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As most mathematically justifiable Lagrangian coherent structure detection methods
rely on spatial derivatives, their applicability to sparse trajectory data has been limited.
For experimental fluid dynamicists and natural scientists working with Lagrangian
trajectory data via passive tracers in unsteady flows (e.g. Lagrangian particle tracking
or ocean buoys), obtaining material measures of fluid rotation or stretching is an active
topic of research. To facilitate frame-indifferent investigations in unsteady and sparsely
sampled flows, we present a novel approach to quantify fluid stretching and rotation via
relative Lagrangian velocities. This technique provides a formal objective extension of
quasi-objective metrics to unsteady flows by accounting for mean flow behaviour. For
extremely sparse experimental data, fluid structures may be significantly undersampled
and the mean flow behaviour becomes difficult to quantify. We provide a means to maintain
the accuracy of our novel sparse flow diagnostics in extremely sparse sampling scenarios,
such as ocean buoy data and Lagrangian particle tracking. We use data from multiple
numerical and experimental flows to show that our methods can identify structures
beyond existing limits of sparse, frame-indifferent diagnostics and exhibit improved
interpretability over common frame-dependent diagnostics.
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1. Introduction

Experimental methods for spatially and temporally resolving fluid velocities in both large
and natural flow domains have improved significantly in recent years. For a wide range
of turbulent flows, ground truth measurements of fluid velocity can be measured using
high-speed imaging of advected particles and any number of particle image velocimetry
(PIV) and Lagrangian particle tracking (LPT) algorithms. For the largest spatial scales and
for the sparsest trajectory data, only LPT is suitable and provides a Lagrangian framework
with which to extract transport features in the flow. At oceanographic and atmospheric
circulation spatial scales, GPS tracking of buoys and balloons typically replaces PIV and
LPT imaging approaches. To date, Lagrangian data have provided great insights to our
studies of sea ice and ocean dynamics, as well as for meteorologists studying atmospheric
behaviours with drifting weather-balloon measurements (Businger, Johnson & Talbot
2006; Leppäranta 2011; van Sebille et al. 2018). Coherent structure identification from
sparse data, however, has typically relied on a grab-bag of techniques, often tailored to
each individual flow, with no unifying metrics that work in all domains.

Historically, lab-based measurement techniques have evolved hand-in-hand with
systematic technological advances such as integrated circuits, the laser and most recently
the CMOS chip. Starting out from intrusive, probe-based extraction of Eulerian data
(fixed-point statistics) through to time-averaged planar field measurements, e.g. PIV,
and then most recently to dense time-resolved particle tracking in three dimensions, the
availability of said tools has influenced the choice of metrics used to describe the flow
in question. As a case in point, the use of Reynolds stresses to describe shear flows
has dominated the community since the days of hot-wire anemometry even though such
stresses are only a proxy to the coherent structures driving the turbulent processes on hand.

Commonly used approaches for identifying structures in experimental flows are
typically frame-dependent. That is, the extracted features will depend on the choice of
reference frame of the experimentalist and, thus, violate a fundamental requirement from
continuum mechanics for describing material fluid behaviour. Material behaviour can be
thought of as the features in a flow revealed in a tracer visualisation experiment (e.g. dye or
smoke). Although our physical intuition around Lagrangian velocities may be strong, e.g.
one can easily imagine a leaf floating downstream on a river surface, extracting physically
meaningful diagnostics that describe the material deformation of the surrounding fluid
is much more difficult. Indeed, many common and intuitive trajectory metrics are
frame-dependent, such as the Lagrangian velocity, looping (Lumpkin 2016), curvature
(Bristow et al. 2023), complexity measures (Rypina et al. 2011) and network-based
approaches (Iacobello & Rival 2023), as well as many diagnostics from gridded velocity
data such as vorticity (Bernard & Thomas 1993), swirling strength (Zhou et al. 1999) and
the lambda-2 criterion (Jeong & Hussain 1995) .

Although choosing a single common reference frame may appear logical to study flows
we understand well, this approach quickly loses its foundation when encountering flows
where no a priori knowledge of the relevant structures or a natural reference frame
are available. Furthermore, truly material behaviour does not change under rigid-body
frame changes, regardless of whether a user-preferred frame exists or not (Truesdell &
Noll 2004). Thus, Euclidean frame-indifference is a fundamental litmus test for structure
identification schemes to actually identify material features even if one always conducts
their research in the same reference frame.

Methods that can effectively reveal fluid structures at both high and low trajectory
densities, in a frame-independent manner, and for the widest variety of flows would
provide a wealth of information for both understanding fluids in observational
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Relative fluid stretching and rotation for sparse trajectories

environments and as a common ground for comparison with numerical simulations. In
order to test sparse diagnostics in very different flows, we quantify the sparsity of a data set
by normalising the number of trajectories by the square or cube of a characteristic length
scale of the flow �, for two-dimensional (2-D) and three-dimensional (3-D) examples,
respectively.

Frame-indifferent (objective) diagnostics that identify Lagrangian coherent structures
(LCS) have been developed extensively over the last two decades (see Haller 2023) but
their implementation relies on spatial derivatives that are difficult to accurately compute
from sparse or unstructured data. To account for this, adaptations have been developed to
allow for data sparsity (Lekien & Ross 2010; Rypina et al. 2021; Mowlavi et al. 2022)
as have Green’s theorem-based approximations of rate-of-strain metrics from trajectory
arrays (Kwok et al. 1990). Most notably, Mowlavi et al. (2022) compared multiple sparse
methods for identifying hyperbolic (stretching) and elliptic (rotating) LCS in the Bickley
jet and ABC flow. When initialising particles on a structured grid, Mowlavi et al. (2022)
were able to accurately cluster particles into elliptic LCS at particle concentrations of
85�−2 and 504�−3 for the Bickley jet and ABC flow (� = π for both), respectively. They
were also able to identify hyperbolic structures from randomly initialised particles at
concentrations of 471�−2, and 3870�−3 for the Bickley jet and ABC flow, respectively.

Modern clustering methods provide a complementary frame-indifferent approach to
identify regions of fluid with similar fluid particle trajectories (see, e.g. Froyland
& Padberg-Gehle 2015; Hadjighasem et al. 2016; Schlueter-Kuck & Dabiri 2017).
Graph-theory-based clustering algorithms quantify similarity between trajectories
themselves and, thus, do not require measurements to be spatially proximal, as is required
for gradient-reliant approaches. As such, trajectories can be generated from gridded flow
data or observed experimentally, such as by LPT. In contrast to hyperbolic and elliptic
LCS, the coherent structures identified with trajectory clustering algorithms have no
inherent physical meaning besides a certain trajectory similarity. That is, one cannot use
clustering alone to interpret local stretching or rotation rates without a priori knowledge
of the flow behaviour.

The squared relative dispersion (d2) is an outlier diagnostic as it is suitable for sparse
and randomly oriented trajectories, is also objective (Haller & Yuan 2000), and has been
developed with a strong physical foundation. This fluid stretching metric has been used for
a number of years, particularly to understand dispersion and mixing by oceanographers
in a statistical manner (LaCasce 2008). The ability of d2 to identify coherent structures,
however, is limited as one is forced to initially choose particle pairs, whose relative
motion inevitably becomes uncorrelated at an a priori unknown temporal horizon (Haller,
Aksamit & Bartos 2021).

