
Mathematical Structures in Computer Science (2022), 32, pp. 685–728
doi:10.1017/S0960129522000329

PAPER

An algebraic representation of the fixed-point closure of
∗-continuous Kleene algebras – A categorical
Chomsky–Schützenberger theorem
Hans Leiß

Centrum für Informations- und Sprachverarbeitung, Ludwig-Maximilians-Universität München, Munich, Germany†

Email: h.leiss@gmx.de

(Received 21 August 2020; revised 29 August 2022; accepted 6 September 2022; first published online 14 October 2022)

Abstract
The family RX∗ of regular subsets of the free monoid X∗ generated by a finite set X is the standard
example of a ∗-continuous Kleene algebra. Likewise, the family CX∗ of context-free subsets of X∗ is the
standard example of a μ-continuous Chomsky algebra, i.e. an idempotent semiring that is closed under
a well-behaved least fixed-point operator μ. For arbitrary monoids M, CM is the closure of RM as a
μ-continuous Chomsky algebra, more briefly, the fixed-point closure of RM. We provide an algebraic
representation of CM in a suitable product of RM with C′2, a quotient of the regular sets over an alphabet
�2 of two pairs of bracket symbols. Namely, CM is isomorphic to the centralizer of C′2 in the product
of RM with C′2, i.e. the set of those elements that commute with all elements of C′2. This generalizes a
well-known result of Chomsky and Schützenberger (1963, Computer Programming and Formal Systems,
118–161) and admits us to denote all context-free languages over finite sets X⊆M by regular expressions
over X ∪�2 interpreted in the product of RM and C′2. More generally, for any ∗-continuous Kleene alge-
bra K the fixed-point closure of K can be represented algebraically as the centralizer of C′2 in the product
of K with C′2.

Keywords: Idempotent semiring; fixed-point-closure; regular language; context-free language; ∗-continuous Kleene algebra;
μ-continuous Chomsky algebra; Chomsky–Schützenberger theorem

1. Introduction
The classical Chomsky–Schützenberger theorem of Formal Language Theory relates the set CX∗
of context-free languages of the free monoid X∗ over the finite set X to the set R(X ∪�2)∗ of
regular languages over an extension of X by a set �2 = {b, d, p, q} of two bracket pairs b, d and
p, q. It says that every L ∈ CX∗ is the image of the intersection R∩D2(X) of a regular language R ∈
R(X ∪�2)∗ with the Dyck languageD2(X) ∈C (X ∪�2)∗ of balanced bracketed strings under the
homomorphism hX∗ : (X ∪�2)∗ → X∗ that keeps elements of X fixed andmaps those of�2 to the
unit of X∗. This result of Chomsky and Schützenberger (1963) can be stated as

(CST) CX∗ ⊆ {
hX∗(R∩D2(X)) | R ∈R(X ∪�2)∗

}
.

Intuitively, for L= hX∗(R∩D2(X)), the set R∩D2(X) consists of the sentences of L enriched by
begin- and end-markers of their phrases according to some context-free grammar for L, i.e. by

†Retired

© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and
reproduction, provided the original article is properly cited.

https://doi.org/10.1017/S0960129522000329 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000329
https://orcid.org/0000-0002-4162-2258
mailto:h.leiss@gmx.de
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0960129522000329&domain=pdf
https://doi.org/10.1017/S0960129522000329

686 H. Leiß

their linearized parse trees; the two bracket pairs of�2 are used to encode a begin- and end-marker
for each phrase category of the grammar. The reverse inclusion

(reverse CST) CX∗ ⊇ {
hX∗(R∩D2(X)) | R ∈R(X ∪�2)∗

}
is trivial, since the intersection of a context-free set with a regular one and the homomorphic
image of a context-free set are context-free. (It will no longer be trivial in the generalizations
considered below.) Thus, balanced brackets are at the heart of the extension from regular to
context-free sets.

To extend this relation CX∗ = {
hX∗(R∩D2(X)) | R ∈R(X ∪�2)∗

}
from finitely generated

free monoids X∗ to arbitrary monoids M, we define RM and CM as suitable closures of the
semiring FM of finite subsets of M (with union as addition and elementwise product as multi-
plication) within the semiring PM of all subsets of M. Namely, the family CM of context-free
subsets of M is the closure of FM under components of least solutions of finite systems of
inequations

y1 ≥ p1(y1, . . . , yn), . . . , yn ≥ pn(y1, . . . , yn) (1)

between variables yi and polynomials pi ∈CM[y1, . . . , yn]. Notice that each such inequation sys-
tem does have a least solution in PM, so we can add the components of this solution to CM.
By adding further unknowns and inequations for the coefficients from CM, we can ultimately do
with polynomials pi ∈FM[y1, . . . , yn] in (1). The familyRM of regular sets ofM is the closure of
FM under components of least solutions of finite systems of inequations yi ≥ pi(y1, . . . , yn) with
right-linear polynomials pi ∈RM[y1, . . . , yn], i.e. where pi is a sum of monomials A or Ay with
A ∈RM and y ∈ {y1, . . . , yn}. These definitions make CM resp. RM be closed under least fixed
points of arbitrary resp. right-linear polynomials and do not assume thatM be finitely generated.

In classical Formal Language Theory, regular and context-free languages are defined by regu-
lar and context-free grammars. A context-free grammar G= (X, Y , P, S) over the set of terminal
symbols X is a finite set P⊆ Y × (X ∪ Y)∗ of grammar rules or productions (y, α), where Y is
a set of variables or nonterminal symbols, disjoint from X, and a specific start symbol S ∈ Y .
The productions give rise to a binary rewrite relation⇒G on (X ∪ Y)∗ by w⇒G w′ iff for some
u, v ∈ (X ∪ Y)∗ and (y, α) ∈ P, w= uyv and w′ = uαv. Each y ∈ Y leads to a language L(G, y)={
w ∈ X∗ | y⇒+

G w
}
, where⇒+

G is the transitive closure of⇒G, and L(G)= L(G, S) is the language
defined by G. A right-linear grammar is a context-free grammar where P⊆ Y × (X∗ ∪ X∗Y).

Notice that P gives rise to a system (1) with Y = {y1, . . . , yn} and S= y1 where pi is the
sum over all monomials α′ ∈FX∗[y1, . . . , yn] that arise from the right-hand side of a grammar
rule (yi, α) by replacing each x ∈ X occurring in α by the singleton {x} ∈FX∗. The languages
(L(G, y1), . . . , L(G, yn)) are the least solution of the system (1) derived from G in this way.
Conversely, a polynomial system (1) with parameters fromFX∗ gives rise to a context-free gram-
mar G= (X, Y , P, y1) with Y = {y1, . . . , yn} and P consisting of those (yi, α) where α arises from a
monomial α′ of pi by replacing each parameter in α′ by one of its membersw ∈ X∗. The least solu-
tion (L1, . . . , Ln) of the given polynomial system agrees with the languages (L(G, y1), . . . , L(G, yn))
of the grammar so derived from it.

The grammatical way to define CX∗ can be extended from free monoids X∗ to arbitrary
monoids M, following Hopkins (2008a). The free extension M[Y] of a monoid M by a set Y dis-
joint from M consists of the set of all finite sequences m0y1m1 . . . ykmk, where m0, . . . ,mk ∈M
and y1, . . . , yk ∈ Y , with the sequence m0 of length 1 with m0 = 1 as unit, and with the operation
defined by

(m0y1m1 . . . ykmk)(m′0y′1m′1 . . . y′k′m
′
k′)=m0y1m1 . . . yk(mk ·M m′0)y′1m′1 . . . y′k′m

′
k′

for k, k′ ∈N,m0, . . . ,m′k′ ∈M, y1, . . . , y′k′ ∈ Y as product; for disjoint sets X and Y , there is an iso-
morphism X∗[Y]� (X ∪ Y)∗, obtained by identifying y1y′ ∈ X∗[Y] with yy′ ∈ Y∗. A context-free
grammar G= (Y , P, S) over the monoid M then consists of a set Y of variables, disjoint from M,
a finite set P⊆ Y ×M[Y] of productions, and a main variable S ∈ Y . As for free monoids, G gives

https://doi.org/10.1017/S0960129522000329 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000329

Mathematical Structures in Computer Science 687

rise to a binary relation⇒G onM[Y] such that w⇒G w′ iff for some α, β ∈M[Y] and (y, γ) ∈ P,
w= αyβ and w′ = αγβ . For each variable y ∈ Y , G defines a subset L(G, y)= {

m ∈M | y⇒+
G m

}
ofM, where⇒+

G is the transitive closure of⇒G, and L(G) := L(G, S). This gives us a grammatical
definition of a set

CM= {
L(G) | G a context-free grammar overM

}
.

The equivalence between the two definitions of CM can be shown by relating context-free gram-
mars over M with finite systems of polynomial inequations with parameters from FM, as in the
case of free monoids. (For an equivalence proof, see also Remark 2 in Leiß and Hopkins 2018).
The regular subsets RM can be defined analogously by context-free grammars with right-linear
productions. Independently of the aims of the present article,RM andCM with non-free monoid
M are useful to study rational or context-free transductions T between a free input monoidX∗ and
a free output monoid Z∗ as subsets ofM= X∗ × Z∗.

The components of least solutions in PX∗ of polynomial systems (1) with right-linear poly-
nomials pi ∈RX∗[y1, . . . , yn] can be denoted by regular expressions in the elements of X. The
regular expressions over X, defined by

r, s ::= 0 | 1 | x | (r+ s) | (r · s) | r∗ with x ranging over X,
are interpreted in the Kleene algebra RX∗ by taking ∅ for 0, the singleton containing the unit
of X∗ for 1, {x} for x ∈ X, binary union for +, elementwise concatenation for ·, and iteration
(aka monoid closure) for ∗. If the right-linear polynomial pn of (1) is q(y1, . . . , yn−1)+Ayn and
r denotes the parameter A ∈RX∗, then the least solution of yn ≥ pn(y1, . . . , yn) is denoted by
(r∗ · q)(y1, . . . , yn−1). Substituting yn by (r∗ · q) in the remaining inequations, and iterating this
process, the first component of the least solution of (1) is named by a regular expression over X,
free of unknowns y1, . . . , yn.

In a similar way, the components of least solutions of arbitrary polynomial inequations (1) with
parameters from CX∗ can be named by regular μ-terms over X,

r, s ::= 0 | 1 | x | y | (r+ s) | (r · s) | r∗ |μy.r, with x ranging over X,
the extension of regular expressions over X by an infinite set of variables y and a unary least-
fixed point operator μ binding a variable; then (μyn.pn)(y1, . . . , yn−1) is a term denoting the least
solution of yn ≥ pn(y1, . . . , yn) of (1), relative to given values for y1, . . . , yn in CX∗. One of the
results of this article is an algebraic notation for context-free languages that is close to the regular
expressions and does not use a binding operator.

