taken
in B. Then {a’: ais in I} generates a dual ideal of L, which in turn generates a dual ideal K
of B. In terms of this notation a more general form of the preceding theorem can now be
stated.

THEOREM 2.2, If Ty denotes the auto-topology on B determined by K and T is the topology
inducedon L by Tg, then T = Ty,

Proof. Let J be the ideal of B generated by I. By Theorem 2.1, T, = T on B, and so
T coincides with the topology induced on L by T,z. It remains to prove that T= Ty, A
T;p-neighborhood base about a, an element of L, consists of all sets of the form V(a) =
Ln{zeB:arnjszSavk, where jeJ and keK}. If ¢ =j and d =k, then V 4(a) = V;(a)
and the T;,-neighborhood filter at a is coarser than the T-neighborhood filter at a. If j is in
J and k is in K then there exist ¢ in J and 4 in D such that ¢ < j and d £ k so that V_,(a)<
V(a). Therefore, the T;p-neighborhood filter at a is finer than the T-neighborhood filter
at a, from which it follows that T = T}, and the proof is complete.

The order topology on a lattice is usually defined in terms of order convergence, the sets
which are closed in the order topology being described in terms of filter convergence. How-
ever, in any bicompactly generated lattice the order topology can be described in terms of
ideals and dual ideals. An element ¢ of a lattice L is compact if ScL and ¢ < sup S implies
¢ < sup F for some finite set F=S. The set of all compact elements of L, denoted by C(L), is
closed under finite joins. An element d of a lattice L is cocompact if ScL and d 2 inf S
implies d = inf F for some finite set F=S. The set of all cocompact elements of L, denoted by
CC(L), is closed under finite meets. A lattice L is compactly generated if, for every x in L,
x = sup (x*nC(L)), and is bicompactly generated if, in addition, x = inf (x*nCC(L)). Kent
and Atherton [2] showed that on a bicompactly generated lattice L the order topology is
Hausdorff, totally disconnected, and coincides with T; also T = T, where I is the ideal of
L generated by C(L) and D is the dual ideal of L generated by CC(L). A corollary of this
result follows.

THEOREM 2.3. The order topology on an atomic Boolean algebra B is B-metrizable.
Proof. Let D be the dual ideal of B generated by the coatoms of B; D coincides with
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the dual ideal of B generated by CC(B). If I = {a': ae D}, then I is the ideal of B generated
by C(B). The result mentioned above together with Theorem 2.1 yields the fact that the order
topology coincides with T, = T;, = Tp, and T}, is B-metrizable.

An analogue of Theorem 2.3 is obtained for the ideal topology, upon consideration of the
Stone space of a Boolean algebra B. If X is the Stone space of the Boolean algebra B, it can
be shown that the order topology on 2% induces the ideal topology on B. This fact together
with the preceding theorem yields the following result.

THEOREM 2.4. The ideal topology on the Boolean algebra B is induced by the B-metric on
2%, where X is the Stone space of B.

3. Conditions related to the concept of bicompactly generated lattices.

As mentioned above, the order topology can be described in terms of ideals and dual
ideals in any bicompactly generated lattice. Kent [1] has given conditions under which the
order topology has an open subbase consisting of a certain family of ideals and dual ideals.
Let L(x) denote the intersection of all ideals I of the lattice L such that sup/=x, and
U(x) the intersection of all dual ideals D of L having inf D = x. Kent’s three conditions are:

Cl: x =supL(x) = inf U(x) for all x in L.
C2: If xe L(y), then U(x)NL(y) # 0.

If xe U(y), then L(x)nU(y) # 0.
C3: If xeL(y) and x < z, then xe L(z2).

If xe U(y) and x 2 z, then xe U(z).

He then showed that, if a lattice L satisfies C1 and C2, the order topology has an open subbase
consisting of all ideals L(x) and dual ideals U(x), where x is in L, and if L satisfies C1, C2, and
C3, then the order topology is discrete. Moreover, in a lattice satisfying C1 and either C2 or
C3, the neighborhood filter about x in the order topology has a base consisting of sets of the
form a*nb*, where ais in L(x) and b is in U(x), for any x in the lattice.

That the conditions Cl, C2, and C3 are closely related to the notion of bicompactly
generated lattices is shown by the next two theorems.

THEOREM 3.1. A lattice L satisfies C1 and C3 if and only if L is bicompactly generated,
C(L) is an ideal, and CC(L) is a dual ideal.