Current approaches for physically meaningful sparse trajectory diagnostics still rely on
a relatively dense field of particles (for a comparison, see, e.g. Mowlavi et al. 2022),
or well-behaved trajectory array geometries (Lindsay & Stern 2003). In light of the
unstructured nature of trajectory data, it is more common for experimental LPT data to be
spatially and temporally averaged or assimilated into gridded products prior to structure
analysis (Schröder & Schanz 2023). When averaging or projecting time-dependent fluid
motions to a single instance in time, such approaches potentially oversimplify transient
(non-stationary) flow behaviour that may exist in the underlying Lagrangian data.

Complementing these sparse approaches is the recent development of quasi-objective
coherent structure diagnostics, the trajectory rotation average (TRA) and trajectory
stretching exponent (TSE) (Haller et al. 2021). TSE and TRA calculate stretching
and rotation, respectively, for individual particle trajectories with no requirement of
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nearby velocity or trajectory data. The authors mathematically proved that under suitable
conditions (slowly varying, relatively small mean vorticity) TRA and TSE approximate
objective measures of rotation and stretching. Given these flow conditions, TRA and TSE
have proven to be advantageous in several extremely sparse geophysical buoy experiments,
accurately identifying algae trapping eddies in the ocean (Encinas-Bartos, Aksamit &
Haller 2022), as well as predicting Arctic sea ice stretching and breakup events that were
missed by other approaches (Aksamit et al. 2023).

In the present research, we introduce relative stretching and rotation metrics for
individual trajectories that incorporate knowledge of the average translation and rotation
of the sampled fluid. By utilising bulk behaviour of concurrent trajectories in a given
experiment, we can obtain objective diagnostics of stretching and rotation in unsteady
flows with much of the same flexibility of a true single-trajectory method. Our measures
of relative stretching and rotation can be seen as a natural synthesis of the objective
Eulerian deformation velocity of Kaszás, Pedergnana & Haller (2023) and quasi-objective
diagnostics of Haller et al. (2021).

In the following, we develop the theory of relative stretching and rotation and provide
several examples of performance. The robustness of relative Lagrangian stretching and
rotation is displayed by first comparing full resolution structure topology against ground
truth LCS boundaries in 2-D and 3-D flows, and then testing the accuracy of the trajectory
diagnostics in progressively downsampled data sets. We also display the enhanced ability
of relative rotation to distinguish between experimental turbulent flows for extremely
sparsely sampled data, when compared with traditional metrics. This superior performance
is shown for numerical simulation data and in real-world observations of ocean buoys from
the global drifter database and a large-scale LPT wind tunnel experiment.

2. Methods

2.1. Background
Consider a fluid flow with time-varying velocity field v(x, t). Infinitesimal fluid particle
trajectories can be generated as solutions to the differential equation ẋ(t) = v(x(t), t) from
some initial position x(t0) = x0. The flow map F maps fluid particles from their time
t0-positions to their position at a time t, along the trajectory x(t; t0, x0),

F t
t0 : x0 �→ x(t; t0, x0). (2.1)

The measurement of a scalar quantity associated to a fluid particle P(x(t)), such as its
temperature, is objective (frame-indifferent) under Euclidean transformations of the form

x = Q(t)y + b(t), (2.2)

where Q(t) is a rigid-body rotation matrix (an element of the matrix group SO(n) for n = 2
or 3) and b(t) is a time-varying translation vector. That is, in the two reference frames, the
scalar quantity remains the same: P̃(y) = P(x), where P and P̃ are measured in the original
and translated frames, respectively.

Similarly, one can define an objective Lagrangian vector ξ as one that transforms under
(2.2) as

ξ̃(y(t, y0)) = QT(t)ξ(x(t, x0)). (2.3)

To reveal the ground-truth material fluid structures undergoing significant stretching
and rotation, we will rely on the frame-indifferent finite-time Lyapunov exponent (FTLE)
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(Haller 2015) and the Lagrangian-averaged vorticity deviation (LAVD) (Haller et al. 2016),
respectively:

FTLEt
t0(x0) = 1

2 |t − t0| log λmax(C t
t0(x0)), (2.4)

LAVDt
t0(x0) = 1

|t − t0|
∫ t

t0

∣∣ω(F s
t0(x0), s)− ω̄(s)

∣∣ ds, (2.5)

where λmax > 0 is the largest eigenvalue of the positive-definite tensor
C t

t0 = [∇F t
t0]T∇F t

t0 and ω̄ is the time-varying but spatially averaged vorticity. Although
LAVD and FLTE have seen widespread use in studies of atmospheric, oceanic and
experimental flows, their direct application to sparse data sets has been hindered by their
strong reliance on velocity and flow map gradients.

In the sparse sampling context, where we have no control over trajectory densities
or orientations, it would be advantageous to develop a LCS algorithm based on
individual trajectories. The primary issue surrounding the development of an objective
single-trajectory diagnostic is that one can always pass to the frame of the particle, and in
that reference frame, the particle is not moving. As a way around this frame-dependency,
Haller et al. (2021) recently developed the quasi-objective coherent structure diagnostics

TSE
tN
t0 (x0) = 1

tN − t0

N−1∑
j=0

∣∣∣∣log
|ẋ(tj+1)|
|ẋ(tj)|

∣∣∣∣ , (2.6)

TRA
tN
t0 (x0) = 1

tN − t0

N−1∑
j=0

cos−1 〈ẋ(tj), ẋ(tj+1)〉
|ẋ(tj)||ẋ(tj+1)| , (2.7)

which provide close approximations to objective stretching and rotation measures if the
Lagrangian trajectories are analysed in slowly varying references frames with relatively
small mean vorticity.

In the following, we derive the experiment-relative Lagrangian velocity of a fluid
particle and show that it is an objective vector. With these relative velocities, we can
objectively define the relative stretching and rotation of fluid from sparsely sampled
experimental data, with no a priori knowledge of the structures being investigated.

2.2. Relative Lagrangian velocity
Suppose we have a collection of Lagrangian particle trajectory observations {xi(t)}, with
corresponding velocities along their trajectories ẋi(t) = vi(t). By linearity of the time
derivative, the velocity of the average position of these particles at time t is equivalent
to the average of their Lagrangian velocities,

x̄(t) = 1
n

n∑
i=1

xi(t), (2.8)

v(t) = ẋ(t), v̄(t) = 1
n

n∑
i=1

vi(t) = ˙̄x(t). (2.9)

Furthermore, define the time-varying moment-of-inertia tensor

(t) = |xi − x|2I − (xi − x)⊗ (xi − x), (2.10)
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where averaging is over the trajectory index i. From our collection of trajectories,
mimicking the Eulerian calculations of Kaszás et al. (2023), we relate the
experiment-based vorticity to the approximate rigid-body rotation of the flow as

ωrb(t) = −1(xi − x)× (vi − v). (2.11)

To avoid cumbersome notation, we drop the subscript i from hereon when it is clear we
are referring to a specific trajectory x(t; t0, x0). Having now calculated the average rotation
and translation of the sampled fluid in our experiment, we define the relative velocity along
a Lagrangian trajectory as

vd(x(t)) = v(x(t))− v̄(t)− ωrb(t)× (x − x̄). (2.12)

The objectivity of vd, and scalar diagnostics generated from it, follows from the objectivity
of vd originally derived by Kaszás et al. (2023). That is, by removing the mean rate of
translation and rotation of our trajectory observations, we can study objective properties
of dynamic fluid structures in our sampled domain.

This is a Lagrangian-observation-based implementation of the Eulerian deformation
velocity vd originally derived by Kaszás et al. (2023). This is, however, distinct from
calculating Lagrangian trajectories in time-resolved Eulerian vd fields. Trajectories
calculated in the Eulerian vd do not necessarily trace material flow features, but observed
experimental tracers will (Kaszás et al. 2023). Instead, vd can be used to objectivise
frame-dependent Eulerian diagnostics in each snapshot. Here, by estimating rigid-body
translation and rotation from passive Lagrangian measurements, the relative Lagrangian
velocity vd provides a means to objectivise trajectory diagnostics relative to the sparse
data available without a priori knowledge of the underlying flow.