Now, the Chomsky–Schützenberger theorem and its reverse extend readily to the familiesRM
of regular and CM of context-free subsets of an arbitrary finitely generated monoidM as

CM= {
hM(R∩D2(M)) | R ∈R(M[�2])

}
. (2)

We here assume M to be finitely generated to have D2(M) ∈C (M[�2]), but this assumption can
be avoided by a different formulation using the pure Dyck language D2 ∈C �∗2 of brackets only,

CM= {
π1(R∩ (M×D2)) | R ∈R(M×�∗2)

}
,

where π1 :M×�∗2→M is the first projection.
In a number of semi-published contributions, Hopkins (1993) has tried to turn this dependence

ofCM onR(M[�2]) into a dependence onRM, express it inmore algebraic terms, and generalize
it to an algebraic construction of the fixed-point-closure of a ∗-continuous Kleene algebra K. The
idea is to let elements of M and �2 commute with each other, i.e. replace M[�2] by M×�∗2 or
R(M[�2]) by a suitable product RM⊗R C2 of RM with a “bra-ket algebra” C2, and perform
the balance-check ∩D2(M) and the bracket-erasure hM of (2) by algebraic calculations in C2. The
“bra-ket algebra”

C2 =R�∗2/
〈
bd= 1= pq, bq= 0= pd, db+ qp= 1

〉
https://doi.org/10.1017/S0960129522000329 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000329

688 H. Leiß

is the quotient of the regular sets R�∗2 by a congruence that is generated by three conditions1:
by “match” conditions bd= 1= pq that allow us to shorten strings by erasing all pairs bd or pq of
matching adjacent brackets, by “mismatch” conditions bq= 0= pd that allow us to throw away all
strings containing a bracket mismatch bq or pd, and by a “completeness” condition db+ qp= 1
which ensures that corresponding bra-ket algebras Cn based on n> 2 bracket pairs can be embed-
ded in C2.2 The product RM⊗R C2 is, intuitively, the smallest ∗-continuous Kleene algebra
extension of RM and C2 in which elements of RM commute with those of C2. The algebraic
version of the Chomsky–Schützenberger theorem and its reverse then is that CM is isomorphic
to the centralizer of C2 in RM⊗R C2,

CM� ZC2 (RM⊗R C2), (3)

i.e. to the set of elements that commute with every member of C2. All elements of RM⊗R C2 can
be denoted by regular expressions in the generators ofM and C2, and it is easy to define a subset
of expressions that denote the members of the centralizer of C2. This is the above-mentioned
algebraic notation system for context-free sets that is much closer to the familiar one for regular
sets than context-free grammars or regular μ-terms are.

The goal of the present work is to replace C2 in (3) by a simpler algebra, the “polycyclic
∗-continuous Kleene algebra on two generators,”

C′2 =R�∗2/
〈
bd= 1= pq, bq= 0= pd

〉
,

and instead of (3) prove

CM� ZC′2 (RM⊗R C′2), (4)

our first main result. The congruence used in C′2 is generated by just the bracket match and mis-
match conditions. These, but not the completeness condition, can be seen as monoid equations,
provided we extend �∗2 by an annihilating monoid element 0. Doing so gives us the “polycyclic
monoid on two generators,”

P′2 = (�2 ∪ {0})∗/
〈{ x0= 0= 0x | x ∈�2 ∪ {0}} ∪ {bd= 1= pq, bq= 0= pd}〉.

This allows us to treat C′2 as RP′2 modulo {0} = ∅ and RM⊗R C′2 as R(M× P′2) modulo
{(1, 0)} = ∅. Moreover, it lets us understand the centralizer of C′2 in RM⊗R C′2: it contains (the
equivalence classes of) those R ∈R(M× P′2) where R⊆M× {0, 1}.

Intuitively, therefore, (4) says that the context-free sets L ∈CM correspond to the regular sets
R ∈R(M× P′2) whose elements (m, t′) have t′ ∈ {0, 1}: elements (m, 1) ∈ R come from an element
m ∈M ∩ L with a parse tree t ∈D2 ⊆�∗2 with respect to a context-free grammar for L, reduced
to t′ = 1 in P′2; elements (m, 0) ∈ R come from unparsable m ∈M \ L and are thrown away in the
quotient of R(M× P′2) by {(1, 0)} = ∅ .

However, the algebraic form (4) of the Chomsky–Schützenberger theorem and its reverse for
monoids does not yet give an algebraic representation of the fixed-point closure of an arbitrary
∗-continuous Kleene algebraK, which need not be of the formRM for somemonoidM. Equipped
with suitable notions of R- and C -morphisms, the categories of ∗-continuous Kleene algebras
(Kozen 1981) and μ-continuous Chomsky algebras (Grathwohl et al. 2013), respectively, are sub-
categories DR and DC of the category D of dioids (i.e. idempotent semirings). In fact, DR and
DC are the Eilenberg-Moore categories of certainmonads on the category ofmonoids. The Kleene
algebras RM and the Chomsky algebras CM, with monoid M, form the so-called Kleisli subcat-
egories of DR and DC . We want to extend (4) from their Kleisli subcategories to the categories
DR and DC themselves. In an equivalent categorical formulation of Hopkins (2008a) and Leiß
and Hopkins (2018), the objects of DR and DC , called R-dioids and C -dioids there, are dioids
in which the regular resp. context-free subsets U of their multiplicative monoids have least upper
bounds

∑
U with respect to the partial order given by addition. As part of a broader program of

https://doi.org/10.1017/S0960129522000329 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000329

Mathematical Structures in Computer Science 689

algebraization of formal language theory, Hopkins (2008b) shows that there is an adjunction

QC
R :DR→DC and QR

C :DC →DR

between these categories, where QR
C is the forgetful functor (restricting

∑
to regular subsets) and

QC
R maps an R-dioid K to its fixed-point- or C -closure inDC , which extends K by a set of order-

theoretic ideals of K. In yet unpublished work, Hopkins tries to show that the C -closure of an
arbitrary R-dioid K can also be algebraically described as

QC
R(K)� ZC2 (K ⊗R C2). (5)

Based on (4), our second main result is that, again, C2 can be replaced by the simpler algebra C′2,
yielding a “categorical” Chomsky–Schützenberger theorem

QC
R(K)� ZC′2 (K ⊗R C′2). (6)

In contrast to the case of the Kleisli subcategories, we here really need the categorical notion of
product of R-dioids. A detailed presentation of the algebraic and categorical background used
here is given in Hopkins and Leiß (2018).

The rest of this paper is organized as follows. Section 2 gives the background of categories
DA of A -dioids for certain subfunctors A of the powerset functor P :M→M≤, where M

(resp. M≤) is the category of (partially ordered) monoids and (monotone) homomorphisms.
Section 2 also collects definitions and known results on products and quotients of A -dioids
and introduces polycyclic A -dioids C′n,A with n generators. Section 3 proves the algebraic ver-
sion CM⊆ ZC′2 (RM⊗R C′2) of the Chomsky–Schützenberger theorem; Section 4 the algebraic
version of the reverse Chomsky–Schützenberger theorem, CM⊇ ZC′2 (RM⊗R C′2). These are
combined in Section 5 to a proof that ZC′2 (RM⊗R C′2) is the C -closure of RM; for M= X∗,
this leads to a set of regular expressions over X ∪�2 that evaluate to the context-free sets of CM.
Section 6 finally proves the general representation result: for an arbitraryR-dioidK, theC -closure
of K is isomorphic to ZC′2 (K ⊗R C′2). In the Conclusion, we also sketch where Hopkins’ proof of
(5) uses the completeness assumption and how it is avoided in our proof of (6).

2. The Category ofA -Dioids andA -Morphisms
Let M be the category of monoids (M, ·, 1) and homomorphisms between monoids, and M≤ the
category of partially orderedmonoids (M, ·, 1,≤) andmonotone homomorphisms between them.
We consider subfunctors of the powerset functor P :M→M≤ and partially order them by A ≤
A ′ iff for all monoidsM, A M⊆A ′M. Amonadic operator3 is a functor A :M→M≤ such that
for all monoidsM, N,

(A0) A M is a set of subsets ofM,
(A1) A M contains all singleton subsets ofM,
(A2) A M is closed under products; hence, (A M, ·, {1},⊆) is a partially ordered monoid, where

A · B := {
a · b | a ∈A, b ∈ B

}
for A, B ∈A M,

(A3) A M is closed under unions of sets from A ((A M, ·, {1})), and
(A4) if f :M→N is a homomorphism, so is A f :A M→A N, where for U ⊆M,

(A f)(U) := {
f (u) | u ∈U

}
.

We write A M for both the selected set of subsets of M and the partially ordered monoid
(A M, ·, {1},⊆) or just the monoid (A M, ·, {1}). For the lifting A f of f , we often write f̃ .

https://doi.org/10.1017/S0960129522000329 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000329

690 H. Leiß

An A -dioid (D, ·, 1,≤) is a partially ordered monoid which is A -complete, i.e. each U ∈A D
has a least upper bound,

∑
U ∈D, and A -distributive, i.e.(∑
U

) (∑
V

)
=

∑
(UV) for all U,V ∈A D.

AnA -morphism f :D→D′ betweenA -dioidsD andD′ is a monotone homomorphism such that
f (

∑
U)=∑

(A f)(U) for all U ∈A D. Let DA be the category of A -dioids and A -morphisms
between A -dioids.

Example 1 (Hopkins 2008a). The following functors are monadic operators:

(1) I , where IM is the set of all singleton subsets of M; DI is the category M of monoids
(with equality as partial order) and (monoid-) homomorphisms.

(2) F , where FM is the set of all finite subsets ofM;DF is the categoryD of dioids and dioid
homomorphisms.

(3) R, where RM is the set of all regular subsets of M; DR is the category of ∗-continuous
Kleene algebras and morphisms between them, see Kozen (1981), Hopkins (2008a).

(4) C , whereCM is the set of all context-free subsets ofM;DC is the category ofμ-continuous
Chomsky algebras and morphisms between them, see Grathwohl et al. (2013), Leiß and
Hopkins (2018).

(5) T , where T M is the set of all Turing-subsets (r.e.) of M. Notice that (A3) generalizes the
well-known fact that the union of an r.e. family of r.e. subsets of N is an r.e. subset of N.

(6) Pℵ0 , where Pℵ0M is the set of countable subsets of M; DPℵ0 is the category of closed
semirings, see Kozen (1990).

(7) P , the power set operator; DP is the category of quantales with unit (Rosenthal 1990).

The sets RM, CM, T M can be defined by generalizing the grammatical approach of doing so
for free monoids M= X∗ (Hopkins 2008a). We use the more algebraic, equivalent definitions
for R and C given in Hopkins and Leiß (2018). RM is the closure of FM under (binary) union,
elementwise product, and iteration ∗, i.e. ifA ∈RM, so isA∗ :=⋃ {An | n ∈N }, whereA0 = {1},
An+1 =An ·A. CM is the closure of FM under components of least solutions of polynomial
systems over CM, i.e. the components A1, . . . ,An of the least solution in PM of a system of
inequations

x1 ≥ p1(x1, . . . , xn), . . . , xn ≥ pn(x1, . . . , xn)

with polynomials pi in x1, . . . , xn with parameters from CM all belong to CM. �

A Kleene Algebra (K,+, ·, ∗, 0, 1) is an idempotent semiring with a unary operation ∗ such that
a∗b is the least solution x of ax+ b≤ x and ba∗ the least solution of xa+ b≤ x, where y≤ z is
defined by y+ z= z (Kozen 1994). The Kleene algebra K is ∗-continuous if

ac∗b=
∑{

acmb | m ∈N
}

for all a, b, c ∈K.

A Chomsky algebra (Grathwohl et al. 2013) is an idempotent semiring K that is algebraically
closed, i.e. where every finite system of inequations x1 ≥ p1(x1, . . . , xn), . . . , xn ≥ pn(x1, . . . , xn)
with polynomials pi ∈K[x1, . . . , xn] has a least solution a1, . . . , an ∈K. If semiring terms, i.e.
terms in 0, 1,+, ·, are extended to μ-terms by adding a unary fixed-point operator μ, the least
solution of x≥ p(x, x1, . . . , xk) can be named by the term (μx.p)(x1, . . . , xk). A Chomsky algebra
is μ-continuous, if for all μ-terms μx.p with parameters from K,

a(μx.p)b=
∑{

a · pm(0) · b | m ∈N
}

for all a, b ∈K.

https://doi.org/10.1017/S0960129522000329 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000329

Mathematical Structures in Computer Science 691

In the ∗- and μ-continuity conditions, the existence of the least upper bounds on the right
is asserted, not assumed. Hence, these conditions are related to the R- and C -dioid axioms
by the existence assertions U = { cm | m ∈N } ∈RK resp. U = {

pm(0) | m ∈N
} ∈CK and the

A -distributivity assertion, for A =R resp. A =C ,

a
(∑

U
)
b=

∑
aUb, for all a, b ∈K,

which (assuming A -completeness) is equivalent to the A -distributivity condition above. Of
course, by A K we mean A applied to the multiplicative monoid of K. We refer to Hopkins
(2008a) and Leiß and Hopkins (2018) for the details of the equivalence between ∗-continuous
Kleene algebras and R-dioids and between μ-continuous Chomsky algebras and C -dioids,
respectively, and use the latter terminology in the following.