Proof. Assume that L satisfies C1 and C3. If @ is in L(x) and a < sup .S = b for some
set Sc L, then ais in L(b). Letting I be the ideal of L generated by S yields sup/ = b and so
I> L(b). Therefore a is in I, which implies that ¢ < s, v... v s, for some finite collection of s;
from §; that is, a is compact. Thus every element of L(x) is compact, and L is compactly
generated. The dual argument proves that L is bicompactly generated. The set C(L) is
closed under finite joins. Therefore, to prove C(L) an ideal it remains to show that, if x
is less than a compact element of L, then x is compact. Suppose x < ¢ and ¢ is compact;
then sup L(c) = ¢ implies L(c) =c*. Since every element of L(z) is compact for any z in L,
x in L(c) proves that x is compact. The dual argument proves that CC(L) is a dual ideal.
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Conversely, if L is bicompactly generated, C(L) is an ideal, and CC(L) is a dual ideal, then
assume that cis in x*NC(L). If Iis an ideal of L such that sup/ = x = c, then, by compactness
of ¢, cisin . Thus x*>L(x)o2x*NC(L), and x = supx™ = sup L(x) = sup (x*nC(L)) = x.
Similarly, x = inf U(x) and so ClI is satisfied. Since sup(x*nC(L)) = x and x*nC(L) is an
ideal, L(x) = x*nC(L). Thus, if x is in L(y) and x £ z, then, since x is in C(L), x must be in
z*AC(L) = L(z). The dual argument proves that L satisfies C3, and the proof is complete.

THEOREM 3.2. In a lattice L satisfying Cl and C3, condition C2 holds if and only if
L= C(L)= CC(L).

Proof. If L satisfies C1, C2, and C3, then x compact implies x* = L(x), in which case
U(x) = x* and so x must be compact. Similarly, every cocompact element of L is compact,
i.e., C(L) = CC(L)y<L. If xisin L, then x = sup (x* nC(L)) implies that x is in the dual ideal
generated by C(L) = CC(L); hence x is cocompact and L = CC(L) = C(L). Conversely, if
L = C(L) = CC(L), then, by the preceding theorem, L satisfies C1 and C3. If x is in L(y), then
x*nL(y) = U(x)nL(y) is non-empty. Similarly, if y is in U(x), then L(y)nU(x) is non-empty
and condition C2 is satisfied.

Ward [5] has given an example to show that the ideal and order topologies may not be
comparable on a Boolean algebra. It is a corollary of the next theorem that, on infinite atomic
Boolean algebras, the ideal topology is strictly finer than the order topology.

THEOREM 3.3. On any complete lattice satisfying C1 and C3 the ideal topology is finer
than the order topology.

Proof. Every element of a complete bicompactly generated lattice can be represented as
a meet of completely meet irreducible elements as well as by a join of completely join irreducible
elements [4, pp. 66-7). Therefore, if b is cocompact, b can be expressed as a finite meet of
completely meet irreducible elements of L. Thus b = b, A ... A b,, where the b, are completely
meet irreducible; in this case b* = bfn...Nb. is open in the ideal topology, since each b;
is a completely irreducible ideal. Dually, if a is compact, then a* is open in the ideal topology.
Since, in a bicompactly generated lattice, the order topology coincides with T, this proves
the theorem.

COROLLARY 3.4. On any infinite atomic Boolean algebra B, the ideal topology is strictly
finer than the order topology.

Proof. Each cocompact element of B may be expressed as a finite meet of coatoms;
hence ™ is a finite intersection of completely irreducible ideals generated by coatoms. Dually,
a* is open in the ideal topology for every compact element a of B. Thus, the sets a*nb*
(a compact, b cocompact) are open in the ideal topology; since they form an open subbase
for the order topology on B, the ideal topology is finer than the order topology. Since the
ideal C(B), consisting of all compact elements of B, is closed under the ideal topology, by
Theorem 1.3, but the closure of C(B), under the order topology, is B, it follows that the ideal
topology is strictly finer than the order topology on B.
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1t is an open question as to whether or not the ideal topology is Hausdorff on every dis-
tributive lattice, but it follows immediately from Theorem 3.3 that on any complete distribu-
tive lattice, satisfying Cl and C3, the ideal topology is Hausdorff, since the order topology
is Hausdorff on such lattices.

The results in this paper are from the author’s dissertation written at the Washington
State University. In this connection I wish to express my gratitude to Dr D. C. Kent for his
guidance.
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