2.3. Stretching
For steady flows, Haller et al. (2021) showed that cumulative fluid stretching and
compression normal to trajectories can be quantified using TSE (2.6). In slowly
varying flows, this trajectory stretching and compression approximates the true material
deformation with the difference being a function of ∂tv(x(t), t). Furthermore, TSEs were
shown to faithfully highlight hyperbolic LCS and reproduce the dominant features of
FTLE fields.

Here, we seek a measure of fluid stretching that is frame-indifferent in unsteady
flows and has minimal dependence on trajectory concentration, thus making it suitable
for extremely sparse sampling in many natural environments. To do this, we introduce
the stretching of fluid parcels relative to the bulk behaviour of our flow through
the stretching of relative Lagrangian velocity vectors. Formally, the relative trajectory
stretching exponents (rTSE and rTSE) from time t0 to time tN can be written as

rTSEtN
t0 (xi) = 1

tN − t0
log

|vd(xi(tN))|
|vd(xi(t0))| , (2.13)

rTSE
tN
t0 (xi) = 1

tN − t0

N−1∑
j=0

∣∣∣∣log
|vd(xi(tj+1))|
|vd(xi(tj))|

∣∣∣∣ . (2.14)

The rTSE diagnostic provides the stretching exponent for the relative Lagrangian velocity
vector from time t0 to tN , whereas rTSE is a cumulative measure of all stretching and
contraction that occurs in the same time window. Given the objectivity of the relative
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Lagrangian velocity vd defined in (2.12), then rTSE and rTSE are also objective. That is,
because v̂d(y(t)) = QTvd(x(t)), we have |v̂d(y(t))| = |vd(x(t))| and rTSEs do not change
between reference frames. This provides a formal and fully objective extension of the
quasi-objective TSEs from Haller et al. (2021) that works in unsteady (time-varying) flows.

2.4. Rotation
For steady flows with negligible mean vorticity, Haller et al. (2021) also derived TRA
and (TRA), which measures trajectory rotation and successfully identifies elliptic LCS.
Under these flow assumptions, TRA calculates the cumulative rotation of material
streamline tangent vectors. For highly unsteady, or strongly rotational flows this approach
is insufficient as streamlines no longer resemble material lines. Instead, we adopt the
average rotation speed of material tangent vectors for relative Lagrangian velocities.

For a given relative Lagrangian velocity vector vd, we can define the unit vector pointing
in that direction:

e(t) = vd(t)
|vd(t)| . (2.15)

Then,

rαtN
t0 = 1

tN − t0

∫ tN

t0

∣∣∣∣ė(t)− 1
2
ω̄rb(t)× e(t)

∣∣∣∣ dt (2.16)

is an objective measure of the average rotation speed of vd from time t0 to tN (Haller
et al. 2021). The instantaneous limit of (2.16) also exists (αt0 = limtN→t0 α

tN
t0 ) and provides

the instantaneous rate of rotation of the relative Lagrangian velocity vector with respect
to the spatially averaged rotation. Furthermore, for a generic parameterised curve γ in
three dimensions with a unit tangent velocity vector e, the curvature of γ is ė(t). Thus,
rα is intrinsically related to classical notions of geometry of flow structures as a form of
integrated curvature that accounts for rotation of the surrounding fluid as well.

2.5. Extremely sparse sampling
As we show in the following sections, calculating v̄(t) and ω̄(t) directly from trajectory
data can become problematic at extremely sparse trajectory concentrations. By extremely
sparse, we refer to trajectory concentrations less than 1�−2 and 1�−3, where � is
a characteristic length of structures in the flow (e.g. eddy length scale, obstruction
dimensions). At this lower limit of trajectory concentration, we are fundamentally
undersampling the prominent structures in the flow, and an accurate time-resolved
depiction of spatially averaged flow behaviour is not reasonably expected.

That is, ωrb(t) and v̄(t) may start to display strong oscillations in time that are not
representative of the underlying mean flow properties. These oscillations contribute
unphysical fluctuations in vd and hinder our interpretation of relative stretching and
rotation diagnostics. Oscillations can also be easily created by a small number of
trajectories leaving the observation domain when only a small total are being measured.
An example of this is shown in detail in § 3.1.2.

For these sparse situations, we suggest replacing the time-dependent bulk values
ωrb, v̄, x̄ from ((2.8)–(2.11)) with their temporal averages over the integration window as
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follows:

vref = 1
t1 − t0

∫ t1

t0
v̄(t) dt, (2.17)

ωref = 1
t1 − t0

∫ t1

t0
ωrb(t) dt, (2.18)

xref = 1
t1 − t0

∫ t1

t0
x̄(t) dt. (2.19)

While potentially oversimplifying non-stationary oscillations that naturally occur in the
flow, using these time-averages provides a smooth estimate of total bulk motion for the
time windows in which we are interested. We can then write the Lagrangian velocity
relative to this prescribed reference frame as

vd,ref (x(t)) = v(x(t))− vref (t)− ωref (t)× (x − xref ), (2.20)

where vref and ωref are steady approximations of the bulk translation and rotation in
the flow that are informed directly from flow measurements. This extremely sparse data
handling is tested for multiple flows in the following sections, as is its ability to recreate
accurate full-resolution rα values. Since we are explicitly keeping track of a given choice of
reference frame in (2.20), vd,ref , rTSE and rα remain objective and indifferent to Euclidean
frame changes.

If additional sources of velocity measurements are available, such as those from
anemometers, remotely sensed ocean currents or wind tunnel probes, one may also
estimate vref and ωref from those data, but this approach is not tested herein and should
only be considered with caution. Using additional data sources to estimate bulk rigid-body
rotation and translation is subject to errors, such as local fluctuations or imperfect
placement in the flow, that are not discussed in the present work.

If one imposes vref = 0, and ωref = 0, we can see that TRA and TSE are actually
special cases of rα and rTSE. The present work, therefore, seeks to extend the prior
success found by Haller et al. (2021) and Encinas-Bartos et al. (2022) with TRA and
TSE to unsteady, time-varying flows. Further, the generalised relative Lagrangian velocity
frameworks allows researchers to transparently maintain objectivity if a given reference
frame is preferred.

3. Results

We now provide examples of rα and rTSE analysis for numerical simulations and
experimental observations. We evaluate our newly proposed metrics against an array of
diagnostics suitable for different experimental flows, with each example detailing a specific
advantage of rα and/or rTSE over prior approaches.

3.1. Numerical simulations

3.1.1. Unsteady Bickley jet
For our first example we consider the unsteady Bickley jet. This is a 2-D geophysical
model of a quasi-periodic zonal jet with adjacent migrating eddies whose Lagrangian
dynamics have been studied in depth (see, e.g. Del-Castillo-Negrete & Morrison 1993;
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U L kn ε1 ε2 ε3 c3 c2 c1

62.66 m s−1 1770 km 2n/r0 0.0075 0.15 0.3 0.205U 0.461U c3 + k2(
√

5 − 1)
2k1

(c2 − c3)

Table 1. Bickley jet model parameters.
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Figure 1. Evaluation of rα and rTSE (a,d) with material rotation (LAVD) and stretching (FTLE) (b,e), and
traditional quasi-objective single trajectory diagnostics TRA and TSE (c, f ), in the unsteady Bickley jet. Note
the distinct central jet with rotating eddies on either side. Here TRA and TSE have difficulty accurately
capturing material behaviour (stretching and rotation) due to the large bulk advection in the flow and temporal
variability in the velocity field.