A dioid (D,+, ·, 0, 1) is an idempotent semiring. Idempotency of + provides a partial order
≤ on D, via d≤ d′ iff d+ d′ = d′, with 0 as least element. Distributivity makes · monotone with
respect to ≤, and + guarantees a least upper bound

∑
U = d1 + . . .+ dn for each finite subset

U = {d1, . . . , dn} of D. Let D be the category of dioids with dioid homomorphisms.
For F ≤A , (A3) implies that A M is an idempotent semiring with

0 :=
⋃
∅, A+ B :=

⋃
{A, B}, for A, B ∈A M.

In this case, every A -dioid (D, ·, 1,≤) becomes a dioid (D,+, ·, 0, 1), using a+ b :=∑{a, b} and
0 :=∑ ∅, and every A -morphism is a dioid homomorphism. Hence, we then view DA as a
subcategory of D.

Let us collect a number of results of that will be frequently used below:

Theorem 1 (Hopkins 2008a). Let A be a monadic operator with F ≤A . Let M,N be monoids
and D be an A -dioid.

(1) A M is an A -dioid.
(2) A M is the free A -dioid extension of M. (i.e., any homomorphism f :M→D to an A -dioid

D extends uniquely to an A -morphism f ∗ :A M→D such that f (m)= f ∗({m}).)
(3) The least upper bound operator

∑ :A D→D is an A -morphism.
(4) If f :M→N is a homomorphism, its lifting A f :A M→A N is an A -morphism.
(5) If f :M→N is a surjective homomorphism, so is its lifting A f :A M→A N.
(6) If M is a submonoid of N, then A M⊆A N.

In fact, by Theorem 16 of Hopkins (2008b), A :M→DA and the forgetful functor Â :
DA →M form an adjunction and combine to a monad TA = (Â ◦A , η,μ) :M→M with m ∈
M �→ {m} ∈A M as unit η andU ∈A A M �→⋃

U ∈A M as productμ. Therefore,A -dioids are
best viewed as Eilenberg-Moore T-algebras for this monad TA , i.e. two-sorted structures

D=
(
D, ·, 1,

∑
:A D→D

)
with

∑
as “structure map” (see Mac Lane 1971). The free A -dioids A M with monoidM are the

objects of the Kleisli-category of this monad TA .
Besides the free A -dioid extensions A M of monoidsM, further examples of A -dioids can be

obtained from given ones by suitable quotient and tensor product constructions as defined later.
Some categories DA are closed under matrix semiring formation, in particular:

Example 2. Let J be a non-empty set and D= (D,+D, ·D, 0D, 1D) a P-dioid. Then,

MatJ,J(D)=
〈
DJ×J ,+, ·, 0, 1〉

https://doi.org/10.1017/S0960129522000329 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000329

692 H. Leiß

is a P-dioid, where DJ×J is the set of functions from J × J to D, 0 is the constant function with
value 0D, 1 the function with 1(i, i)= 1D and 1(i, j)= 0D for i �= j, and + and · are given by
(f + g)(i, j)= f (i, j)+D g(i, j) and (f · g)(i, j)=∑ {

f (i, k) ·D g(k, j) | k ∈ J
}
, for all i, j ∈ J.

MatJ,J(D) is P-complete, because any U ⊆MatJ,J(D) has a least upper bound
∑

U defined
componentwise by (

∑
U)(i, j)=∑{

f (i, j) | f ∈U
}
using

∑ :PD→D; the P-distributivity
ofMatJ,J(D) follows from the definition of matrix product and the P-distributivity of D:(

g ·
(∑

U
)
· h

)
(i, j) =

∑{
g(i, k) ·D

(∑ {
f (k, l) | f ∈U

}) ·D h(l, j) | k, l ∈ J
}

=
∑{

g(i, k) ·D f (k, l) ·D h(l, j) | f ∈U, k, l ∈ J
}

=
∑{

(g · f · h)(i, j) | f ∈U
}
.

Elements of MatJ,J(D) will be called J × J-matrices over D and often are denoted by A, B; as
usual, we write Ai,j instead of A(i, j) etc. If M is a monoid, MatJ,J(PM) is a P-dioid. In partic-
ular, since B�PM for the trivial monoid M, the boolean matrices MatJ,J(B) form a P-dioid.
We identify MatJ,J(B) with the P-dioid of binary relations on J and often write (i, j) ∈A⊆ J × J
instead of Ai,j = 1. �

Remark 2. Similarly, DF is closed under Matn,n(·) for finite n and DPℵ0 under MatJ,J(·) for
countable J. It is an open question whether Matn,n(D) is an A -dioid for an arbitrary monadic
operator A and A -dioid D. The least upper bound

∑
U of a set U ⊆Matn,n(D) has to sat-

isfy (
∑

U)i,j =∑{
Ai,j | A ∈U

}
, butU ∈A (Matn,n(D)) does not seem to imply

{
Ai,j | A ∈U

} ∈
A D, so it is already unclear if the componentwise suprema exist and Matn,n(D) is A -complete.
Defining the iteration A∗ of a matrix A of dimension n× n by a formula of Conway (1971),
Kozen (1994) shows that for a Kleene algebra K,Matn,n(K) is a Kleene algebra and extends this to∗-continuous Kleene algebras in Kozen (1991), Chapter 7.1. So the category of R-dioids is closed
underMatn,n(·). Leiß (2016) shows that the category of C -dioids is closed underMatn,n(·).

Lemma 3. Let f :M→D be a homomorphism from a monoid M to a dioid D. Suppose that for
each L ∈A M, its image (A f)(L) ∈A D has a least upper bound in D, L̂ :=∑ {

f (m) | m ∈ L
}

and that ·̂ :A M→D is a surjective homomorphism. Then, D is an A -dioid.

Proof. By Theorem 1, the map A (·̂) :A A M→A D is a surjective homomorphism. Therefore,
we can define a least upper bound operator

∑
that makes the following diagram commute:

A A M A (·̂) � A D

A M

⋃
� ·̂ � D.

∑
�

.................

For each V ∈A D, there is U ∈A A M such that V = {
L̂ | L ∈U

}
. Since

⋃
U ∈A M, its image

under (A f)= f̃ has by assumption a least upper bound,
⋃̂

U =∑ {
f (m) | m ∈⋃

U
} ∈D.

Then, ∑
V :=

⋃̂
U

is an upper bound ofV inD, since for each L ∈U, L⊆⋃
U; hence, f̃ (L)⊆ f̃ (

⋃
U) and L̂ ≤ ⋃̂

U.
If e ∈D is any upper bound of V , then for eachm ∈⋃

U there is L ∈U withm ∈ L, so
f (m)≤ L̂ ≤ e.

https://doi.org/10.1017/S0960129522000329 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000329

Mathematical Structures in Computer Science 693

Hence, e is an upper bound of
{
f (m) | m ∈⋃

U
}
and so

⋃̂
U ≤ e. Therefore,

∑
V is the least

upper bound of V in D, and D is A -complete.
To show that D is A -distributive, suppose V1,V2 ∈A D. Since A (·̂) :A A M→A D is sur-

jective, there are U1,U2 ∈A A M such that Vi =
{
L̂ | L ∈Ui

}
and

∑
Vi = ⋃̂

Ui for i= 1, 2.
Then, V1V2 ∈A D has a least upper bound

∑
(V1V2), and since (

∑
V1)(

∑
V2) is an upper

bound of V1V2, we have
∑

(V1V2)≤ (
∑

V1)(
∑

V2). For the reverse inequation, use that ·̂ and⋃
are homomorphisms:∑

(V1V2) =
∑ {

L̂1L̂2 | L1 ∈U1, L2 ∈U2
}

=
∑ {

L̂1L2 | L1 ∈U1, L2 ∈U2
}

=
∑ {

L̂ | L ∈U1U2
}

=
∑ { ∑ {

f (m) | m ∈ L
} | L ∈U1U2

}
≥

∑ {
f (m) | m ∈

⋃
(U1U2)

}
=

⋃̂
(U1U2)

=
(⋃

U1 ·
⋃

U2
)̂

=
⋃̂

U1 ·
⋃̂

U2

=
(∑

V1
) (∑

V2
)
.

For monadic operators A ≤B, the B-completion of an A -dioid D is a B-dioid D together
with an embedding A -morphism ηD :D→D such that the following “universal property” holds:
anyA -morphism f fromD to aB-dioidD′ extends uniquely to aB-morphism f̄ :D→D′, in the
sense that f = f̄ ◦ ηD:

D′

D
ηD

�

f

�

D

f̄

�
................

By the universal property, the B-completion of D is unique up to a B-isomorphism.
The C -completion of a Kleene algebra or an R-dioid is analogous to the algebraic closure of a

field, but instead of adjoining roots to polynomials, we adjoin least fixed points. TheC -completion
shall therefore also be called the C -closure or fixed-point closure of the Kleene algebra.

Proposition 4. For monoids M, the C -completion of RM is CM with the inclusion as ηRM.

Proof. CM is a C -dioid by Theorem 1 of Hopkins (2008a). If f :RM→ C is an R-morphism to
a C -dioid C, we define f̄ :CM→ C by

f̄ (L)=
∑ {

f ({m}) | m ∈ L
}
, for L ∈CM.

It is routine to check that f̄ is the only C -morphism h :CM→ C with f = h ◦ ηRM .

https://doi.org/10.1017/S0960129522000329 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000329

694 H. Leiß

In the rest of this paper, we give an algebraic construction of the C -closure CM of RM for
monoidsM and generalize this to a construction of the C -closure of an arbitrary R-dioid K.

2.1 Quotients inDA

From now on, we assume F ≤A , so that all A -dioids are dioids. For a partial order (D,≤), the
down-closure of U ⊆D is U↓ := {

d ∈D | d≤ u for some u ∈U
}
.

If D= (D,+D, ·D, 0D, 1D) is a dioid and ρ a dioid-congruence on D, then D/ρ, the set of
congruence classes of ρ, is a dioid under the operations

d/ρ + d′/ρ := (d+D d′)/ρ, d/ρ · d′/ρ := (d ·D d′)/ρ, 0 := 0D/ρ, 1 := 1D/ρ.
The partial order ≤ on D/ρ derived from+ is

d/ρ ≤ d′/ρ :⇐⇒ (d+D d′)/ρ = d′/ρ.
An A -congruence on an A -dioid D is a dioid-congruence ρ on D such that for all U,U ′ ∈A D, if
(U/ρ)↓ = (U ′/ρ)↓, then (

∑
U)/ρ = (

∑
U ′)/ρ.

Proposition 5 (Hopkins and Leiß 2018). If D is an A -dioid and ρ an A -congruence on D, then
D/ρ is an A -dioid and the canonical map d �→ d/ρ is an A -morphism.

Proof. For each V ∈A (D/ρ), there is U ∈A D such that V =U/ρ = {
d/ρ | d ∈U

}
. Since ρ

is an A -congruence,
∑

(U/ρ) := (
∑

U)/ρ is well-defined and a least upper bound of V . (This
needs F ≤A .)

If D is an A -dioid and E⊆D×D, there is a least A -dioid-congruence ρ on D with E⊆ ρ, the
intersection of all A -dioid-congruences on D above E.

