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TERMINAL PATH NUMBERS
FOR CERTAIN FAMILIES OF TREES
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Abstract

We determine the limiting distribution of the distance from the root of a tree to any nearest endnode
of the tree (other than the root) for certain families of rooted trees.

1980 Mathematics subject classification (Amer. Math. Soc.): OS C OS.

1. Introduction

The terminal path number S(Tn) of a rooted tree Tn with n nodes is defined as
follows (for definitions not given here see Harary and Palmer (1973) or Moon
(1970)): if n = 1 then 5(7;) = 0; otherwise, 8(Tn) is the distance from the root of
Tn to any nearest endnode of Tn (other than the root if it is an endnode). If ®s
denotes some family of rooted trees, let p{n, k) denote the probability that
8(Tn) > k where the probability is taken over the trees Tn in f. Grimmett (1980)
has derived a recurrence relation for the numbers

when 'S is the family of rooted labelled trees. His argument is based on a
probabilistic representation of these trees in terms of a branching process
satisfying certain conditions. Our object here is to consider this problem for a
fairly general class of families of rooted trees by a direct combinatorial argu-
ment. Our main results are given in Section 3 after some preliminaries in Section
2; some numerical results are given in Section 4 for labelled trees, plane trees,
and binary trees.
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2. Preliminaries

Let yn denote the number of trees Tn in a given family *¥ of rooted trees; if
there are weights associated with trees in <?, then each tree is counted according
to its weight in these definitions. We shall assume that ^ is a simply generated
family, that is, that the generating function

oo

y =y(x) = ^ynx"
I

satisfies a relation of the type

0 ) y = x<p(y),

where

<p(y) = 1 + cxy + c2y
2 + • • •

is a power series in y with non-negative coefficients. This implies that the trivial
tree 71, is in 5" and that any non-trivial tree Tn in ®s can be constructed by
joining the roots of an ordered collection of smaller trees in ^-called the
branches of Tn-to a new node which serves as the root of Tn. The factor x in
equation (1) takes the new root node into account, and the coefficients c,
determine weights associated with the trees in <3r. For further elaboration of this
last point see Meir and Moon (1978); see also Otter (1949).

If 0 < k < n — 1 let y^ denote the number of trees Tn in *$ such that
S(Tn) > k. We now give a recurrence relation for the generating functions

THEOREM 1. Ify = x<p(y), then G0(x) = y(x) and

(2) Gk+l(x) = x<p(Gk(x)) - x

for k = 0,1,

PROOF. It is easy to see that 8(Tn) > k + 1 for a non-trivial rooted tree Tn if
and only if 8(B) > k for each branch B of Tn. Relation (2) follows immediately
from this observation and assumption (1); the term -x excludes the trivial tree
Tx that has no branches.

We shall use the following results in the next section.
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L E M M A 1. Suppose

(p(t) = 1 + c,f + c2t
2 + • • •

is a regular function oft when \t\ < R < + oo and let

y = y(x) = x + y2x
2 + y3x

3 + • • •

denote the solution ofy(x) = x<p(.y(x)) in a neighbourhood of x = 0. If
(i) c, > 0 and Cj > Ofor somej > 2,
(ii) c, > Ofor i > 2, and
(iii) TQ?'(T) = <JP(T) for some T, where 0 < T < R, then

(3) ^ - c p - f c - V *

as n -» oo, w/iere p = T/<J>(T) O/K/ C = {<P(T)/(2TT<]P"(T))}1/2. Furthermore, if

(4) ^ - ^ " M p — ^ - ^

as n —» oo.

LEMMA 2. Le/ ^(x) = 2^° anx
n, B(x) = 2^° 6nx", and A(x)B(x) = 2 ?

and suppose there exist positive constants a and p such that

an ~ ap-"«-1/2 am/ 6n = O(p-"

asn^oo.If B(p) =£ 0,

ay n —» oo.

Relation (3) was proved in Meir and Moon (1978) and the proof of relation
(4) is essentially the same except that Darboux's theorem is applied to expansion
(3.5) in that paper instead of to expansion (3.3); we remark that a result closely
related to relation (3) was proved earlier in Otter (1949). Lemma 2 was proved in
Meir and Moon (1977).