Rypina et al. 2007). This flow was also used as a benchmark for previous LCS comparisons
(Hadjighasem et al. 2017). Its time-dependent stream function is given by

ψ(x, y, t) = −UL tanh
( y

L

)
+ UL sech2

( y
L

)
Re

[ 3∑
n=1

εn exp(−ikncnt) exp(iknx)

]
. (3.1)

We use the parameters from Rypina et al. (2007) found in table 1.
In figure 1 we compare rα and rTSE with benchmarks of material rotation and stretching,

the LAVD (Haller et al. 2016) and the FTLE (Haller 2015) on a dense grid of trajectories
(3600�−2, � = π), for an integration time of 30 days. This corresponds with approximately
six full rotations and significant translation for the advected eddies. We find that rα is
able to match the prominent features of the LAVD field by effectively identifying eddies
boundaries as closed convex contours and separating them from the central jet. The rTSE
ridges identify the edges of the central jet and edges of vortices as regions of significant
stretching, similar to FTLE. Deviations primarily exist in the centres of the vortex cores
where vd(x(t)) does not evolve in a material way.

Previous work has shown how TRA and TSE can effectively reproduce the same LCS
as LAVD and FTLE in slowly varying flows (Haller et al. 2021). In figure 1, we reveal
how necessary this slowly varying assumption truly is. With the parameters in table 1, the
Bickley jet is highly unsteady. For meaningful quasi-objective calculations, one requires
|vt|/|ẍ| << 1, but only 41 % of trajectories experience |vt|/|ẍ| < 1 and only 0.03 % of
particle paths show |vt|/|ẍ| < 0.1. This suggests that the coherent structures in this flow
are likely evolving or travelling much faster than a Lagrangian particle is able to trace
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Figure 2. Comparison of relative rotation (rα) and stretching (rTSE) with non-objective trajectory length and
initial particle speed diagnostics. Each diagnostic was progressively and randomly downsampled with the
full-resolution product created using radial basis functions. For each panel, we include the outermost closed
convex LAVD contours to highlight relative agreement of each sparse diagnostic with ground-truth material
rotation.

them out. In fact, TRA designates the eddies in figure 1 as exhibiting relatively low
rotation. In addition, TSE also suggests nearly everything outside the central jet is
undergoing significant stretching, in contrast to the thin hyperbolic regions seen as FTLE
ridges. For this degree of unsteadiness and strong eddy advection, rα and rTSE are more
suitable than TRA and TSE for quantifying fluid rotation and stretching while requiring
much less-structured data than LAVD and FTLE.

We now progressively and randomly downsample the number of trajectories to test the
robustness of our objective diagnostics at low trajectory densities. In figure 2, we calculate
rα and rTSE as well as the particle trajectory length (Mancho et al. 2013) and initial
particle speed |v(t0)|. Although trajectory length and particle speed are not objective, they
are either easily computed or commonly used diagnostics for experimental LPT studies
(see, e.g. Fu, Biwole & Mathis 2015; Tauro, Piscopia & Grimaldi 2017; Rosi & Rival
2018). After calculating each diagnostic, we reconstruct the full-resolution diagnostic field
using radial basis functions, similar to Encinas-Bartos et al. (2022). In addition, we include
the outermost closed convex LAVD contours from figure 1 as a visual reference to aid in
the comparisons.

At a trajectory concentration of 360�−2, rα looks relatively similar to its full resolution
sampling, but with added noise. Five concentrations of high rα are still distinguishable
from the surrounding flow. The thin hyperbolic structures identified by rTSE in the Bickley
jet, however, are already beginning to disappear. This degradation of hyperbolic coherent
structures rTSE is similar to the findings of Haller et al. (2021) for TSE and Mowlavi et al.
(2022) for TSE and FTLE. The trajectory length reveals fluid particles in the central jet
have the longest trajectories over this time window when compared with nearby particles
in the adjacent eddies. The initial velocity magnitude |v| also appears largest in the centre
of flow domain, and suggests some oscillating feature may be present.

Dropping the trajectory resolution by a factor of 100 to 3.5�−2, we again reconstruct
the original diagnostic resolution and include the location of trajectory positions with
white crosses. At this concentration, rα still suggests five distinct local rotation maxima
corresponding to the locations of the five eddies. The interpolated rTSE field no longer
recreates any of the features seen at full resolution and hence provides no meaningful
information. The trajectory length is also contradicting features that were revealed with
100 times the number of trajectories. At this resolution, we are testing both the ability
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Figure 3. Comparison of particle speed, FTLE and the evolution of fluid particles advected from inside a
given velocity level set.

of the metric to provide useful flow descriptors, as well as the interpolation scheme. We
believe, however, that there is limited influence from the interpolation scheme because |v|
is practically constant across all resolutions. We further test the impact of interpolation
schemes in the Appendix, and refer the reader to Encinas-Bartos et al. (2022) for a deeper
investigation of those schemes in a similar context. This trajectory concentration is well
below the limits of the previous sparse trajectory studies of Lekien & Ross (2010) and
Mowlavi et al. (2022).

From this initial investigation it appears that |v| may be the best option for identifying
structures with low-resolution data. The dominant flow feature suggested by |v| is, in fact,
misleading, even at full resolution. Figure 3(a) shows an overlay of |v| contours with
the FTLE field in greyscale. The distribution of |v| suggests two distinct peaks with a
distribution minimum, sδ , separating the central and outer regions. The fast moving central
core is highlighted as the region inside the red |v| = sδ contour in figure 3(a). Examination
of figure 3(a) show that the jet and eddy structures suggested by the FTLE field have
boundaries that are actually transverse to all of the velocity contours.

In figure 3(b) we plot the final position of fluid particles from only the velocity
core (|v| ≥ sδ), coloured by their |v(t0)| value, after 30 days of advection. Particles
corresponding to the red boundary have been advected as well. It is clear that the
velocity-based jet is not actually a coherent structure as the proposed feature has been
stretched inside and around the eddies, as well as down the eastward jet, with initial particle
speed giving no indication of what feature a particle should be attached to.

For comparison, we show the evolution of the rα structures, those that were similarly
resilient to downsampling. In figure 4(a) we plot rα, with rotationally coherent structure
boundaries identified as the outermost closed convex contours of rα, as has been previously
used in other elliptic LCS methods (Haller et al. 2016; Encinas-Bartos et al. 2022).
Figure 4(c) shows the location of the same rα-coloured fluid particles after 30 days
of advection. The rα eddy boundaries have minimally deformed after being advected
downstream more than 20 times their diameter downstream. This time also corresponds
with approximately six full rotations of the eddy, ample time for inaccurate eddy
boundaries to experience filamentation. This strong coherence can be attributed to the
mathematical definition of rα as a measure of relative fluid rotation and suggest we have
effectively and objectively identified the true rotationally coherent structures in our flow
field.

The ability of rα to identify these same eddies at a random lower data concentration
(3.5�−2) is tested in figure 4(b,d). We again identify eddies as the outermost closed convex
contours of rα at t = 0 (figure 4b) and advect them for 30 days. Comparing figures 4(a)
and 4(b), we see the leftmost eddy boundary extending into the central jet and differences
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Figure 4. Outermost closed convex rα level-set contours overlaid on the rα field. Advected position of rα
contours and surrounding fluid, coloured by initial rα values.

arising in the exact eddy boundary location. Testing these boundaries under advection,
we find the red boundary particles have remain primarily inside the eddies we sought to
identify (figure 4d), but with a much higher degree of filamentation.