The A -dioid A (X∗/ρ) of the quotient monoid X∗/ρ is isomorphic to the quotient A X∗/ρ̃
of the free A -dioid A X∗ by a suitable A -congruence ρ̃. If ρ is determined by a set E of monoid
equations, ρ̃ is determined by the corresponding set of dioid equations between singleton sets:

Proposition 6 (Hopkins and Leiß 2018). Let ρ be a congruence on the monoidM andA ρ the least
A -congruence on A M above

{
({m}, {m′}) | (m,m′) ∈ ρ

}
. Then A (M/ρ)�A M/A ρ.

It is shown in Hopkins and Leiß (2018) that DA has coequalizers, and the quotient D/ρ of
an A -dioid D by an A -congruence ρ on D is the coequalizer of two suitable A -morphisms
f , g :N �� D. The kernel ker (f) of an A -morphism f :D→D′ between A -dioids is an
A -congruence on D.

2.2 The polycyclicA -dioids C′
n,A

Let �n = {p0, . . . , pn−1, q0, . . . , qn−1} be a set of n pairs of “brackets,” p0, q0, . . . , pn−1, qn−1. We
decompose �n = Pn ∪Qn into the set Pn =

{
pi | i< n

}
of “opening” brackets and the set Qn ={

qi | i< n
}
of “closing” brackets. We also use 〈i| for pi and |i〉 for qi.

Let A be a monadic operator such that ∅ ∈A M for each monoid M. The polycyclic A -dioid
C′n,A is the quotientC′n,A =A �∗n/ρn ofA �∗n by theA -congruence ρn generated by the relations

piqj = δi,j for i, j< n, (7)
where δi,j is the Kronecker δ. These equations allow us to algebraically distinguishmatching brack-
ets, where piqj = 1, from non-matching ones, where piqj = 0. Recall that in A �∗n, elements of �∗n
are interpreted by their singleton sets, 0 by the empty set, so that ρn is the leastA -congruence con-
taining ({piqi}, {1}) and ({piqj}, ∅) for i, j< n, i �= j. The bra-ket algebra Cn,A of Hopkins (2007)

https://doi.org/10.1017/S0960129522000329 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000329

Mathematical Structures in Computer Science 695

further assumes a “completeness” condition, 1=∑ {
qipi | i< n

}
, i.e.

Cn,A =A �∗n/
〈{

piqj = δi,j | i, j< n
}∪ {

1=
∑ {

qipi | i< n
}}〉

.

We will only use the case A =R and abbreviate Cn,R and C′n,R by Cn and C′n, respectively.

Remark 7. The reason to call 1= q0p0 + . . .+ qn−1pn−1 the completeness condition is as follows.
A map c : {0, . . . , n− 1}→ {0, 1}∗ is a prefix code if none of the code words c0, . . . , cn−1 is a prefix
of another one. A prefix code c is complete if for each w ∈ {0, 1}∗, either none or both successors
w0,w1 of w are prefixes of code words. By induction on the word length, define pw, qw ∈�∗2 by
pε = ε= qε , piw = pwpi and qiw = qiqw for i< 2. Then, the map c is a prefix code iff in C2, pciqcj =
δi,j for all i, j< n, and a complete prefix code iff additionally

∑
i<n qcipci = 1. In the latter case,

pi �→ pci , qi �→ qci (i< n) is an embedding of Cn into C2, for n≥ 2. For example, c0 = 0, c1 = 10,
c2 = 11 is a complete prefix code c : {0, 1, 2}→ {0, 1}∗, leading to an embedding of C3 into C2 by
mapping p0, p1, p2 to p0, p0p1, p1p1 and q0, q1, q2 to q0, q1q0, q1q1. The code words of different
closing brackets are not prefixes of each other, those of different opening brackets are not suffixes
of another.

As we omit the completeness condition, we can view the semiring equations (7) as monoid
equations, interpreted in monoids with an annihilating element 0, which leads to a different
representation of C′n,A that will be useful later.

The polycyclic monoid generated by Pn is the quotient P′n := (�n ∪ {0})∗/ρn, where ρn now is
the monoid congruence generated by{

piqj = δi,j | i, j< n
}∪ { x0= 0= 0x | x ∈�n ∪ {0} } .

Every string w ∈ (�n ∪ {0})∗ can be reduced to a “normal form” nfn(w), using the equations
generating ρn as rules to shorten a string. The reduction either runs into a bracket mismatch
and returns 0, or finds matching brackets only and returns 1, or ends in a string with all closing
brackets in front of all opening brackets. Hence, we can identify P′n with (Q∗nP∗n ∪ {0}, ·, 1), where

u · v := nfn(uv), u, v ∈Q∗nP∗n ∪ {0}.
The Cayley graph of the polycyclic monoid P′n is the graph whose nodes are the elements x ∈ P′n

with edges x δ−→ x · δ, for δ ∈�n.

Example 3. A drawing of a part of the Cayley graph of P′2 is given in Figure 1, not showing the
sink node 0 and edges connected to it. For example, there is no edge q0

p0−→ 1 since q0p0 �= 1. As
the picture indicates, the subgraph with nodes in P∗2 corresponds to a stack P∗2 � {0, 1}∗, with pi
for push(i) and qi for pop(i).4 For u ∈�∗2, an equation u= 1 holds in P′2 iff u is the label of a path
in the Cayley graph starting and ending in the node 1. The set of all those u is of course the pure
Dyck language D2 ∈C �∗2 of balanced strings over �2, i.e. the least solution in P�∗2 of

y≥ 1+ p0yq0 + p1yq1 + yy.
It is easy to define a pushdown automaton accepting

{
u ∈�∗2 | u= 1 in P′2

}
, keeping on its stack

the ρ-normal form of the input sequence read. �

Nivat and Perrot (1970) initiated the study of the connection between polycyclic monoids and
formal languages.

Remark 8. The polycyclic dioid C′n has an interpretation in the algebra of binary relations on the
Cayley graph of P′n, arising from the interpretation of pi and qi as the transition relations

pi−→ and
qi−→ shown in the graph. Under this interpretation, the completeness condition 1=∑

i<n qipi is

https://doi.org/10.1017/S0960129522000329 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000329

696 H. Leiß

Figure 1. Part of the Cayley graph of P′2.

not valid, as node 1 is not related to itself by any of the relations
qipi−→ .Wewill later use a restriction

of this interpretation to the “stack part” P∗n of P′n. It may seem that a constant π representing an
“empty stack” test is needed to model a stack properly by

1= π +
∑ {

qipi | i< n
}
, ππ = π ,

∧
i<n

(πqi = 0= piπ).

But in our case, this turns out to be unnecessary, since computations popping from the empty
stack can be interpreted by the empty transition relation (cf. the proof of Theorem 17).

The map from P′n to A �∗n given by 0 �→ ∅, 1 �→ {1}, and pi �→ {pi}, qi �→ {qi} for i< n, extends
to a homomorphism from P′n to the multiplicative monoid of C′n,A . Since P′n has no non-trivial
congruences (by Nivat and Perrot 1970), this is an embedding of P′n into C′n,A , for F ≤A .

In the original definition C′n =R�∗n/ρn, we take the quotient of the regular sets R�∗n under
the semiring congruence ρn, where 1 stands for {1} and 0 for ∅. We now take the regular sets RP′n
of P′n and remove the annihilating element:

Proposition 9. If ν is the least R-congruence on RP′n containing ({0}, ∅), then C′n �RP′n/ν.
Moreover, for B, B′ ∈RP′n we have B/ν = B′/ν iff B \ {0} = B′ \ {0}.

Proof. We first prove the second statement.⇐: Since {0}/ν =∅/ν is the least element of RP′n/ν,
for B ∈RP′n we have

B/ν =
∑

{ {w}/ν | w ∈ B } =
∑

{ {w}/ν | w ∈ B \ {0} } .
Hence, if B, B′ ∈RP′n with B \ {0} = B′ \ {0}, then B/ν = B′/ν.
⇒: One shows by induction on the regular operations that

ν0 :=
{
(B, B′) ∈RP′n ×RP′n | B \ {0} = B′ \ {0} }

is an R-congruence containing ({0}, ∅), and obviously ν ⊆ ν0.
For the first statement, notice that a congruence class A/ρn of C′n =R�∗n/ρn can be repre-

sented by a set of reduced strings,
{
nfn(w) | w ∈A

} \ {0}, and A/ρn �→
{
nfn(w) | w ∈A

}
/ν

constitutes an isomorphism between C′n,R and RP′n/ν.

https://doi.org/10.1017/S0960129522000329 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000329

Mathematical Structures in Computer Science 697

The n> 2 pairs of brackets pi, qi, i< n of �n can be coded by two pairs, say b, d and p, q of �2,
via pi := bpi and qi := qid. This extends to an embedding of P′n in P′2.

2.3 The tensor product ofA -dioids
In a category whose objects have amonoid structure, twomorphisms F1 :M1→M and F2 :M2→
M are relatively commuting, if for allm1 ∈M1 andm2 ∈M2, F1(m1) · F2(m2)= F2(m2) · F1(m1).

The tensor product of M1 and M2 is an object M1 ⊗M2 with two relatively commuting
morphisms �1 :M1→M1 ⊗M2 and �2 :M2→M1 ⊗M2 such that for any pair of relatively
commuting morphisms f :M1→M and g :M2→M there is a unique morphism hf ,g :M1 ⊗
M2→M with f = hf ,g ◦ �1 and g = hf ,g ◦ �2:

M1
�1� M1 ⊗M2 ��2 M2

M

hf ,g

�

................
g

�

f
�

By the universal property, the tensor product ofM1 andM2 is unique up to isomorphism.

Example 4. In the category M of monoids, the tensor product of M1 and M2 is the carte-
sian product M1 ×M2 with componentwise multiplication, unit (1, 1) and injections defined by
�1(a)= (a, 1) for a ∈M1 and �2(b)= (1, b) for b ∈M2. The induced morphism hf ,g is the one
given by hf ,g(a, b)= f (a) · g(b). �

Theorem 10 (Hopkins and Leiß 2018). A tensor product of A -dioids D1 and D2 exists,

�1 :D1 −→D1 ⊗A D2←−D2 : �2,

consisting of D1 ⊗A D2 :=A (M1 ×M2)/≡, where Mi = Â Di is the monoid underlying Di and ≡
is the A -congruence generated by the “tensor product relations”{(∑

A,
∑

B
)}
=A× B (A ∈A M1, B ∈A M2),

together with the embeddings�1,�2 defined by

�1(d1) := {(d1, 1)}/≡ for d1 ∈D1 and�2(d2) := {(1, d2)}/≡ for d2 ∈D2.

The liftings of the embeddings ofMi intoM1 ×M2 map A ∈A M1 to A× {1} ∈A (M1 ×M2)
and B ∈A M2 to {1} × B ∈A (M1 ×M2); hence,A× B= (A× {1})({1} × B) ∈A (M1 ×M2). The
tensor product relations are needed to make the�i :Di→D1 ⊗A D2 be A -morphisms.

For U ∈A (M1 ×M2), we write [U] for U/≡. By the definition of
∑

on D1 ⊗A D2,

[U] =
[⋃ { {(a, b)} | (a, b) ∈U

}]=∑ {
[{(a, b)}] | (a, b) ∈U

}=∑ {
a⊗ b | (a, b) ∈U

}
,

using a⊗ b for�1(a) · �2(b)= [{(a, b)}] ∈D1 ⊗A D2. In particular, for A ∈A M1, B ∈A M2, via
A× B ∈A (M1 ×M2) we have, by the tensor product relations,(∑

A
)
⊗

(∑
B
)
=

∑ {
a⊗ b | a ∈A, b ∈ B

}
.

