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CONVEX LATTICE POLYGONS OF MINIMUM AREA

R.J. SIMPSON

A convex lattice polygon is a polygon whose vertices are points on the integer
lattice and whose interior angles are strictly less than « radians. We define a(2n)
to be the least possible area of a convex lattice polygon with 2n vertices. A method
for constructing convex lattice polygons with area a(2n) is described, and values
of a(2n) for low n are obtained.

1. INTRODUCTION AND KNOWN RESULTS

A convex lattice polygon is a polygon whose vertices are points on the integer
lattice and whose interior angles are strictly less than x radians. A lattice polygon
with v vertices will be called a v-gon. In this paper we investigate the function a(v)
which gives the least possible area of a convex v-gon. A convex v-gon with area a(v)
is called minimal.

In our first theorem we show that finding a(v) for a given v is equivalent to finding
g{v) which is the least possible number of lattice points in the interior of a convex v-gon.

THEOREM 1. Forv >3,
a(v) = g(v) +v/2-1.

PRrROOF: Consider a convex v-gon with g(v) interior lattice points. Suppose that
A, B and C are three vertices with A adjacent to B, B adjacent to C, and that the
lattice point X lies on the edge joining A and B and is distinct from A and B. We
can construct a new polygon by replacing the edges AB, BC with AX, XC. This new
polygon is still convex and contains g(v) interior lattice points. Repeating the process
we can obtain a convex v-gon with g(v) interior lattice points and whose circumference
includes no lattice points other than the vertices. By Pick’s Theorem [2] the area of
this polygon is

g(v) +v/2-1,

which implies

(1) a(v) < g(v) +v/2 - 1.
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Now suppose we have a convex v-gon with area a(v). The construction described
above reduces the area of a v-gon so the only lattice points on the circumference of the
polygon are its vertices, and hence by Pick’s Theorem,

(2) a(v) 2 g(v) +v/2-1.

Together (1) and (2) give the required result. 0

REMARK. Since g(v) is always an integer the theorem implies that a(v) is an integer
when v is even and an integer plus one half when v is odd.

The function g(v) has been studied extensively by Arkinstall [1] and Rabinowitz
[4, 5]. To apply the methods of this paper it is more convenient to use a(v). In Table
1 we list some results obtained by these authors.

v a(v) . g(v)

3 0.5 0

4 1.0 0

5 2.5 1

6 3.0 1

7 6.5 4

8 7.0 4

9 105 7
10 14.0 10
11 (15.5,21.5] (11,17)
12 (17.0,24.0] [12,19]
13 [19.5,32.5] (14,27)
14 [21.0, 40.0} 15, 34]
15 [23.5, 54.5] (17,48
16 [25.0,63.0] [18,56]

Table 1: The square brackets define a closed interval known
to contain the value. The results for v = 5 and v = 6 are
due to Arkinstall [1], those for higher values of v are due to
Rabinowitz [4].

The main purpose of this paper is to obtain a sufficient characterisation of minimal
v-gons for even v to find a(v) with a computer. This characterisation is derived in the
next two sections. We then use this characterisation to extend the list of known values
of a(v). In the last section we consider v-gons for odd v and discuss our results.
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2. CHARACTERISATION OF A MINIMAL 2n-GON

In this and the next section we consider lattice polygons with an even number of
vertices, and show that without loss of generality a minimal 2n-gon may be assumed

to have various properties.

Diagram 1

THEOREM 2. For every n greater than 1 there exists a parallel-sided minimal
A 2n-gon.

PrOOF: Let K be a convex lattice 2n-gon with area a(2n) and vertices
W, V2, ..., Vay. For any integer 1+ € [1, n] the line segment V;V;;, partitions the
polygon into two areas, say A; and A;. Without loss of generality suppose 4; < 4,.
We can then form a parallel-sided lattice polygon L using vertices Wy, W, ..., W,,
where

Wi=Viigj for j=1,...,n+1

and for j =n + 2 to 2n we set W; so that the edge from W;_, to W; is parallel and
equal in length to the edge from Wj_,_; to W;_,,. See Diagram 1. This gives a new
2n-gon with area 24, which is at most equal to a(2n), since K is minimal. If L is
convex we must have 24, equal to a(2n) and we are done. It remains to show that we
can always choose i so that L is convex.