The ability to identify structure boundaries is as much of a test of the interpolation
scheme used as of rα to maintain meaningful values at lower resolution. When there are
fewer than one trajectory per coherent structure, we will inevitably misrepresent some
flow features in interpolated fields and rα and rTSE are more reliably interpreted as point
measurements of local behaviour. As mentioned previously, we investigate interpolation
scheme impacts in the Appendix. Here, we investigate the ability of low-concentration
data to provide accurate reference frame values v̄, ωe and x̄ and meaningful pointwise rα,
independent of the interpolation scheme, with the following experiment.

Starting with full-resolution (3600�−2) Bickley jet trajectories, we first calculate
ground-truth values for rα(x0)full. We then randomly subsample the full resolution
trajectory 105 times at a given concentration. For each selection of trajectories, we
recalculate rα(x0)low using the lower-resolution data, and calculate the correlation
coefficient (R2) of rα(x0)low and rα(x0)full at the corresponding locations. We then obtain
a distribution of R2 values that details how closely we can approximate the full-resolution
measurements for a large number of potential trajectory orientations. We then repeat this
process at progressively lower concentrations and witness the rate at which the accuracy
degrades.

The findings from this experiment are summarised in table 2. The mean value of R2

slowly decreases with increasing sparsity but stays above 0.99, with a standard deviation
≤0.008 down to 16�−2. The mean of R2 reduces more dramatically around the extremely
sparse sampling threshold of 1�−2. This is precisely the trajectory concentration at which
we suggest using time-averaged vref , ωref and xref values. The impact of this choice is seen
in the final column where mean R2 values nearly return to the 4�−2 value. This suggests a
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�−2: 128 64 32 16 8 4 2 1 1 (ref)

μ: 0.997 0.997 0.996 0.991 0.98 0.95 0.87 0.68 0.93
σ : 2 × 10−4 0.001 0.003 0.008 0.018 0.045 0.11 0.25 0.14

Table 2. Bickley jet downsampling effect on rα accuracy. Mean (μ) and standard deviation (σ ) of R2 values
correlating downsampled rα with full-resolution calculations. Raw rα values maintain a strong correlation until
the extremely sparse sampling threshold (1�−2), at which point steady time-averaged reference values (‘ref’,
§ 2.5) allow for a significant improvement in accuracy again.

significant improvement in pointwise rα accuracy, and meaningful rotation diagnostics for
extremely sparse data.

3.1.2. AVISO
We now consider the identification of elliptic Lagrangian flow structures from 2-D ocean
satellite altimetry data provided by AVISO which has been the focus of several coherent
structure studies (see, e.g. Haller et al. 2016, 2021). The zonal and meridional component
v = (v1, v2) of the ocean currents are derived from the sea-surface height profile

f v2(x, t) = 1
ρ

∂

∂x
p(x, t), (3.2)

f v1(x, t) = 1
ρ

∂

∂y
p(x, t), (3.3)

−g = 1
ρ

∂

∂z
p(x, t), (3.4)

where p(x, t) is the pressure, ρ is the fluid density, f is the Coriolis parameter and g
is the Earth’s acceleration. The daily-gridded velocity data are freely available from the
Copernicus Marine Environment Monitoring Service. Although this is an observational
product, the processed nature of the product prevents many of the complications that we
will see with our experimental examples in the following section. Our analysis focuses
on the North Atlantic Gulf Stream between longitudes 70 ◦W and 55 ◦W and latitudes
30 ◦N and 45 ◦N, spanning September and October 2006. We start with an initial grid
of trajectories consisting of 150 × 150 points. Using a characteristic length scale of
mesoscale eddies (� = 100 km), this density roughly corresponds to 100�−2.

Elsewhere in the Atlantic, Haller et al. (2021) and Encinas-Bartos et al. (2022) have
shown that the AVISO velocity field is slowly varying, with a vanishing spatially averaged
vorticity. Furthermore, these authors showed that TRA effectively identifies ocean eddies,
and outperforms other sparse trajectory rotation diagnostics. As such, in figure 5 we
compare the rα (figure 5a) with TRA (figure 5b), using LAVD as the ground truth of
material rotation (figure 5c). The white dashed box highlights the meanders of the Gulf
Stream. Three eddy boundaries are identified as outmost closed convex contours of LAVD
in figure 5(a–c).

When compared with LAVD, TRA faithfully approximates the LAVD field, identifying
the meanders of the Gulf Stream, high rotation in the adjacent eddies and relatively low
rotation away from these central features. At this trajectory density, figure 5(a) reveals
that rα can match the ability of TRA to visualise the correct flow structure topology.
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Figure 5. Overview of rotation diagnostics for the AVISO data in the Gulf Stream at full resolution (100�−2).
The white contours are the outermost convex contours of the LAVD field. The dashed white box highlights the
meanders of the Gulf Stream.

This stems from the similarity in TRA and rα definitions for small bulk advection and
rotation, as highlighted in § 2.5.

We compare the sparse data performance of rα against TRA in figure 6 by progressively
and randomly subsampling using the same methodology as in § 3.1.1. We again interpolate
back to full resolution using a radial basis function for each successive subsampling. We
also include the major eddy boundaries from figure 5.

At a trajectory concentration of 10�−2, TRA (figure 6a) and rα (figure 6d) appear
qualitatively similar, with both suggesting relatively high rotation in the Gulf Stream
meanders, and three distinct elliptic rotational maxima aligned with the eddy boundaries.
For a trajectory density of 1�−2, rα (figure 6e) is qualitatively indistinguishable from
TRA (figure 6b) with two of the three mesoscale LAVD eddies still visible as local
maxima in both diagnostic fields. For this region of the ocean, we often have ocean drifter
observations [e.g. Global Drifter Program (GDP)] at concentrations between 1�−2 and
0.1�−2, as discussed in § 3.2.1.

As we pass the extremely sparse sampling threshold to 0.1�−2, the leftmost eddy is still
identifiable as a TRA and rα maximum (figures 6c and 6f, respectively) due to the presence
of the single trajectory originating inside its boundary (white cross). The remaining eddies
are no longer visible for either metric due to a lack of data, but TRA still highlights a
relatively higher rotation in the Gulf Stream. The local maximum TRA within the dashed
white box may be classified incorrectly as an eddy, but it actually corresponds to a region
of high material rotation induced by shear in the Gulf Stream. In contrast, rα has created
multiple local maxima near the coast of Nova Scotia not present at higher concentrations.

At this extremely sparse resolution, we again replace ω̄(t), v̄(t), and x̄(t) with their
time-averaged steady approximations, vref ,ωref , xref from (2.17)–(2.19). As with the
Bickley jet statistics, this improves the accuracy of rα with rαref displayed in figure 6(i).
With the steady reference frame, rαref and TRA again show nearly indistinguishable
flow topologies. The coastal local maxima disappear, and the local maximum appears
in the shear dominated meanders of the Gulf Stream. Furthermore, if we apply this
steady reference frame change to higher concentrations (figure 6g and h), we obtain flow
structure visualisations comparable to rα. This suggests that obtaining meaningful results
using the extremely sparse steady reference-frame approach is resilient over a range of
concentrations.
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Figure 6. Comparison for the AVISO data between objective rotational sparse data diagnostic rα, rαref and
its quasi-objective single-trajectory counterpart TRA under varying trajectory densities (10�−2, 1�−2, 0.1�−2).
The white markers denote the trajectory endpoints.