Since D1 ⊗A D2 is the quotient of A (M1 ×M2) by the A -congruence ≡, its partial order is the
dioid-order on the quotient, i.e. [U]≤ [V] iff [U ∪V]= [V] for U,V ∈A (M1 ×M2), which is
coarser than the order on A (M1 ×M2) among the representatives U,V .

https://doi.org/10.1017/S0960129522000329 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000329

698 H. Leiß

Proposition 11 (Hopkins and Leiß 2018). For monoids M1 and M2, the tensor product of the
A -dioids A M1 and A M2 is isomorphic to the A -dioid A (M1 ×M2):

A M1 ⊗A A M2 � A (M1 ×M2).

Proof. (Sketch) The isomorphism A M1 ⊗A A M2→A (M1 ×M2) maps [R]=∑ {A⊗ B | (A, B) ∈ R } ∈A M1 ⊗A A M2 to
⋃ {A× B | (A, B) ∈ R }5, where R ∈

A (A M1 ×A M2); the inverse maps S ∈A (M1 ×M2) to
∑ { {a} ⊗ {b} | (a, b) ∈ S

}
.

Since (A, B) �→A× B is a homomorphism from A M×A N to A (M×N), its lifting is a
homomorphism from A (A M×A N) to A (A (M×N)), so for R ∈A (A M×A N),

SR :=
⋃
{A× B | (A, B) ∈ R } ∈A (M×N).

By the isomorphism, we have [R]= [R′] iff SR = SR′ . Conversely, for S ∈A (M×N),

RS :=
{
({a}, {b}) | (a, b) ∈ S

} ∈A (A M×A N);

hence, [RS]=∑ { {a} ⊗ {b} | (a, b) ∈ S
} ∈A M⊗A A N. Notice that S(RS) = S and [R(SR)]=

[R].
We can push this a bit further:

Theorem 12. Let M be a monoid and N a monoid with annihilating element 0. Then

A M⊗A (A N/ν)�A (M×N)/ν̃ (8)

where ν is the least A -congruence on A N containing ({0}, ∅) and ν̃ is the least A -congruence on
A (M×N) containing ({(1, 0)}, ∅).

Putting Rν := { (A, B/ν) | (A, B) ∈ R } for R ∈A (A M×A N), the isomorphism is given by

[Rν] �→ (SR)/ν̃, where SR :=
⋃
{A× B | (A, B) ∈ R } for R ∈A (A M×A N),

S/ν̃ �→ [(RS)ν], where RS := { ({m}, {n}) | (m, n) ∈ S } for S ∈A (M×N).

Proof . Since B �→ B/ν is a surjective A -morphism from A N to A N/ν, each element of
A (A M× (A N/ν)) is of the form Rν for some R ∈A (A M×A N).

To prove A M⊗A (A N/ν)�A (M×N)/ν̃, it is sufficient to show that

�′1 :A M−→A (M×N)/ν̃←−A N/ν : �′2
form a tensor product of A M and A N/ν in DA , where�′1 and�′2 are defined by

�′1(A)= (A× {1})/ν̃ and �′2(B/ν)= ({1} × B)/ν̃.

This will be done in the Appendix. We here show that the isomorphism A M⊗A (A N/ν)�
A (M×N)/ν̃ consisting of the A -morphisms h�′1,�′2 and h′�1,�2

induced by the universal
properties of the two tensor product constructions

A M
�′1� A (M×N)/ν̃ ��′2 A N/ν

A M⊗A (A N/ν)

h′�1,�2

�

................

h�′1,�′2

�
................

�2
�

�1
�

https://doi.org/10.1017/S0960129522000329 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000329

Mathematical Structures in Computer Science 699

is as claimed in the theorem. The induced A -morphisms are defined by

h�′1,�′2 ([Rν]) :=
∑ {�′1(A) · �′2(B/ν) | (A, B) ∈ R

}
=

∑
{ (A× {1})/ν̃ · ({1} × B)/ν̃ | (A, B) ∈ R }

=
∑

{ (A× B)/ν̃ | (A, B) ∈ R }
=

(⋃
{A× B | (A, B) ∈ R }

)
/ν̃ = (SR)/ν̃

and

h′�1,�2 (S/ν̃) :=
∑

{ �1({m}) · �2({v}/ν) | (m, v) ∈ S }
=

∑
{ {m} ⊗ {v}/ν | (m, v) ∈ S }

= [(RS)ν].
Since S(RS) = S, we have

(h�′1,�′2 ◦ h′�1,�2)(S/ν̃) = h�′1,�′2 ([(RS)ν])= S(RS)/ν̃ = S/ν̃,

and since the tensor product embeddings�1,�2 are A -morphisms,

(h′�1,�2 ◦ h�′1,�′2)([Rν]) = h′�1,�2 (SR/ν̃)= [(R(SR))ν]

=
∑ {

A⊗ B/ν | (A, B) ∈ R(SR)
}

=
∑

{ {m} ⊗ {v}/ν | (m, v) ∈ SR }
=

∑
{ {m} ⊗ {v}/ν | (m, v) ∈A× B, (A, B) ∈ R }

=
∑

{A⊗ B/ν | (A, B) ∈ R } = [Rν].

With Proposition 9, Theorem 12 provides us with a representation ofRM⊗R C′2 as a quotient
of a free R-dioid extension:

Corollary 13. Let ν be the least R-congruence on RP′2 containing ({0}, ∅) and ν̃ the least
R-congruence on R(M× P′2) containing ({(1, 0)}, ∅). Then

RM⊗R C′2 =RM⊗R (RP′2/ν)�R(M× P′2)/ν̃.

The centralizer ZC(D) of a set C under an embedding i : C→D in an A -dioid D is the set{
d ∈D | d · i(c)= i(c) · d for each c ∈ C

}
of all elements of D that commute elementwise with the image of C in D under i.

In the following, we are concerned with ZC′2 (RM⊗R C′2), the centralizer of C′2 in RM⊗R C′2
under the tensor product embedding�2 : C′2→RM⊗R C′2.

Proposition 14. For each R-dioid K, ZC′2 (K ⊗R C′2) is an R-dioid.

Proof. It is clear that ZC′2 (K ⊗R C′2) is closed under 0, 1,+ and ·, so it is a sub-dioid of K ⊗R C′2.
It is also closed under the restriction of

∑ :R(K ⊗R C′2)→K ⊗R C′2 to R(ZC′2 (K ⊗R C′2)): if
c ∈ C′2 and U ∈R(ZC′2 (K ⊗R C′2))⊆R(K ⊗R C′2), then since K ⊗R C′2 is R-distributive,

(1⊗ c)
∑

U =
∑

{ (1⊗ c)u | u ∈U } =
∑

{ u(1⊗ c) | u ∈U } =
(∑

U
)
(1⊗ c),

so
∑

U ∈ ZC′2 (K ⊗R C′2).

https://doi.org/10.1017/S0960129522000329 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000329

700 H. Leiß

We will later see that for monoids M, ZC′2 (RM⊗R C′2) is a C -dioid and isomorphic to CM.
The reason to care about this is that it provides us with regular expressions as a notation sys-
tem for context-free sets. Every L ∈ CM is, under CM� ZC′2 (RM⊗R C′2), an element of the
Kleene algebra RM⊗R C′2 and therefore denoted by a regular expression in the generators of
RM⊗R C′2.

Example 5. Let �2 = {b, d, p, q} and M be a monoid. For x, y ∈M, consider L={
xnyn | n ∈N

} ∈ CM and the regular expression b(px)∗(yq)∗d. Interpreted in RM⊗R C′2, ele-
mentsm ∈Mmean�1({m})= {m} ⊗ {1}/ν and elements δ ∈�2 mean�2({δ})= {1} ⊗ {δ}/ν. By∗-continuity and sincem and δ commute with each other in RM⊗R C′2, we obtain

b(px)∗(yq)∗d = b
(∑ {

(px)k | k ∈N

}) (∑ {
(yq)n | n ∈N

})
d

=
∑ {

b(px)k(yq)nd | k ∈N, n ∈N

}
=

∑ {
xkynbpkqnd | k ∈N, n ∈N

}
=

∑ {
xnyn | n ∈N

}
,

where in the final step, bpkqnd= δk,n since pq= 1= bd and bq= 0= pd. We will see that for any
L ∈CM, its image L̂ :=∑ { {m} ⊗ 1 | m ∈ L } in RM⊗R C′2 belongs to ZC′2 (RM⊗R C′2). �

To prove that ZC′2 (RM⊗R C′2), together with the embedding �1, is the C -closure of RM,
we want to show that any R-morphism f :RM→ C to a C -dioid C has a unique extension to a
C -morphism f̄ : ZC′2 (RM⊗R C′2)→ C, which can be defined by

f̄ (̂L)=
∑ {

f ({m}) | m ∈ L
}

for L ∈CM.

At least this works if for each element e ∈ ZC′2 (RM⊗R C′2) there is a unique L ∈ CM with e= L̂.
This uniqueness condition will be established in the following two sections: by Theorem 17 of
Section 3, there is at most one such L ∈ CM, by Theorem 26 of Section 4, there is at least one
such L.

We remark that the category DA has coproducts and free extensions (Hopkins and Leiß
2018). In particular, the free A -dioid extension of A M by the set �, (A M)[�], is isomorphic
to A (M[�]), whence we simply write A M[�] below.

3. The CST for Monoids and its Algebraic Version
We now prove the Chomsky–Schützenberger theorem for arbitrary monoidsM by reducing CM
to RM and the pure Dyck language D2 ∈C �∗2 and then give an algebraic version that embeds
CM into ZC′2 (RM⊗R C′2). Recall that �2 is an alphabet of two pairs of brackets and M[�2] the
free extension ofM by �2, which is just (X ∪�2)∗ in caseM= X∗.

3.1 The CST for monoids
For a finite set X, Dyck’s language D2(X) ∈CX∗[�2] of balanced strings over X∗[�2] is the least
solution of

y≥ 1+ X+ yy+ p0yq0 + p1yq1

https://doi.org/10.1017/S0960129522000329 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000329

Mathematical Structures in Computer Science 701

in P(X∗[�2]). By the classical theorem of Chomsky and Schützenberger (1963),

CX∗ ⊆ {
hX∗(R∩D2(X)) | R ∈RX∗[�2]

}
.

Since, for any monoidM, CM is defined inductively as an extension of FM by least solutions
(in PM) of polynomial systems with parameters from CM, one can reduce the parameters in the
polynomial systems to the base case FM, so that all elements of M that occur in the parameters
come from a finite set X⊆M. Therefore,

CM=
⋃
{C 〈X〉 | X ∈FM } , likewise RM=

⋃
{R〈X〉 | X ∈FM } ,

where 〈X〉 ⊆M is the submonoid ofM generated by X. We identify a system y1 ≥ p1, . . . , yn ≥ pk
with polynomials pi ∈ C 〈X〉[y1, . . . , yk] with a context-free grammar with nonterminal symbols
y1, . . . , yk, start symbol y1 and terminal symbols from X. Since M resp. D2(M) belong to CM
resp. CM[�2] only ifM is finitely generated, we first state the CST for finitely generated monoids:

Theorem 15 (CST for finitely generated monoids). For any finitely generated monoid M,

CM⊆ {
hM(R∩D2(M)) | R ∈RM[�2]

}
where D2(M) ∈CM[�2] is the set of elements of M[�2] with balanced brackets.

Our proof is essentially a proof of the classical Chomsky–Schützenberger theorem, with a per-
haps more intuitive construction of R from L than can be found in textbooks; it may be helpful to
first consider Example 6 below. We use the grammatical definitions of CM and RM[�2].