3. Main results

We now determine the limiting behaviour of the probability p(n, k) = y^/yn

that S(Tn) > k for a tree Tn chosen from the simply generated family S\ We
assume throughout this section that the function q> that appears in relation (1)
satisfies the hypothesis of Lemma 1.
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THEOREM 2. If k is any fixed non-negative integer, then

Pk = }^P(n' k) = V1Y2 • • • Y*>

where

Y, = f*P'(Gj_x(p))

forj > 1 and an empty product is interpreted as one.

PROOF. In what follows we let Gn{f(x)} denote the coefficient of x" in any
power series/(x).

If we differentiate both sides of equation (2) with respect to x, multiply
throughout by x, and then simplify slightly, we find that

(5) *<*+,(*) - *¥(Gk(x)) • xGi{x) + Gk+l(x)

for k > 0. We may assume as our induction hypothesis that

$.{*<*(*)} = nynk = np(n, k)yn ~ cp^n^2

as n -» 00, in view of relation (3). Furthermore, it follows from relation (4) that

en{V(G*W)} < en{x<p'(y)} =
Therefore, since

it follows from (5) and Lemma 2 that

np(n, k + \)yn = en{xG^+l(x)} ~ p<p'(Gk(p)) • »p(n, k)yn,

or that

p(n, k + l)-*yk+1pk =Pk+i

as n -> 00. This suffices to complete the proof of the theorem.

COROLLARY 2.1. There exists a constant A that depends on '$ such that

as k —» 00.

PROOF. Let & = Gk(p) for k = 0, 1, Then yS0 = y(p) = T by Lemma 1,
and

where

8(0 = P(<p(t) ~ 1)
in view of Theorem 1. If 0 < / < T then

g ( t ) = p [ C l t + c 2 t 2 + • • • ) = tp(cx + c 2 t
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since c, > 0 for some / > 2 and since pq>'(r) = 1 by Lemma 1. It follows,
therefore, that the sequence fio, /?,, . . . decreases monotonically to a limit which
must necessarily be zero. This implies, since 0 < pc, < 1, that

for some constant a as k -* oo; see DeBruijn (1970), Section 8.3.
Now

7, = w'(Pj-i) = nil + (Kb-*)) - P^I(I + occupy-1))
since <p'(0 is regular when |/| < R and /^_, < T < R when,/ > 1. Consequently,

for some constant A as /c -» oo, since 2(CiPy~' converges. This proves the
required result.

Let fi(n) denote the expected value of 8{Tn) over all trees Tn in ®s. Before
determining the limiting value of /i(n) we need to introduce some more terminol-
ogy and results.

If the tree Tn is rooted at node r suppose we select an edge rs incident with
node r; we next select an edge su incident with node s where u =£ r, and so on.
Let c(Tn) denote the number of edges selected before reaching an endnode of Tn

(other than r if r is an endnode) where the process terminates. We assume that
at each step the next edge chosen is chosen at random from the admissible
edges; we define c(Tn) to be zero when n = 1. If 0 < k < n - 1, let q(n, k)
denote the probability that c(Tn) > k where the probability is taken over all
trees Tn in Sr. It follows from results in Meir and Moon (1975) that

(6) qk = lim q(n, k) = (1 - p/rf'^l + (k - l)p/r)
ft—»OO

for each non-negative integer k, and that

(7) lim 2 <?(«, *) = 2 Ik = 2 T / P - 1.

COROLLARY 2.2. n(n) —»/?, + p2 + • • • as n —> oo.

PROOF. If S(Tn) > k, then it must be that c(Tn) > k. It follows readily from
this observation that

(8) p(n, k) < q{n, k)

for all n and k.
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Let the functions Pn(t), P(t), Qn(t) and Q(t), where n = 1,2, . . . and / is
non-negative real variable, be defined by the relations Pn{t) = p{n, [t + 1]),
p(0 = />[/+!]> Qn(0 = 9i"' I' + !D. and 0(0 = 0[/+1]. In particular,

Pn(t) = 0 . (0 = 0
if / > n - 1. It follows from Corollary 2.1 and (6) that

Pn(t)-^P{t) and &(/)-> 0 (0
for each fixed value of / as n —» oo. Furthermore,

^ ( 0 < Qn(')
for all n and /, by (8); and

/0-(O->/0(O
as n -^ oo, by (7), where the integrals are over the interval [0, oo).