This effect stems from the effect of undersampling on bulk rotation and translation
estimates. In figure 7, we display the ω̄(t) and v̄(t) estimates for each trajectory
concentration. At 100�−2 the mean flow properties are nearly constant over 15 days. This
is consistent with the expectation from earlier studies that Eulerian features do not change
significantly over such relatively small time scales in the ocean. As we progressively
reduce the trajectory density, however, ω̄(t) and v̄(t) start displaying strong oscillations
in time. At extremely low trajectory densities (< 1�−2), the spatial averages are no longer
representative of the underlying mean flow properties (dashed red curves in figure 7).
These oscillations contribute unphysical fluctuations in the direction of vd and hinder our
ability to measure rotation with rα.

To further quantify the impact of sparse sampling on rα, we repeat the R2 distribution
analysis that was performed for the unsteady Bickley jet. Using AVISO surface current
data to generate an initial baseline at 100�−2, we run 104 random subsamplings at a range
of concentration levels. The summary statistics of this experiment can be found in table 3.
A consistent decrease in the R2 mean, and increase in R2 standard deviation is found as
the data concentration levels decrease, though the level of rα accuracy remains quite high.
Even at a low concentration level of 1�−2, we obtain a mean R2 value of 0.92.
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Figure 7. Data-based estimates for bulk translation velocity |v̄(t)| and rotation ω̄(t) under varying trajectory
density (100�−2, 10�−2, 1�−2, 0.1�−2).

�−2: 64 32 16 8 4 2 1 0.1 1 (ref) 0.1 (ref)

μ: 0.999 0.998 0.996 0.992 0.98 0.96 0.92 0.45 0.95 0.89
σ : 2 × 10−4 7 × 10−4 0.002 0.003 0.008 0.02 0.04 0.21 0.02 0.13

Table 3. Downsampling effect on rα accuracy for AVISO Gulf Stream surface currents. Mean and standard
deviation of R2 values relating downsampled rα with full-resolution calculations for 104 random subsamplings
at each resolution. Raw rα values maintain a strong correlation until the extremely sparse threshold (1�−2), at
which point time-averaged reference values (ref) allow for a significant improvement in accuracy again.

The most precipitous drop in rα accuracy is found from 1�−2 to 0.1�−2. One such
example of this poor performance was highlighted in figure 6. We further validate the
improvement in rα accuracy at this extreme sparsity level in the last two columns of table 3.
After transitioning to time-averaged reference frame values, there is a significant increase
in accuracy, with the mean of R2 jumping from 0.92 to 0.95 for 1�−2, and from 0.45 to
0.89 for 0.1�−2. With this simple reference-frame methodology we find rα is a promising
Lagrangian flow rotation diagnostic for extremely sparse data.

3.1.3. Stationary concentrated vortex
Our third example considers the identification of elliptic coherent structures inside the
stationary concentrated vortex model (SCVM) of Onishchenko et al. (2021). The SCVM
represents finite-size cyclones in the Earth’s atmosphere as steady axially symmetric
solutions to the Euler equations. Both the vertical and radial extent of the vortex is
controlled by model parameters. The SCVM fundamentally differs from the previous flows
as it is a highly rotational flow with no bulk translation. Our investigation of the SCVM
helps confirm that rα and rTSE are robust diagnostics for approximating the shape and
location of LCS and are not tailored to a specific kind of flow experiment (e.g. both high
and low swirl number; Gupta, Lilley & Syred 1984).

The SCVM consists of inner and outer regions, an internal upwards motion and external
downwards motion. A distinct central torus was also identified by Aksamit (2023) as a
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LCS. The cyclone is further divided vertically into a centripetal and centrifugal flow with
upward-moving fluid recirculated from the top of the vortex back down.

The SCVM was originally derived as an axisymmetric flow from a stream function
Ψ (r, v) and can be written in cylindrical coordinates as

vr = −v0
r
L

(
1 − z

L

)
exp

(
− z

L
− r2

r2
0

)
, (3.5)

vθ = ±vθ0

z
L

exp

(
− z

L
− r2

r2
0

)
, (3.6)

vz = 2v0
z
L

(
1 − r2

r2
0

)
exp

(
− z

L
− r2

r2
0

)
, (3.7)

where r0 is the radial extent separating inner and outer vortex structures, L is the height
of maximum vertical velocity at r = 0 and v0 and vθ0 are characteristic velocities. For
our example, we use v0 = 1, L = 10, r0 = 1 and vθ0 = 9. We consider our characteristic
length of the flow to be equal to the separation of inner and outer motions, � = r0 = 1,
and the approximate radius of the main central torus.

In figure 8 we compare the objective rotational diagnostics rα and LAVD advected for

t = 500 with the vorticity magnitude, |ω| and the widely used lambda-2 criterion of
Jeong & Hussain (1995). If J is the velocity gradient tensor, and S and Ω are the symmetric
and antisymmetric parts, the lambda-2 criterion of Jeong & Hussain (1995) suggests that
regions with negative intermediate eigenvalues of S2 + Ω2 (labelled λ2) are part of a
vortex core. Stationarity of the flow suggests TRA would also be a suitable comparison,
but in light of the strong performance of rα against TRA in the previous two examples, we
have left it out for compactness of presentation.

From initial high spatial resolution (2000�−3) calculations, a 2-D slice along the y = 0
plane is shown for each field in figure 8. We overlay these plots with the level-set
contours of the SCVM stream function Ψ (r, v). As this is a stationary axisymmetric
flow, Ψ -contours provide us a ground truth of transport barrier structure. A qualitative
contour comparison of the sparse metrics (rα and rTSE) with Ψ show a comparable level
of structure agreement as one can find from LAVD and FTLE structures. We find that rα
and LAVD contours suggest very similar rotational behaviour, with both indicating the
same location of a central torus vortex surrounded by recirculating flow. Both rTSE and
FTLE show strong spiraling into the centre of the vortices identified by rα and LAVD.
One notable difference between sparse and spatial-gradient-reliant diagnostics exists in
the centre of the toroidal vortex core in rTSE which again have unnaturally low values
when compared with FTLE, as we also saw in the unsteady Bickley jet.

We see a stark difference, however, when comparing Ψ with |ω| and λ2 fields. Contours
of |ω| and λ2 are often orthogonal to Ψ -contours, suggesting a disagreement in structure
identification. We further investigate these qualitative findings by testing the ability of our
rotation diagnostics to identify the dominant elliptic coherent structures in this vortex flow.
Potential vortex boundaries are identified as the set of outermost closed convex contours
for rα, LAVD and |ω|. Following the derivation of the λ2 criterion, we use λ2 < 0 as
the designation of strong rotational motion (Jeong & Hussain 1995). Fluid parcels from
inside the boundaries of these features are then advected for twice the integration time
used for the Lagrangian diagnostics, 
t = 1000. This approach allows us to test both the
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Figure 8. Comparison of rotation diagnostics rα, LAVD, λ2 and |ω| for the SCVM in the y = 0 plane. White
contour lines are contours of the SCVM stream function Ψ , indicating circulation patterns in the model.
Note the agreement between rα, LAVD, rTSE and FTLE features with the stream function structures, and
the dissimilarity of |ω| and λ2 features.

Lagrangian and Eulerian diagnostics to identify features that maintain their coherence
beyond the time horizon of data used for the initial boundary calculation.

These fluid particle paths are shown in figure 9 with trajectories coloured by the initial
diagnostic field value. We include the corresponding figure 8 diagnostic field on the y = 0
plane as a reference. The vortex core identified by rα and LAVD maintain coherence over
time, with seemingly no deviation of fluid from the domain identified as the central torus
vortex (figure 9a,b). Given that rα does not rely on the same 3-D velocity gradient data as
LAVD, rα shows exceptional performance in identifying this LCS. Fluid initially inside λ2
and |ω| structures have instead maintained no coherence, and are sufficiently dispersed in
the flow. The high |ω| (figure 9d) fluid parcels are now mixed throughout the entire inner
SCVM ‘beehive’ domain, inhabiting regions with both high and low |ω| values. The λ2<0
fluid is recirculating in both the inner and outer regions of the SCVM (figure 9c), with the
λ2-estimated vortex core parcels inhabiting the domain of both negative and positive λ2
values. This is distinct from LAVD and rα vortex trajectories that stay confined to the
regions of high LAVD and rα, respectively.