Proof. Let L1, . . . , Lk ∈CM be the least solution of the grammar G= 〈
y1 ≥ p1, . . . , yk ≥ pk

〉
. We

can assume that the parameters in p1, . . . , pk are singletons or empty. Suppose there are n− 1
occurrences of the variables y1, . . . , yk in p1, . . . , pk. Let �n = {〈0|, . . . , 〈n− 1|, |0〉, . . . , |n− 1〉}
be a set of n of “opening brackets” 〈i| and n “closing brackets” |i〉, i< n, and reserve the brack-
ets 〈0|, |0〉 for later usage. Surrounding the i-th variable occurrence by the i-th bracket pair, for
0< i< n, turns G into a grammar G′ = 〈y1 ≥ p′1, . . . , yn ≥ p′k〉 with least solution L′1, . . . , L′k ∈
CM[�n]. For example, a monomial m1yj,1 . . .msyj,sms+1 of pj is turned into a monomial
m1〈i1|yj,1|i1〉 . . .ms〈is|yj,s|is〉ms+1 of p′j. By the choice of p′1, . . . , p′k, clearly L

′
j ⊆Dn(M) and Lj =

hM(L′j) for 1≤ j≤ k.
Approximate L′1 from above by a regular set R1 ∈RM[�n] as follows. To each monomial α

of p′j (i.e. grammar rule (yj, α) or yj→ α) attach a “follow”- or “continuation”-variable yFj and
split αyFj into right-linear factors m′y, where m′ ∈M[�n] and y ∈ {y1, . . . , yk, yFj }. Let GF be the
right-linear polynomial system

y1 ≥ p′′1 , . . . , yk ≥ p′′k , yF1 ≥ pF1 + 1, yF2 ≥ pF2 , . . . , y
F
k ≥ pFk ,

where the monomials of p′′j are the initial factorsm′y of the monomials of p′jyFj and those of pFj are
the factors m′y that follow the occurrences of yj in p′1yF1 , . . . , p′ky

F
k . Let R1 be the first component

of the least solution of GF in RM[�n].

Claim 1. For all 1≤ j≤ k and w ∈M[�n], if yj⇒∗
G′ w, then yj⇒∗

GF wyFj .

Proof of Claim 1. By induction on the derivation length r≥ 1 in yj⇒r
G′ w. If r= 1, then yj→w

is a rule of G′, hence yj→wyFj is a rule of GF . If yj⇒1
G′ α⇒r

G′ w, and the rule yj→ α of G′ is
yj→m1〈i1|yj,1|i1〉 . . .ms〈is|yj,s|is〉ms+1, then GF has the rules

yj→m1〈i1|yj,1, yFj,1→|i1〉m2〈i2|yj,2, . . . , yFj,s→|is〉ms+1yFj ,

https://doi.org/10.1017/S0960129522000329 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000329

702 H. Leiß

and so yj⇒∗
GF α. By the induction hypothesis, we get α⇒∗

GF wyFj ; hence, yj⇒∗
GF wyFj . �

Using yF1 ≥ 1, Claim 1 implies L′1 ⊆ R1; hence, L′1 ⊆ R1 ∩Dn(M).

Claim 2. For all 1≤ j≤ k and w ∈Dn(M), if yj⇒∗
GF wyFj , then yj⇒∗

G′ w.

Proof of Claim 2. by induction on the derivation length r≥ 1 in yj⇒r
GF wyFj . If r= 1, then yj→w

is a rule of G′; hence, yj⇒∗
G′ w. For length r+ 1> 1, suppose yj⇒1

GF α⇒r
GF wyFj . By the choice

of yj ≥ p′′j of GF , there is m1 ∈M such that α =m1〈i1|yj,1 for some i1 and yj,1 ∈ {y1, . . . , yk},
or α =m1yFj . The second case cannot occur, since m1yFj ⇒r

GF wyFj with r≥ 1 is impossible: all
monomials of pFj either begin with a closing bracket |i〉 for some i, or are 1. In the first case, we
have m1〈i1|yj,1⇒r

GF wyFj . As w ∈Dn(M), there are u1,w1 ∈Dn(M) such that w=m1〈i1|u1|i1〉w1

and yj,1⇒r
GF u1|i1〉w1yFj . By the construction of GF , |i1〉 occurs only in rules yFj,1→|i1〉m2yFj or

yFj,1→|i1〉m2〈i2|yj,2 withm2 ∈M and yj,2 ∈ {y1, . . . , yk}. So we must have

yj,1⇒r1
GF u1yFj,1⇒r2

GF u1|i1〉w1yFj with r= r1 + r2.

Since r1 ≤ r, we get yj,1⇒∗
G′ u1 by induction. If the part y

F
j,1⇒r2

GF |i1〉w1yFj is

yFj,1⇒GF |i1〉m2yFj ⇒r2−1
GF |i1〉w1yFj ,

we must have r2 = 1 and w1 =m2, so yj→m1〈i1|yj,1|i1〉m2 is a rule of G′, and since w=
m1〈i1|u1|i1〉m2, the claim yj⇒∗

G′ w is shown. If the part yFj,1⇒r2
GF |i1〉w1yFj is

yFj,1⇒GF |i1〉m2〈i2|yj,2⇒r2−1
GF |i1〉w1yFj ,

there are u2,w2 ∈Dn(M) such that w1 =m2〈i2|u2|i2〉w2 and yj,2⇒r2−1
GF u2|i2〉w2. As |i2〉 occurs

only in rules yFj,2→|i2〉m3yFj or yFj,2→|i2〉m3〈i3|yj,3 with m3 ∈M and yj,3 ∈ {y1, . . . , yk}, we can
continue this way and get 1≤ i1, . . . , is ≤ n, r1, . . . , rs ≤ r, m1, . . . ,ms+1 ∈M and u1, . . . , us ∈
Dn(M) such that w=m1〈i1|u1|i1〉 . . .ms〈is|us|is〉ms+1 and

yj⇒GF m1〈i1|yj,1, yj,1⇒r1
GF u1yFj,1, yFj,1⇒GF |i1〉m2〈i2|yj,2, . . .

yj,s⇒rs
GF usyFj,s, yFj,s⇒GF |is〉ms+1yFj .

By construction ofGF , there is a rule yj→m1〈i1|yj,1|i1〉 . . . 〈is|yj,s|is〉ms+1 inG′, and by induction,
yj,1⇒∗

G′ u1, . . . , yj,s⇒∗
G′ us. The claim yj⇒∗

G′ w follows. �
Using yF1 ⇒GF 1, Claim 2 implies R1 ∩Dn(M)⊆ L′1. So L′1 = R1 ∩Dn(M), and L1 = hM(L′1)=

hM(R1 ∩Dn(M)). Finally, Dn(M) can be replaced by D2(M), since two bracket pairs b, d and p, q
can be used to code 〈i| by bpi and |i〉 by qid for i< n.

Example 6. Let a, b, c ∈M and let G= 〈
y≥ py(y, z), z≥ pz(y, z)

〉
be the following grammar

y ≥ a+ bzc, z ≥ yy,

which defines sets Ly, Lz ∈CM. Adding brackets around the three variable occurrences on the
right turns G into the grammar G′ =

〈
y≥ p′y, z≥ p′z

〉
y ≥ a+ b〈1|z|1〉c, z ≥ 〈2|y|2〉〈3|y|3〉,

https://doi.org/10.1017/S0960129522000329 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000329

Mathematical Structures in Computer Science 703

Figure 2. automaton for Ry ∈RM[�3].

defining L′y, L′z ∈ CM[�3]. It is clear that Ly = hM(L′y) and L′y ⊆D4(M). Now add follow- or
continuation-variables to the summands of p′y resp. p′z

y ≥ ayF + b〈1|z|1〉cyF , z ≥ 〈2|y|2〉〈3|y|3〉zF ;
now split the monomials of p′yyF and p′zzF into right-linear factors mx with m ∈M[�3] and x ∈
{y, z, yF , zF} to build the right-linear grammar GF =

〈
y≥ p′′y , z≥ p′′z , yF ≥ pFy + 1, zF ≥ pFz

〉
where

p′′y resp. p′′z are the sums of the initial factors from p′yyF resp. p′zzF , and pFy resp. pFz are the sums of
factors following an occurrence of y resp. z in p′yyF and p′zzF :

y ≥ ayF + b〈1|z, z ≥ 〈2|y, yF ≥ |2〉〈3|y+ |3〉zF + 1, zF ≥ |1〉cyF . (9)

We need yF ≥ 1, since y is the start symbol of G. Let Ry ∈RM[�3] be the y-component of the
least solution of GF . Intuitively, L′y ⊆ Ry since yF collects what follows any occurrence of y. A
finite automaton accepting Ry is shown in Figure 2 (with initial node y and accepting node yF). A
regular expression for Ry can be obtained by solving the inequation system in Kleene algebra (i.e.
replace x≥Ax+ B with constant A, B by x=A∗B) with respect to y. This leads via zF = |1〉cyF ,

yF = |2〉〈3|y+ |3〉|1〉cyF + 1
= (|3〉|1〉c)∗(|2〉〈3|y+ 1)
= (|3〉|1〉c)∗|2〉〈3|y+ (|3〉|1〉c)∗

and z= 〈2|y to the least solution in y by

y = ayF + b〈1|〈2|y
= a(|3〉|1〉c)∗|2〉〈3|y+ a(|3〉|1〉c)∗ + b〈1|〈2|y
= (b〈1|〈2| + a(|3〉|1〉c)∗|2〉〈3|)y+ a(|3〉|1〉c)∗
= (b〈1|〈2| + a(|3〉|1〉c)∗|2〉〈3|)∗a(|3〉|1〉c)∗.

For example, Ry contains the description b〈1|〈2|a|2〉〈3|a|3〉|1〉c of a parse tree of baac ∈ Ly.
Let us add a preview to the algebraic version of the theorem and its reverse. Those elements of

Ry that are not descriptions of parse trees of words in Ly contain (modulo commuting brack-
ets with elements of M) bracket mismatches or have initial closing brackets or final opening
brackets, like w= a|3〉|1〉c|2〉〈3|a ∈ Ry. With the reserved pair 〈0|, |0〉 of brackets, we can go from
Ry to {〈0|}Ry{|0〉} and thereby turn the latter kind of elements into further ones with bracket
mismatches, like 〈0|w|0〉 = 〈0|a|3〉|1〉c|2〉〈3|a|0〉. The modified automaton shown in Figure 3
therefore is a description of Ly: if we only extract sequences without bracket mismatches, we
obtain all parse trees of words in Ly. An algorithm to extract only bracket mismatch-free
strings from a similar automaton is given by Hulden (2011) for a CFG-parser based on the
Chomsky–Schützenberger theorem.

A version without the assumption thatM be finitely generated follows:

https://doi.org/10.1017/S0960129522000329 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000329

704 H. Leiß

Figure 3. automaton for Ly ∈CM� ZC′4 (RM⊗R C′4).

Corollary 16 (CST for monoids). Let M be a monoid M and D2 ∈C �∗2 the pure Dyck language
over �2. For any L ∈ CM, there is some R ∈R(M×�∗2) such that

L= {
m | (m, d) ∈ R, d ∈D2

}
.

Moreover, for (m, d) ∈ R the normal form nf2(d) in P′2 =Q∗2P∗2 ∪ {0} of d belongs to {0, 1}.

Proof. For each L ∈CM, there is a finitely generated submonoid N ⊆M with L ∈CN, and by
Theorem 15, there is S ∈RN[�2] such that L= hN(S∩D2(N)). The homomorphism

〈
hN , h�∗2

〉
:

N[�2]→N ×�∗2 lifts to a homomorphism h :RN[�2]→R(N ×�∗2)⊆R(M×�∗2). Then,
R := h(S) ∈R(M×�∗2) and L= hN(S∩D2(N))= π1(R∩ (M×D2)), where π1 :M×�∗2→M is
the first projection.

