
JFP 21 (4 & 5): 331–332, 2011. c© Cambridge University Press 2011

doi:10.1017/S0956796811000190 First published online 12 August 2011

331

Special Issue Dedicated to ICFP 2009
Editorial

The 14th ACM SIGPLAN International Conference on Functional Programming

(ICFP) took place on August 31–September 2, 2009 in Edinburgh, Scotland; Andrew

Tolmach chaired the program committee. Following the conference, the authors of

selected papers were invited to submit extended versions for this special issue of JFP.

After review and revision, four papers were accepted for inclusion in this volume.

Each paper contains substantial new material beyond the original conference version.

The papers are representative of the wide range of topics and methodology that

characterize ICFP.

A number of popular recent innovations in Haskell type systems, such as

Generalized Algebraic Data Types and type families, introduce local type equality

constraints. These constraints pose substantial problems for type inference, including

loss of principal types and very complex generalization rules. In OUTSIDEIN(X):

Modular type inference with local assumptions, Dimitrios Vytiniotis, Simon Peyton

Jones, Tom Schrijvers, and Martin Sulzmann synthesize the results presented in their

ICFP 2009 paper with material from several earlier conference papers to propose a

comprehensive approach to these problems. OutsideIn(X) is a type system for lan-

guages with local constraints, parameterized by an underlying constraint system X.

It is similar to the well-known HM(X) system, though not a conservative extension,

because (somewhat controversially) it does not support automatic generalization of

local let bindings. The paper gives a general inference algorithm for OutsideIn(X),

parameterized by a solver for X. It also describes a solver for X instantiated by the

combination of GADTs, type families, and type classes, which is distributed as part

of the current implementation of the Glasgow Haskell Compiler.

It is well known that nondeterministic computations can be represented using

monads of lists or trees. These encodings can be used to emulate some aspects

of functional logic languages, such as Curry, within a deterministic language like

Haskell. But in Purely Functional Lazy Nondeterministic Programming, Sebastian

Fischer, Oleg Kiselyov, and Chung-chieh Shan show that capturing the full behavior

of lazy (i.e., both nonstrict and shared) nondeterminism in Haskell requires a more

sophisticated encoding. They describe a Haskell library that implements the desired

features, which are characterized by a set of algebraic laws. The paper is interesting

both as an exposition of a useful Haskell programming technique, and as a bridge

between the functional and functional-logic programming worlds.

Arrows are well established as a useful abstraction for functional reactive pro-

gramming (FRP). Arrows are useful in part because they are more general than

monads, but in some situations they may be too general to capture the interesting

properties of a system. In Causal Commutative Arrows, Hai Liu, Eric Cheng, and

https://doi.org/10.1017/S0956796811000190 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000190


332 Editorial

Paul Hudak describe a refinement of arrows, incorporating a commutativity law and

an initialization operator, that gives a close fit to the Yampa FRP domain-specific

language. Causal Commutative Arrow expressions can be put into a normal form

that supports very efficient evaluation, offering large performance improvements

over conventional arrow implementations for Yampa. This normalization technique

should be applicable to other systems based on dataflow or stream computation.

Some recent functional languages combine parametric polymorphic types, which

give powerful guarantees about type abstraction, with run-time type inspection

mechanisms such as typecase, which can potentially break abstraction boundaries.

To address this tension, several researchers have proposed using dynamically

generated type names to represent abstract types during run-time inspection. But

does this technique actually recover a useful notion of parametricity? In Non-

parametric Parametricity, Georg Neis, Derek Dreyer, and Andreas Rossberg give an

affirmative answer for a language including a type-safe cast operator. Along the

way, they develop general notions of what it means for terms in a non-parametric

language to behave parametrically, including an interesting concept of parametricity

polarity. Their proof uses step-indexed Kripke logical relations; while the main body

of the paper is highly technical, this is preceded by a very accessible summary of

the main ideas behind the technique.

We cordially thank the authors and the referees for their work in producing and

reviewing these papers, especially under the strict time limits imposed by a special

issue. We hope that you, the reader, will enjoy the fruits of their labors.

Andrew Tolmach

Department of Computer Science

Portland State University

apt@cs.pdx.edu

Xavier Leroy

INRIA Paris-Rocquencourt

xavier.leroy@inria.fr

Special Issue Editors

https://doi.org/10.1017/S0956796811000190 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000190