The ability of rα to identify these same LCS at increasing sparsity is shown in figure 10.
As our only 3-D numerical example, we utilise a random set of initial particle trajectories
in three dimensions and extract isosurfaces from a reconstructed rα field using natural
neighbour interpolation. We utilise the same rα value for 3-D level-set extraction as
the outermost closed convex contour used to test vortex boundaries (figure 9). Plots of
reconstructed rα fields on the y = 0 plane (figure 10a–c) reveal that small deviations from
this range would not significantly change the topology of the surfaces in figure 10(d–f ).
Note the difference of z-value ranges between figures 10(a–c) and 10(d–f ).

In figure 10, rα at 10�−3 looks only moderately different from 2000�−3. Two distinct
intersections of the central torus with the y = 0 plane are still evident in white, and
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0 fields
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the annular shape is clearly visible in the associated isosurface. At 1�−3, the ‘doughnut
hole’ above x = 0 becomes less obvious, but the horizontal and vertical extent of the
central torus is still accurate. For 0.1�−3, we use ((2.17)–(2.18)) to implement the same
bulk time-averaged reference values for vref ,ωref , xref . At this extremely sparse sampling,
the correct extent of strong central rotation is still evident, as is a suggestion of the
inner beehive feature, but the vortex surface is now sufficiently deformed that it no long
resembles a torus.

3.2. Experimental data
In the previous section we investigated the ability of rα and rTSE to accurately represent
elliptic and hyperbolic LCS at increasing sparsity in numerical data. In this section, we
show how the sparse capabilities of rα apply to real experimental data for a 2-D and 3-D
flow.

3.2.1. GDP database
For our first experimental data set we consider a set of drifters from the GDP (Lumpkin
& Centurioni 2019) located in the North Atlantic Ocean. The GDP data set contains more
than 40 000 drifters spanning the last four decades. Roughly 1200 drifters are currently
active worldwide and report their position every 6 hours (Lumpkin & Pazos 2007).

Specifically, we focus here on a subset of drifters active over 15 days from 20 September
to 4 October 2006 in the Gulf Stream (figure 11) during the same time period of analysis
as in § 3.1.2. In figure 11, we reconstruct diagnostic fields from the true GDP tracks with a
drifter density of 0.63�−2, for � = 100 km. We are thus in an extremely sparse data setting
(< 1�−2) and we again compute rα by replacing the time-dependent mean flow properties
with time-averaged ωref , vref and xref from the drifter data.

Following the sparse eddy identification study by Encinas-Bartos et al. (2022), we
compare two sparse drifter-based rotation diagnostics, rαref in figure 11(a) and TRA in
figure 11(b), with commonly used trajectory-averaged kinetic energy (KE; figure 11c)
(e.g. Lumpkin 2016), and the full-resolution LAVD field using AVISO data from § 3.1.2.
Though the AVISO current data may not be representative of the full spatial scale of flow
features affecting the drifters, we include LAVD as a mesoscale comparison for general
flow behaviour.

We do not compare with a direct ‘looping’ count as a user-defined threshold is
inevitably required and differentiating between looping and non-looping trajectories
is user-dependent and non-trivial (Encinas-Bartos et al. 2022). Instead, we extract
looping segments for the reader to see from the drifter trajectories as proposed by the
frame-dependent algorithm from Lumpkin (2016). The white trajectory segments indicate
cyclonic loopers which frequently arise in connection with ocean eddies (see, e.g. Griffa,
Lumpkin & Veneziani 2008; Dong et al. 2011). The full black curves in figure 11(a,b,d)
denote the approximate vortex boundaries respectively obtained from drifter-based TRA
and rαref , and AVISO-based LAVD, respectively.

Both rαref and TRA are able to detect rotational features just to the south of the Gulf
Stream from the extremely sparse GDP data. Cyclonic loopers are also observed in the
regions surrounding the principal local maxima of rαref and TRA. The leftmost eddy
contains two looping drifters that display high rotational values (figure 11a,b). In contrast,
KE fails to clearly identify the leftmost eddy since it displays sharp gradients between the
two drifters inside the eddy (figure 11c). Both rαref and TRA display a weaker rotational
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Figure 11. Drifter-based TRA (a), rα (b), KE (c) and LAVD (d) in the North Atlantic Gulf Stream. The black
crosses indicate drifter positions.

feature at roughly 32 ◦N latitude and 64◦W longitude. No loopers are identified in this
region, but the yellow trajectories in the high rα and TRA zones show greater circulating
behaviour with respect to the surrounding green trajectories (figure 11, bottom insets),
suggesting stronger rotational motion in the surface currents. There is no feature that
resembles any vortical structure in the KE field in this region.

In this ocean buoy experiment, we were able to identify eddies adjacent to the Gulf
Stream in both TRA and rα fields that were not identified using existing sparse data
diagnostics. In contrast with the TRA, which requires additional assumptions on the frame
of reference, the rα returns structures that are valid for all observers. This suggests that rα
may be beneficial for systematic eddy analysis of the GDP data set that can complement
remote-sensing based tools that lack submesoscale motion resolutions. In addition, rα
shows great promise as a buoy diagnostic for focused buoy deployments (e.g. LASER
and GLAD) where buoy concentrations higher than 1�−2 will result in more refined
descriptions of the flow.

3.2.2. Large-scale LPT experiment
Our last example involves a novel, large-volume 3-D LPT velocimetry data set from an
industrial-scale wind tunnel (Hou et al. 2021). Utilising glare-point spacing on large soap
bubbles, Hou et al. (2021) were able to investigate the vortical wake behind a tractor–trailer
model at a 9◦ yaw angle. For details on the methodology, see Kaiser & Rival (2023). We
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Figure 12. Comparison of discrete probability histograms of frame-dependent metrics for the truck wake
vortex and object-free uniform flow experiments at ∼ 1�−3.

compare two wind-tunnel experiments, one with the tractor–trailer model obstructing the
flow, and a uniform flow without the tractor–trailer.

Each experiment provides around 300 s of trajectory data, sampled at 150 Hz with
an average windspeed of 10 m s−1. The bubble generator and camera setup produce
time-varying particle concentrations at the very lower end of our computation spectrum.
For measurements of the tractor–trailer wake, trajectory concentrations oscillate between
0.2 and 1.5�−3 with a mean concentration of 0.6�−3. The uniform flow measurements
have a slightly higher resolution, ranging from 0.5 to 3�−3 and a mean concentration of
1.3�−3. To avoid significant oscillations in relative Lagrangian velocities, we again utilise
the time-averaged reference frame determined by the bubble trajectories. Furthermore,
as we are using trajectory data that quickly transits through the observation volume, we
investigate 10-frame increments and require all trajectories to be present for every frame.
At these extremely low concentrations, a single particle that disappears and reappears
during the integration window may have a substantial effect on the deformation velocity
of other fluid particles. A 10-frame integration time was chosen as a balance between the
length of integration time and the number of tracks available to calculate meaningful mean
values.