Consider Diagram 2. This shows part of the circumference of K and line segments
ViVas1 and V3V, 2. The first line segment, which corresponds to taking i = 1, will
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Diagram 2

produce a convex 2n-gon L provided neither a; + 3; nor a; + 3, is at least w. If this
is so we are done.

We cannot have both these sums being at least 7 since this would imply either
a; + a3 or fB; + B2 is at least 7, contradicting the convexity of K. Assume then that

(3) ay+ 6 2m,
(4) az+ﬂ2<1‘l’.

By the convexity of K we have

ajtay<T, aztas<mw

and clearly az + ag = (1 + Bs.
Together with (3) these imply that
as+ B4 < .

This means that we could use 7 = 2 to construct a convex parallel-sided 2n-gon L
unless
as+f0s 2w

We have shown: if the sum of the angles on the left hand side of V3V, is at least
7« then we could use the diagonal V,V,,,, unless the sum of the angles on its left hand
side is at least w. This argument can be repeated for each diagonal V;V,;;. But if
i =n + 1 the diagonal is V,;,V; and the angles to its left hand side are a; and 3,.
By (4) the sum of these is less than . This implies that at least one choice of ¢ will
allow us to construct a convex parallel-sided 2n-gon with area a(2n). 1]
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Now suppose that a parallel-sided 2n-gon has vertices on the lattice points
(X1, 11), (X2, Y2), ..., (X2n, Yan), ordered in a clockwise direction. We form a set of

2n vectors vy, vz, ..., V2, by taking the differences between consecutive vertices:

vi=(Xip1 - X5, Y1 —Y) fori=1,...,2n -1,
Va2n = (Xl - X2n1 },l - ),211.)-

Since the 2n-gon is parallel-sided we have
(5) Vign = —V; for i=1,...,n,

so that the sequence vy, ..., v, uniquely determines the 2n-gon. It is clear that for n of
the vectors the z-component is non-negative and for the rest it is non-positive. Without
loss of generality we may assume that v, to v, have non-negative z-components.
We call the sequence {v1, ..., v,} the edge vectors of the polygon. We denote the
components of v; by z; and y; with z; > 0.

THEOREM 3. A necessary and sufficient condition for convexity of a parallel-sided
2n-gon with edge vectors {vy,...,vp,} isthat forn+12j>i21

(6) yiz; — ziy; > 0
with (Zn41, Ynt1) being interpreted as (—z1, —y1) in accordance with (5).

PROOF: A necessary and sufficient condition for convexity is that the angle bet ween
v; and v;, measured clockwise from v;, is less than 7 radians. Let this angle be 6.
The expression in (6) gives the cross-product v; x v; which is pointing in the z direction

if (6) holds. The sign of the left hand side of (6) is the sign of the sine of §. So (6)
holds if and only if 0 < § < 7, as required. g

Using edge vectors to define a parallel-sided 2n-gon allows us a convenient formula
for its area.

THEOREM 4. The area of a parallel-sided convex 2n-gon with edge vectors
{(zi,%):i=1,...,n} is

(M i Y (wizs - ziy5).

i=1 j=i+1
PROOF: The summand in (7) is the area of a parallelogram with vertices at (0, 0),
(23, ), (=5, y;) and (=i + zj, yi +y;). A convex parallel-sided 2n-gon can be parti-
tioned into (;‘) parallelograms each of which has sides equalling a different pair of edge
vectors. The reader may be convinced of this by considering Diagram 3. Then (7) is
simply the sum of the areas of these (3) parallelograms.

We obtain two corollaries to this theorem.
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Diagram 3

COROLLARY 5. For all n greater than 1,

a(2n) > (’2')

PROOF: Each of the (7) summands in (7) is at least 1. 0

COROLLARY 6. If (z;, y:) is an edge vector of a minimal parallel-sided 2n-gon,
then ged (25, ¥:) = 1.