We may apply Fatou's Lemma (see Royden (1968), p. 226) to the functions
Qn(t) - Pn(t) and conclude that

/ (0 (O - ^(0) < limj

< lim sup (Qn(t) - lim sup f Pn{t)

= / e ( 0 - l i m s u p fPn(t),

whence,

lim sup /"/»„(/) < /"P(O.
/I—>OO ^ **

But if we apply Fatou's Lemma to the functions Pn(t) we find that

\irnmf jPn(t) > f P(t).

It follows, therefore, that

H(n) = jPn(t)-+f P(t) =Pl +p2 + • • •

as n —» oo, as required.

4. Results for particular cases

We now consider the limiting values of p(n, k), for fixed k, for the following
families ?F of simply generated trees: labelled trees for which c, = 1/7! for all /,
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plane trees for which c, = 1 for all /, and binary trees for which c2 = 1 and
c, = 0 otherwise (see Meir and Moon (1978)).

THEOREM 3.1f3 denotes the family of rooted labelled trees, then

Pk =

where /?0 = 1 and

fork = 0, 1, . . . .

PROOF. In this case

y =

and <p(t) = e', so T = 1 and p = e"1. The recurrence relation for the numbers
Pk = Gk(e"') follows from Theorem 1; and the formula for pk follows from
Theorem 2 since

If we let ak = fik — I then a0 = 0,

and

This expression for/>^ was derived by Grimmett (1980) by a different argument.
Since pk

the numbers
yk it is perhaps more convenient to work directly with

= f*p'(Gk(P)) = *A-» = i8 t + I + e~\

Then y, = 1 and

Y*+i = exp()8Jt - 1) = exp(yA: - e"1 - l) = aey\

where a = exp(-e"' — 1) for A: > 1. The numerical values of some of these
numbers, truncated after the last digit displayed, are given in Table 1.

TABLE 1.

Data for Labelled Trees

k A "

1
2
3
4
5
10
15
20

.63212

.32432

.14093

.05567

.02106

.00014
9 x lO"7

6 X 10-»

1.71828
2.39642
2.83068
3.03986
3.12607
3.17854
3.17890
3.17890

1.00000
.69220
.50881
.42355
.38894
.36802
.36788
.36787

1.00000
.69220
.35219
.14917
.05802
.00040
2 x 10-6

1 X 10"8

2.71828
5.11470
7.07411
8.14474
8.61108
8.90216
8.90418
8.90419

1.00000
1.69220
2.04439
2.19357
2.25159
2.28596
2.28619
2.28619
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THEOREM A.IfS denotes the family of plane trees, then

Pk = 9-4rk{\ + 2- 4rky2

for k = 0,1,

PROOF. In this case

and <p(0 = (1 - t)~\ so T = \ and p = ±. If /?t = Gt(i), then /?0 = 5 and

for /c = 0, 1, . . . , by Theorem 1, from which it follows readily by induction
that

pk = §4-*(i + 2 • 4-*)'1.

Now

y k + l - P9'(Gk0>)) = JO - &)~2 = Wk+x/Pk)
2,

whence

A = Y.Y2 • • • ? * = 4* + 1 # = 9 • 4"*(1 + 2 • 4^)-2

as required.

It follows from Corollary 2.2 and Theorem 4 that

M ( « ) - » S A - 1-62297...,
l

as n -» oo, for the family of plane trees.
We adopt the notational convention that (Oo = 1 and (/)_,• = t(t - 1) • • •

(t -j + l)forj = 1,2,

THEOREM 5.1f3 denotes the family of binary trees, then

p(2n+ l,fc) = 2*(n)2._1/(2«)2*_1.

PROOF. In this case^ = x(l + y2), whence

Gk(x) = x~\xyf
by Theorem 1. Now

m - l\x2n+m
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for m — 1, 2, . . . , by Lagrange's inversion formula. We find, therefore, that

(x)=

for k = 0, 1 Consequently,

p(2n + 1, *) - y

and this reduces to the expression given above.
It follows readily from Theorem 5 that

lim p(2n + I, k)
n—>co

for each fixed integer k; hence

2*+1-2*

lim n(2n + 1) = ^2k+1~2f' = 1.56298 . . . ,
n—>oo .

by Tannery's theorem (see Bromwich (1931), p. 136).
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