At the low trajectory concentration available in this turbulence experiment, meaningful
time-resolved spatial derivatives are unattainable. Instead of relying on a spatial
interpolant to visualise strong regions of rotation, we now demonstrate a complementary
statistical approach using this sparse data set. In figure 12 we show the discrete probability
histograms for common LPT flow diagnostics in addition to rα analysis. The distribution
of the particle speed over the entire 300 s (figure 12b) shows a slight speed up of the flow
for the trailer wake, but the bubble trajectories travel for a shorter distance on average
(figure 12c). The fluctuating streamwise components of bubble velocities were also nearly
identical for the two flows.

Sensor development for large-scale LPT is still an active field of research. Given the
uncertainty in signal noise from nascent methodologies, such as the glare-point method
used to generate for these data, flow diagnostics that maintain their utility for unknown
noise levels can help to expedite the development of large-scale measurement tools. With
the available information from the industrial-scale wind tunnel, none of the diagnostics in
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Figure 13. (a,b) Binned median value of rαt
0(x0) after projecting in the streamwise direction onto the y–z

plane. The trailer wake has high rotation in its core, and relatively higher r̃αt
0 values distributed across the

flow. The empty tunnel, in contrast has a low rotational core, with higher r̃αt
0 appear only on the edges of the

measurement domain. This is confirmed by binning the rαt
0 values by radial distance from the flow centre, and

calculating median values (r̃αt
0(r), panel c). Note the radial centres and axes are marked by blue dots and lines

in panels (a,b).

figure 12(b–d) present a clear picture of the wake dynamics. In fact, v′
x cannot distinguish

between the two flows.
To complement these approaches, we compute 10-frame rα values beginning at every

frame available. This gives us a distribution of rαt+10
t (x0) for a wide range of t and x0.

From a set of trajectories at each time t, we then calculate the median of rα (r̃α) to quantify
the general behaviour of the flow in each time window. The discrete probability histogram
of r̃α for the two flows is shown in figure 12(a). The empty tunnel data are concentrated
around a low peak, suggesting a relatively uniform flow domain and an accumulation of
small turbulent oscillations, but no major rotational features. In contrast, the trailer wake
data are distinguished by a larger range of values, with a heavy tail towards considerable
rotation and high peak r̃α. The physical meaning of this data suggests a more complex
flow, with a higher degree of rotation, in this case because of the vortical wake. Even at
this low concentration, and with this experimental methodology, we are able to identify
distinguished rotating features in the flow.

We can begin to distinguish the spatial features of the flow by analysing the long-time
trends in rα. In figure 13 we project all initial particle locations to the y–z plane, and bin
them in a 100 × 100 grid. We again calculate r̃α for each bin and plot this in figure 13(a,b).
The trailer wake in figure 13(a) has high rotation near its centre, and relatively higher rα
distributed throughout the flow domain when compared with the quiescent centre and
lower values in figure 13(b). We quantify the spatial dependence of rotation on flow
geometry by binning rα in 10 bins along the radial distance from the centre of the flow.
We show this radial axis as a dot and line in figure 13(a,b). Again, the median rα values
from these bins shows the trailer wake generates a much greater degree of rotation on the
fluid, starting from a minimum where little data are available, with a local maximum in
the vortex core, then gradually increasing as we move away in the flow. At nearly every
location, the empty tunnel generates limited fluid rotation with lower rα values.

The results here provide a good baseline for experimental LPT data that were not
designed with rα analysis in mind. As future experiments may be designed that consider rα
requirements, further improvement on the identification and analysis of coherent rotational
flow features is expected. Furthermore, given the connections between rα, curvature
(e.g. § 2.4) and rotation times, concerted future effort may help connect classical notions of
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geometry, eddy turnover times, spectral analysis and sparse trajectory data in an objective
manner, in addition to designating strongly and weakly rotating regions of a flow.

4. Conclusion and outlook

Objective coherent structure identification tools are important in a wide range of scientific
and industrial fields. Methods that work equally well for gridded and sparse Lagrangian
data allow meaningful comparisons between model and observations, and can provide
new insights for experimental studies. In this work, we have mathematically derived
new frame-independent diagnostics of trajectory rotation and stretching well-suited for
coherent structure identification in sparse experimental trajectory data. Through multiple
systematic comparisons with existing Lagrangian flow diagnostics, we have shown that:

(i) rTSE and rα are objective metrics that can identify elliptic and hyperbolic LCS in
highly unsteady flows, and that work equally well in flows with large or small bulk
translation and rotation;

(ii) rTSE and rα work well in many of the situations where the quasi-objective
diagnostics TSE and TRA have previously been successful, including ocean drifter
applications;

(iii) rα can designate regions with locally strong rotation in 2-D and 3-D flows for
extremely sparse data;

(iv) rα values maintain accuracy and interpretability at extremely sparse sampling; and
(v) rTSE and rα provide an avenue for meaningful LPT analysis and post-processing

that does not require assumptions of steady-state flows or data interpolation to an
Eulerian grid.

To assist future practitioners, we have also developed two guidelines based on the results
of the present research and our experiences while conducting it.

(i) If the trajectory concentration is below one �−2 or �−3, we recommend using
time-averaged values of the experiment-derived v̄, ω̄ and x̄

(ii) As the trajectory concentration decreases, the continuity of individual trajectory data
becomes more important as each data point contributes more to spatial averages.
It is then beneficial to select observation windows or trajectory sets for which
trajectories are continuously present to prevent unphysical fluctuations in vd caused
by intermittent trajectory data.

Being able to identify coherent flow features, or at least local stretching and rotation
rates, using rTSE and rα for the analysis of unsteady flows in a physically meaningful,
frame-indifferent manner will help advance our study of fluid dynamics in large and
natural domains. Further applications of these methods, such as the time-series analytic
techniques used by Aksamit et al. (2023), is expected to open the door for an even wider
range of experiments over a vast range of scales that can harness the Lagrangian nature of
turbulent structures.
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field reconstructed using radial basis functions (rbf) for different trajectory densities. The lower row (d–f )
shows the rαref field reconstructed using standard linear interpolation for different trajectory densities. The
white contours indicate the vortex boundary extracted from LAVD-field at full resolution.

Data availability statement. Matlab and Python code to perform the relative trajectory diagnostics
described herein can be found on GitHub at https://github.com/haller-group/Relative-Fluid-Stretching-and-
Rotation-for-Sparse-Trajectory-Observations. The LPT wind tunnel data that support the findings of this study
are available from the authors directly. The turbulent DNS data can be found at https://doi.org/10.15454/
GLNRHK. AVISO ocean surface current data can be found at https://doi.org/10.48670/moi-00145. Ocean
drifter data can be accessed through https://www.aoml.noaa.gov/phod/gdp/index.php.
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Appendix. Sensitivity of reconstructed rα-fields to choice of interpolant

In order to reconstruct the rα-field, we need to interpolate the sparse rα values over
a regular meshgrid. The exact values of the reconstructed rα-field depend on the
specific interpolation method. In this appendix, we perform a sensitivity analysis of the
interpolated rα-field as we progressively subsample the trajectory density in the AVISO
data set (§ 3.1.2). Figure 14 compares the reconstructed rαref field for different trajectory
densities. For a trajectory density of 10�−2 the reconstructed rαref field remains nearly
unaffected by the interpolation scheme. For low trajectory densities (1–0.1�−2), the exact
boundaries of features in the rαref field vary with on the choice of interpolation scheme,
but we expect the overall topology of the rαref field to be robust with respect to the
employed interpolation method as they are the result of raw values, and are not generated
by the interpolants. Specifically, local maxima of the rαref clearly persist irrespective of
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the chosen interpolation method. Similarly to previous studies by Encinas-Bartos et al.
(2022), we recommend using radial basis function interpolation since it favours elliptic
and smooth structures.
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