PROOF: If the components z; and y; of an edge vector have greatest common
divisor d > 1, then we can replace the vector with (z;/d, y;/d). It is clear from
Theorems 3 and 4 that the polygon thus obtained will be convex and have a reduced
area. 0

Thus when seeking 2n-gons of minimal area we need only consider polygons with
edge vectors whose components are relatively prime. Geometrically this means that
the only lattice points on the circumference are the vertices, the necessity of which was
noted in the proof of Theorem 1.

For the final results in this section we need the following theorem which concerns
the effect of a unimodular transformation on a parallel-sided convex 2n-gon.

THEOREM 7. If {(zi, i):4 = 1,...,n} is the sequence of edge vectors of a
parallel-sided convex 2n-gon, and M isa 2 x 2 matrix with integer entries and deter-
minant 1, then

{(zs, vi)M:i=1,...,n}
is the sequence of edge vectors of another parallel-sided convex 2n-gon with the same

area.
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PROOF: Suppose
a b
w-]* ).

(=3 i) = (3, y)M
= (az; + cyi, bz; + dy;).

Then for any i let

It is easily checked that
y(-z;- - 2:'!/;- = YiZj — ZiYj-
Theorem 3 then implies that the new polygon is convex and Theorem 4 implies

that the two polygons have equal area. 0

COROLLARY 8. There exists a parallel-sided minimal 2n-gon with edge vectors
{(zi, wi): 1 =1, ..., n} satisfying

(8) (z1, 31) =(0,1)
and
(9) yi2z;>0fori=2,...,n.

PROOF: In the remarks preceding Theorem 3 we showed that such a polygon exists
with each z; 2> 0. By Corollary 6 gcd (1, y1) = 1 so there exist integers b and d such
that

bz, +dy, = 1.

We now post-multiply each edge vector by the matrix

_[wn b
m=|2 1l

This matrix has determinant 1 so we may apply Theorem 7, and obtain the

sequence of edge vectors of a new minimal 2n-gon with edge vectors {(zi, y}): i =

1,...,n}. It is easily checked that
(zllv y;) = (Ov 1)

and that forn 21> 1,

!
T; =%NTi —T1Y;

which is positive by Theorem 3. Thus we have a minimal 2n-gon satisfying (8) and
with z-components of all but the first edge vector strictly positive.
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Now post-multiply each new edge vector by the matrix
1 N
0 1

This does not change the z-components of the vectors, nor does it change (z, y).

where N is a positive integer.

However it does increase the y components of the other edge vectors. If the integer NV
is sufficiently large we obtain a vector sequence with y; 2> z; for each 1, as required. 0

We now summarise the conclusions of this section. We have

a(2n) = min z_: Z (viz; — ziy;)

=1 j=i+1

where the minimum is taken over all sequences of n ordered pairs

{(zsyw):i=1,...,n}

satisfying,

(10) viz; — ziy; > 0 for 1<t1<j<mn,
(11) ged(zs,95)=1  for i=1,...,mn,
(12) (zlv yl) = (01 1)1

(13) 2z >0 for ¢1=2,...,n.

FAREY SEQUENCES OF VECTORS.

We define a sequence of Farey sequences of vectors Sy, S1, ... by

So = {(0’ 1)) (]-a 1)}

and if Si={u,uy, ..., un}
then Si+1 = {u1, uy +uz, uz, uz + ug, ..., up}.
Thus Sl = {(0’ 1)’ (11 2)7 (1’ 1)}’

Sz = {(0, 1), (1, 3), (1, 2),(2,3), (1, D}
and so on. The construction of these sequences is illustrated by the digraph in Diagram

4. These sequences are analogous to the well-known Farey sequences of fractions (see, for
instance, [3]) in which our z and y components become numerators and denominators
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Diagram 4

of rational numbers. The following properties of our vector sequences are easily proven
and are analogous to properties of the fraction sequences.
(a) If j > i and u; = (s4, t;), u; = (s;, t;) are members of S for some k
then
t;s; — s:t; > 0.
(b) If ged(z,y) =1 and y > = > 0 then (z, y) belongs to S for some k.
(¢} (0,1) € S for all k.