The normal form nf2 : (�2 ∪ {0})∗ → P′2 =Q∗2P∗2 ∪ {0} maps those d ∈�∗2 with d ∈D2 to 1 ∈
Q∗2P∗2 and those containing a bracket mismatch to 0. To obtain nf2(d) ∈ {0, 1} for all (m, d) ∈ R,
the idea is to wrap all strings of �∗2 with a third pair of brackets; this turns strings with normal
form 0 or 1 into strings with the same normal form and those with normal form in Q∗2P∗2 \ {1}
into strings with normal form 0, because of a mismatch with the new wrapping brackets; finally,
the three bracket pairs are coded by two.

To carry this out, suppose �2 = {〈0|, |0〉, 〈1|, |1〉}. The embedding of �2 in �∗2 given by 〈i| �→
〈0|〈1|i+1 and |i〉 �→ |1〉i+1|0〉 for i< 2 extends to a homomorphism ′ :�∗2→�∗2, such that d ∈
D2 iff d′ ∈D2 for each d ∈�∗2. Then, (m, d) �→ (m, d′) also is a homomorphism, which lifts to
a homomorphism from R(M×�∗2) to R(M×�∗2). From R ∈R(M×�∗2), we therefore obtain
R′ := {

(m, d′) | (m, d) ∈ R
} ∈R(M×�∗2); hence, also

R̃ := {(1, 〈0|)} · R′ · {(1, |0〉)} ∈R(M×�∗2).

For d ∈�∗2, we have d ∈D2 iff d′ ∈D2 iff 〈0|d′|0〉 ∈D2, so nf2(d)= 1 iff nf2(〈0|d′|0〉)= 1, and

L= {
m | (m, d) ∈ R, d ∈D2

}= {
m | (m, d̃) ∈ R̃, d̃ ∈D2

}
.

Moreover, if nf2(d)= 0, then nf2(〈0|d′|0〉)= 0. Finally, if nf2(d) ∈Q∗2P∗2 \ {1}, then nf2(d′) begins
with |1〉i+1|0〉 or ends in |0〉〈1|i+1, for some i< 2, so that nf2(〈0|d′|0〉)= 0. Hence, with R̃ instead
of R both claims in the statement of the corollary hold.

3.2 Algebraic version of the CST for monoids
In the algebraic formulation, the Chomsky–Schützenberger theorem relates the objects RM and
CM of the Kleisli subcategories of DR and DC . While in the classical formulation, each L ∈ CM
has a regular approximation R ∈RM[�2] such that L= hM(R∩D2(M)), one can now perform
both the intersection with D2(M) and the removal of brackets by hM algebraically in RM⊗R C′2,
and the relation between L and R becomes one of representing the same tensor.

https://doi.org/10.1017/S0960129522000329 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000329

Mathematical Structures in Computer Science 705

Theorem 17 (Algebraic CST for monoids). For any monoid M and L ∈CM, the elementwise
�1-image { {m} ⊗ 1 | m ∈ L } ∈C (RM⊗R C′2) of L has a least upper bound in RM⊗R C′2,∑

{ {m} ⊗ 1 | m ∈ L } .
In fact, there is an injective map ·̂ :CM→ ZC′2 (RM⊗R C′2) given by

L �→ L̂ :=
∑

{ {m} ⊗ 1 | m ∈ L } .

Proof. By Corollary 16, for L ∈CM there is S ∈R(M×�∗2) with L= {
m | (m, d) ∈ S, d ∈D2

}
,

and the normal form nf2(d) of each d ∈�∗2 with (m, d) ∈ S belongs to {0, 1} ⊂ P′2. There is
an isomorphism R(M×�∗2)�RM⊗R R�∗2 which maps S ∈R(M×�∗2) to the congruence
class of

RS =
{
({m}, {d}) | (m, d) ∈ S

} ∈R(RM×R�∗2).
By definition, using {m} ⊗ {d} := [{({m}, {d})}], this congruence class is

[RS] =
∑ { {m} ⊗ {d} | (m, d) ∈ S

} ∈RM⊗R R�∗2,

where
∑

is the least upper bound in the tensor product. The canonical map ·/ρ2 :R�∗2→ C′2 =
R�∗2/ρ2 is anR-morphismmapping those {d}with d ∈D2 to 1 ∈ C′2 and those where d contains a
bracket mismatch to 0 ∈ C′2. By the assumption on S, for all (m, d) ∈ S either nf2(d)= 1, i.e. d ∈D2,
or nf2(d)= 0, i.e. d contains a bracket mismatch. Hence for all d with (m, d) ∈ S,

d ∈D2 ⇐⇒ {d}/ρ2 = 1, d /∈D2 ⇐⇒ {d}/ρ2 = 0.
The image of RS under the homomorphism h := Id× ·/ρ2 :RM×R�∗2→RM× C′2 is{

({m}, {d}/ρ2) | (m, d) ∈ S
} ∈R(RM× C′2),

and therefore, since {m} ⊗ 0= 0,∑
{ {m} ⊗ 1 | m ∈ L } =

∑ { {m} ⊗ {d}/ρ2 | (m, d) ∈ S, d ∈D2
}

=
∑ { {m} ⊗ {d}/ρ2 | (m, d) ∈ S

}
= [{

({m}, {d}/ρ2) | (m, d) ∈ S
}] ∈RM⊗R C′2.

Since each {m} ⊗ 1 and {m} ⊗ 0 commutes with each 1⊗ c for c ∈ C′2, we have

L̂=
∑

{ {m} ⊗ 1 | m ∈ L } ∈ ZC′2 (RM⊗R C′2)

by the R-distributivity of RM⊗R C′2.
To show that the map L �→ L̂ is injective, we present two relatively commuting R-morphisms

f , g such that the induced R-morphism hf ,g maps L̂ back to a copy of L.

RM �1 � RM⊗R C′2 � �2 C′2

PM⊗P MatP∗2 ,P∗2 (B)

hf ,g

�

................
g

�

f
�

Let f be defined by f (A)=A⊗ I for A ∈RM, where I ∈MatP∗2 ,P∗2 (B) is the unit matrix. By g
we interpret C′2 in MatP∗2 ,P∗2 (B), which is isomorphic to the P-dioid of binary relations over
P∗2 , the “stack part” of P′2 = (Q∗2P∗2 ∪ {0}, ·, 1). To define g, let γ :�∗2→MatP∗2 ,P∗2 (B) be the

https://doi.org/10.1017/S0960129522000329 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000329

706 H. Leiß

homomorphism generated by the relations “push pi” and “pop pi” on the stack part P∗2 of P′2,
γ (pi) :=

{
(u, v) ∈ P∗2 × P∗2 | u · pi = v

}
,

γ (qi) :=
{
(u, v) ∈ P∗2 × P∗2 | u · qi = v

}
for i< 2. Clearly, γ extends to an R-morphism γ ∗ :R�∗2→MatP∗2 ,P∗2 (B) by

γ ∗(U)=
∑

{ γ (u) | u ∈U } .
The semiring equations piqj = δi,j hold inMatP∗2 ,P∗2 (B) when 0 and 1 are interpreted by the matri-
ces 0 and I, and pi and qj by γ ∗({pi}) and γ ∗({qj}), for i< 2. Therefore, γ ∗ is constant on
ρ2-congruence classes, and hence,

g(U/ρ2)= {1} ⊗ γ ∗(U), for U ∈R�∗2,
defines an R-morphism g : C′2→PM⊗P MatP∗2 ,P∗2 (B). Obviously, f and g are relatively com-
muting.

By the choice of S for L ∈ CM, we have L= {
m | (m, d) ∈ S, d ∈D2

}
and

{d}/ρ2 =
{
1 d ∈ π2(S)∩D2,
0 d ∈ π2(S) \D2.

So g({d}/ρ2) is the unit matrix for d ∈ π2(S)∩D2 and the zero matrix for d ∈ π2(S) \D2. As hf ,g
is an R-morphism and

{ {m} ⊗ {d}/ρ2 | (m, d) ∈ S
} ∈R(RM⊗R C′2), we obtain

hf ,g (̂L) = hf ,g
(∑

{ {m} ⊗ 1 | m ∈ L }
)

= hf ,g
(∑ { {m} ⊗ {d}/ρ2 | (m, d) ∈ S

})
=

∑ {
hf ,g({m} ⊗ {d}/ρ2) | (m, d) ∈ S

}
=

∑ {
f ({m}) · g({d}/ρ2) | (m, d) ∈ S

}
=

∑
{ {m} ⊗ I | m ∈ L }

= L⊗ I,
using the C -continuity of the embedding �′1 :PM→PM⊗P MatP′2,P′2 (B) in the final step.
Since�′1 is injective, hf ,g is essentially an inverse to L �→ L̂.6

4. The Reverse CST for Monoids and its Algebraic Version
The “reverse” Chomsky–Schützenberger theorem, i.e. that for finite X,{

hX∗(R∩D2(X)) | R ∈R(X∗[�2])
}⊆CX∗,

involves showing that R∩D2(X) ∈C (X∗[�2]), which is usually done by coupling a finite-state
acceptor with a pushdown automaton. This construction does not work for an arbitrary finitely
generated monoid M, since there is no standard presentation of elements of M as a sequence
of elements from a finite generating subset; we therefore give a grammatical proof of hM(R∩
D2(M)) ∈CM below. A version of a reverse CST for arbitrary monoids follows.

4.1 The reverse CST for monoids
If M is a finitely generated monoid, M belongs to CM and D2(M) to C (M[�2]). So we can
formulate the reverse CST for suchM as direct generalization from the classical case.

https://doi.org/10.1017/S0960129522000329 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000329

Mathematical Structures in Computer Science 707

Theorem 18 (Reverse CST for finitely generated monoids). For any finitely generated monoid M,{
hM(R∩D2(M)) | R ∈R(M[�2])

}⊆CM.

Proof. Since the erasing homomorphism hM :M[�2]→M lifts to hM :C (M[�2])→CM, it is
sufficient to show

{ R∩D2(M) | R ∈R(M[�2]) } ⊆C (M[�2]). (10)

Suppose R ∈R(M[�2]). Then, R is a component of the least solution �R of a system

y1 ≥ p1(y1, . . . , yn), . . . , yn ≥ pn(y1, . . . , yn)

with right-linear polynomials p1, . . . , pn ∈F (M[�2])[y1, . . . , yn]. By means of additional vari-
ables and inequations, we can assume that all parameters from F (M[�2]) are singletons or the
empty set, so that the system can be written as

y1 ≥ w1,1y1 + . . .+w1,nyn +w1,
... (11)

yn ≥ wn,1y1 + . . .+wn,nyn +wn,

where the parameters wi,j,wi are from M[�2], standing for the singletons {wi,j} resp. {wi}, or are
0 and stand for ∅. As any w ∈M[�2] is an interleaving sequence of products of generators of M
and elements of �2, we can further assume that wi,j ∈ X ∪�2 ∪ {0} and wi ∈ {0, 1}, where X is the
finite set of generators of M. Then, �R can be obtained by first taking the least solution of (11) in
R(X∗[�2]) and then interpreting sequences m1 · · ·mk ∈ X∗ by the product m1 ·M · · · ·M mk ∈M
of their members. Let D2(M) ∈C (M[�2]) be the likewise interpretation of the Dyck language
D2(X) ∈C (X∗[�2]). To show R∩D2(M) ∈ C (M[�2]), we construct a context-free grammar G,
the least solution of which assigns R∩D2(M) to its main variable S. The variables Y of G are
S and all [y,D, z], [y, d, z] and [y,D, 1] with y, z ∈ {y1, . . . , yn}, d ∈�2 and auxiliary symbol D.
Its inequations Y ≥ α1 + . . .+ αk are obtained by combining all inequations Y ≥ α1, . . . , Y ≥ αk
with the same left hand side Y from the following table:

context-free G for R∩D2(X) definition (11) of R contains
S ≥ [y,D, z] y as main variable

[y,D, z] ≥ m y≥mz withm ∈ X
[y, d, z] ≥ d y≥ dz with d ∈�2

[y,D, 1] ≥ 1 y≥ 1
[y,D, y] ≥ 1
[y,D, z] ≥ [y,D, y′][y′,D, z]
[y,D, z] ≥ [y, pi, y′][y′,D, z′][z′, qi, z] (i< 2)

Claim 1. For all y ∈ {y1, . . . , yn} and z ∈ {y1, . . . , yn} ∪ {1},
[y,D, z]⇒∗

G w and w ∈M[�2] iff y⇒∗
R wz and w ∈D2(X).