Comparing these properties with (10), (11), (12), and (13), we see that a minimal
parallel-sided 2n-gon can be constructed with its edge vector sequence being a sub-
sequence of some Farey sequence of vectors.

Before proving Theorem 9, which is the major result of this paper, we need some
more notation.

We write the vectors in the kth Farey vector sequence as
u(k, 1), u(k, 2), ..., u(k, m).
If v={(z,y) and u=(s,t) we write
uzv
to mean ys—zt > 0.

When z and s are positive this is equivalent to

Zs
z

)

S

that is, the slope of v is greater than the slope of u. It follows from property (a) above
that if 7 > ¢ than u(k, j) = u(k, ¢), and from (10) that v; = v; for edge vectors v;
and v;j.
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THEOREM 9. Suppose that K is a minimal parallel-sided 2n-gon with edge vec-
tors {vi, V2, ..., Va} = {(2i,¥:): 4 = 1,...,n} which satisfy (10), (11), (12) and
(13).

Ir

vi = u(k, j)

in Si for some k > 1 and v; ¢ Si_1, then, without loss of generality, u(k, j — 1) and
u(k, j + 1) belong to the sequence of edge vectors.

PROOF: Suppose

(14) v; = u(k, j)
=“(ksj_1)+“(ksj+1)
for some j and k. This implies that v; E. Sk and v; ¢ Si—,. Suppose that u(k, j —1)

is not an edge vector and further suppose that k is the greatest index for which such
an i can be found.

This last assumption implies that
(15) Vi < u(k’ j— 1)

for vi;_1 = u(k, j — 1) would contradict the maximality of k. This fact will be apparent
from the digraph in Diagram 4.
Now let r be the greatest integer satisfying

(16) Vigr S u(k, 7 + 1), viyr # u(k, 7 +1).

Clearly (15) holds with r = 0 so r is non-negative.
The maximality of k now implies that

Vipr =vi+u(k, j+1),
Vita = Vip1 + u(kv it 1))
Vitr = Vige-1 + u(k, ] + 1).

If any of these did not hold, then the right hand side would give us a u(k', 7 — 1)
with k' > k. Hence, by (14)

(17) v=ulk,j~1)+(s—i+u(k,j+1), s=1i,...,i+r
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We now show that we can obtain a parallel-sided convex polygon K' whose area
is not more than the area of K. The edge vectors of K' are v}, v3, ..., vl where

= Vm, for m=1,...,1-1,
(18) wm=u(k, j—1)+ (m—i)u(k, j + 1),
=Vm—ulk,j+1l)for m=4,...,i+7,
vl =V, for m=i+r+1,...,n

To show that K’ is convex we need to establish that
Vin = Vg1

for m =1,...,n — 1. This is clear for all m except m = i — 1 and this case was
established in (15). It remains to show that its area is not greater than the area of K.
Writing A for the area of K and A’ for the area of K' we have

n-1 n
(19) A=ZZVJ'XV.'
=1 j=i+1
=5+S5+...+ S
-2 -1
where 5 = E z V¢ XV,
=1 t=s+1
i—1 147
S = Z Zv, XV,
=1 t=i
i-1 n
Z Z Ve XV,
s=1t=3+1
i+r—1 i4r

Sy = Z z Ve XV,

=1 t=a+1

Ss

i+r—1 n

Ss:Z Z Ve XV,

=1 t=itr4l

n-1

So= E i Vi X V,.

s=it+r+1t=s+41

We write S} for the sums corresponding to Sj, j =1, ..., 6, but with summand
vy X v, instead of v¢ x v,. From (17) we get, writing u* for u(k, j +1) and u~ for
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u(k’ .7 - 1) ’
S =5,
i—1 t4r
55=5-Y.Y (at xv)
=1 t=3
i-1
=8, — (r+1)2:(u+ X v,),
=1
Sy = Ss,
i+r—1 i4r
Si = Z Z (ve —ut) x (v, —ut)
s=1 t=s+1
t+r—1 i+r
= E z {vixv,—vixut —uxv, +ut xut}.
s=i t=s+1

Now ut x ut = 0. Using (17) we then get

i+r—1 i+r
Si=8- Y Y {{(u+@-i+1)u*)xut}
=i t=s-1
+{ut x (0™ + (s -i+1)ut)}}
i+r—1 i+r
=8, - Z Z (u‘xu++u+xu')
=1 t=s+1
= S41
Sé:Ss—(T'f'l) Z (Vtxu"'),
t=it+r+1
Sé = Ss.

Noting that A' = S} + §3 + ... + S§ we obtain
i—-1 n
(20) A=A-+1){D (rxv)+ Y (vexuh)}
=1 t=itr+l

Now (15) implies that ut = u~ = v, for s =1,...,% —1 and (16) implies that
ve=ut or vi2ut fort=i1+r+1,...,n. Thus each summand is non-negative. We
then have

A<A

as required.
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A similar analysis applies when u(k, j + 1) rather than u(k, j — 1) is absent from
the set of edge vectors. 0

In graph-theoretic terms this theorem says that without loss of generality the se-
quence of edge vectors of a minimal 2n-gon is a closure of the digraph in Diagram 4;
that is, a set of vertices with the property that the end-points of the out-arcs from any
vertex in the set are also in the set.

For any n there is a finite number of closures of n vertices. We can calculate the
areas corresponding to each such closure, and the minimum of these equals a(2n).

The number of such closures increases quickly with n. For n = 2 there is only one
choice: {(0,1), (1, 1)}. Similarly for n = 3: {(0, 1), (1, 2), (1, 1)}. For n = 4 there
are two choices and for n = 5 there are five. Values of a(2n) for n =2, ..., 11 are
shown in Table 2. For each n it is possible to find a minimal 2n-gon using the edge
vectors of a minimal 2(n — 1)-gon with an extra edge. We start with edge (0, 1) then
add the new edges to the edge sequence.

n a(2n) New edge
2 1 (1,1)
3 3 (1,2)
4 7 (1,3)
5 14 (1,4)
6 24 (2,5)
7 40 (1,5)
8 59 (2,7)
9 87 (1,6)
10 121 (2,9)
11 164 (1,7)

Table 2: Values for a(2n). The values for n =6, ..., 11 are
original to this paper.

V-GONS WITH v ODD.

Our results so far have been concerned with v-gons in which v is even. In the next
theorem we obtain bounds on a(2n + 1).

THEOREM 10. For n 2> 2 we have

(3) a(2n+1) 2> [(a(2n +2) + a(2n))/2] +1/2,
(b) e(2n+1)<a(2n+2)-1/2,

where square brackets denote integer part.

https://doi.org/10.1017/50004972700028525 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700028525

366 R.J. Simpson [14]

PRrOOF: (a) Suppose K is a minimal (2n + 1)-gon. By drawing a line from vertex
i to vertex i + n we partition K into two areas A; and A;. By an argument similar
to that used in the proof of Theorem 2, i can be chosen so that each area is half a
convex polygon. Then one of these areas is at least a(2n)/2 and the other is at least
a(2n + 2)/2. By the remark following Theorem 1, a(2n + 1) cannot be an integer and
(a) follows.

(b) Now suppose K is a minimal (2n + 2)-gon. If we remove vertex i and form an
edge from vertex i — 1 to vertex i + 1, we form a convex (2n + 1)-gon. The triangle
thus removed has area at least half by Pick’s Theorem and (b) follows.

COROLLARY 11.

(a) 195 < a(11) < 21.5,
(b) a(13) = 32.5,

(c) 49.5 < a(15) < 54.5,
(d) 73.5 < a(17) < 86.5,
(e) 1045 < a(19) < 120.5,
(f) 142.5 < a(21) < 163.5.

PROOF: These results follow from the theorem and the data in Tables 1 and 2. [
In Corollary 5 we showed that

(21) a(2n) > (’2')

In [5] Rabinowitz showed that

9(2n) < (Z)

By Theorem 1 this implies:

(22) a(2n) < (:) +n-1.

This result can be obtained by calculating the area of a 2n-gon with edge vectors
(0,1), (1,n-1), (1,n—2),...,(1,1). This bound is only sharp for n < 5, while
(21) is only sharp for n < 3.
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