Proof of Claim 1.⇒: This is easily shown by induction on k in [y,D, z]⇒k
G w.

⇐: Suppose y⇒k
R wz and w ∈D2(X). There is a sequence

yi0 ≥w1yi1 , yi1 ≥w2yi2 , . . . , yik−1 ≥wkyik

https://doi.org/10.1017/S0960129522000329 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000329

708 H. Leiß

such that y= yi0 , w=w1 · · ·wk ∈D2(X) and yik = z. We show by induction on k that

[yi0 ,D, yik]⇒∗
G w1 · · ·wk.

If k= 0, then w= 1, and [yi0 ,D, yi0]⇒G 1. If k= 1, then yi0 ≥wyi1 and w ∈ X ∪�2. From w ∈
D2(X), we get w ∈ X, hence [yi0 ,D, yi1]⇒G w.

Suppose k> 1. By the construction of D2(X), there either is j< k with u :=w1 · · ·wj, v :=
wj+1 · · ·wk ∈D2(X) and w= uv, or w= p0uq0 or w= p1uq1 with u :=w2 · · ·wk−1 ∈D2(X).

In the first case, we have yi0 ⇒∗
R uyij and yij ⇒∗

R vyik in less than k steps; hence, [yi0 ,D, yij]⇒∗
G u

and [yij ,D, yik]⇒∗
G v by induction; hence,

[yi0 ,D, yik]⇒G [yi0 ,D, yij][yij ,D, yik]⇒∗
G uv=w.

In the second case, we have yi1 ⇒∗
R uyik−1 in less than k steps; hence, [yi1 ,D, yik−1]⇒∗

G u by
induction; hence for j ∈ {0, 1},

[yi0 ,D, yik]⇒G [yi0 , pj, yi1][yi1 ,D, yik−1][yik−1 , qj, yik]
⇒2

G pj[yi1 ,D, yik−1]qj⇒∗
G pjuqj =w. �

It follows that G defines R∩D2(X): If w ∈ L(G), then S⇒∗
G w ∈M[�2], so by the claim, w ∈

R∩D2(X). Conversely, if y⇒∗
R wz and y is the main variable of (11), then S⇒G [y,D, z]⇒∗

G w,
so w ∈ L(G).

As with the CST, a version of the reverse CST for arbitrary monoids follows:

Corollary 19 (Reverse CST for monoids). For any monoid M and R ∈R(M×�∗2),{
m | (m, d) ∈ R, d ∈D2

} ∈CM.

Proof. If R ∈R(M×�∗2), there is a finitely generated submonoid N ⊆M with R ∈R(N ×�∗2).
The homomorphism

〈
hN , h�∗2

〉
:N[�2]→N ×�∗2 is surjective and lifts to a surjective homo-

morphism h :RN[�2]→R(N ×�∗2), by Theorem 1. So there is S ∈RN[�2] with R= h(S).
For any (m, d) ∈ R there is w ∈ S with (m, d)=

〈
hN , h�∗2

〉
(w)= (hN(w), h�∗2 (w)). Then, d ∈D2 iff

w ∈D2(N) iff w ∈ S∩D2(N) iffm ∈ hN(S∩D2(N)). Hence,{
m | (m, d) ∈ R, d ∈D2

}= hN(S∩D2(N)) ∈CN ⊆CM,

using Theorem 18.

Using the first projection π1 :M×�∗2→M, Corollaries 16 and 19 combine to:

CM= {
π1(R∩ (M×D2)) | R ∈R(M×�∗2)

}
, for any monoidM.

We can simplify this further by going from strings in �∗2 to their normal forms in the polycyclic
monoid P′2 � (Q∗2P∗2 ∪ {0}, ·, 1) where u · v= nf2(uv) for u, v ∈Q∗2P∗2 ∪ {0}7:

Proposition 20. For any monoid M,

CM= { {m | (m, 1) ∈ R } | R ∈R(M× P′2)
}
.

Proof. Let η :�∗2→ (�2 ∪ {0})∗ be the inclusion homomorphism. Clearly, nf2 : (�2 ∪ {0})∗ → P′2
is a homomorphism and surjective since 0= nf2(p0q1). Therefore, the lifting of IdM × (nf2 ◦ η) :
M×�∗2→M× P′2 to the set level is a surjective homomorphism

h :R(M×�∗2)→R(M× P′2).

https://doi.org/10.1017/S0960129522000329 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000329

Mathematical Structures in Computer Science 709

For d ∈�∗2, nf2(d)= 1 iff d ∈D2. So if S ∈R(M×�∗2) and R ∈R(M× P′2) with R= h(S), then

{m | (m, 1) ∈ R } = {
m | (m, d) ∈ S, d ∈D2

}= π1(S∩ (M×D2)).

Since h is surjective, the claim follows from the above combination of Corollaries 16 and 19.

Intuitively, since eachw ∈ P′2 defines a binary transition relation { (u, v) | u ·w= v } ⊆ P′2 × P′2,
each (m,w) ∈M× P′2 gives a transition

m=⇒w on P′2 with output inM, via
m=⇒w := { (u,m, v) | u ·w= v } ⊆ P′2 ×M× P′2.

If (m,w)= (m, nf2(d)) or (m,w)= (hM(α), nf2(h�∗2 (α))), the same relation is obtained from
(m, d) ∈M×�∗2 or α ∈M[�2]. From R ∈R(M× P′2), an S ∈R(M×�∗2) with R= h(S) as in the
proof above can be obtained by induction on the construction of R, using S= R for R of size 0 or 1,
except S=∅ for R= {(m, 0)}. Similarly, whenM is finitely generated we can obtain S ∈RM[�2]
with {m | (m, 1) ∈ R } = hM(S∩D2(M)) by induction on the construction of R, using S= {mw}
for R= {(m,w)} in the singleton case, except again S=∅ for R= {(m, 0)}.

Since, by Corollary 13, RM⊗R C′2 is a quotient of R(M× P′2), the above proposition can be
used below to show ZC′2 (RM⊗R C′2)

⊂∼ CM.

4.2 Algebraic version of the reverse CST for monoids
To prove an algebraic form of the reverse CST for monoids, i.e. that ZC′2 (RM⊗R C′2) embeds
into CM, we need to know which elements of RM⊗R C′2 belong to the centralizer of C′2. For
this, it is convenient to represent C′2 by C′2 =RP′2/ν as in Proposition 9 and to first characterize
the elements of C′2 that commute with all generators of C′2 in C′2, i.e.

Z�2 (C′2) :=
{
X/ν ∈RP′2/ν | {δ}/ν · X/ν = X/ν · {δ}/ν for each δ ∈�2

}
.

Let I be the set of idempotent elements of P′2, i.e. the set of those w ∈ P′2 such that ww=w.

Proposition 21. The set of idempotent elements of P′2 is{ �q�p | �q ∈Q∗2, �p ∈ P∗2 , �p�q= 1
}∪ {0}.

Proof. Let I′ := { �q�p | �q ∈Q∗2, �p ∈ P∗2 , �p�q= 1
}∪ {0}. Clearly, 0 ∈ I. Suppose �q= qi1 · · · qik ∈Q∗2,�p= pjm · · · pj1 ∈ P∗2 and �q�p ∈ I′. Then, �p�q= 1, so �q�p · �q�p= �q(�p�q)�p= �q�p, so �q�p ∈ I.

Suppose w ∈ P′2 =Q∗2P∗2 ∪ {0} is idempotent. As 0 ∈ I′, we may assume that w= �q�p with �q=
qi1 · · · qik ∈Q∗2 and �p= pjm · · · pj1 ∈ P∗2 for some k,m≥ 0. Suppose k>m. Since ww=w �= 0, we
have pj1qi1 = 1, . . . , pjmqim = 1 and

�q�p�q�p= �qpjm · · · pj1qi1 · · · qik�p= �qqim+1 · · · qik�p= �q�p,
which is impossible. So k≤m, and by symmetry, k=m. It follows that �p�q= 1; hence, �q�p ∈ I′.

Proposition 22. If R⊆ P′2 satisfies {δ}R \ {0} = R{δ} \ {0}, for all δ ∈�2, then R⊆ I. If additionally
R �⊆ {0, 1}, then I0 ⊆ R or I1 ⊆ R, where

Ij :=
{ �qqjpj�p | �q ∈Q∗2, �p ∈ P∗2 , �p�q= 1

}∪ {1} for j ∈ {0, 1}.

Proof. Clearly, if R⊆ {0, 1}, then R⊆ I. So suppose w ∈ R \ {0, 1}. By symmetry, we may assume
w ∈Q+2 P∗2 , say w= q0�q�p′ for some �q ∈Q∗2 and �p′ ∈ P∗2 . Then

0 �= �q�p′ = p0q0�q�p′ ∈ p0R \ {0} ⊆ Rp0 \ {0},

https://doi.org/10.1017/S0960129522000329 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000329

710 H. Leiß

so there is w′ ∈ R such that �q�p′ =w′p0. It follows that �p′ = �pp0 for some �p ∈ P∗2 , so w= q0�q�pp0.
By induction on the length of w′ = �q�p ∈ R \ {0}, it follows that �p is the inverse of �q, so w′ ∈ I and
w ∈ I. Hence, R⊆ I. We have also seen that when q0wp0 ∈ R, then w ∈ R; in particular, if R �⊆ {0},
then 1 ∈ R.

Finally, suppose w ∈ R \ {0, 1}. By the above argument, we may assume w= qjpj with j ∈ {0, 1}.
For each i ∈ {0, 1}, qiw ∈ qiR \ {0} ⊆ Rqi \ {0}; hence, there isw′ ∈ Rwith qiw=w′qi, and sincew ∈
Q+2 P

+
2 , we must have w′ = qiwpi. By induction, it follows that

{ �qw�p | �q ∈Q∗2, �p ∈ P∗2 , �p�q= 1
}⊆

R, so Ij ⊆ R.

We next want to see that the infinite sets R with Ij ⊆ R⊆ I = I0 ∪ I1 ∪ {0} of Proposition 22 are
not regular, i.e. do not belong toRP′2. In order to show, say, I /∈RP′2, we want to apply a pumping
lemma, representing I as the homomorphic image S/ρ2 of some regular set S of the free monoid
(�2 ∪ {0})∗ by the monoid congruence

ρ2 =
〈{
piqj = δi,j | i, j< 2

}∪ { x0= 0= 0x | x ∈�2 ∪ {0} }
〉
.

But if w= uv ∈ S is a “long” word with a splitting w= xyzv with xykzv ∈ S for all k≥ 0, the images
nf2(xykzv) of the “pumped strings” xykzv need not be outside of I: for example, if w= u.v=
qpqbdq.pp with nf2(w)= qqpp ∈ I and u= x.y.z= qp.qb.dq, then for all k �= 1, nf2(xykzv)= 0 ∈ I,
since from pd= 0= bqwe get nf2(xz)= nf2(qpdq)= 0 and nf2(y2)= nf2(qbqb)= 0. So a little care
is needed to transfer the pumping of S to a pumping of nf2(S)= S/ρ2.

Proposition 23. If R ∈RP′2 and R⊆ I, then R is finite.

Proof. Let �=�2 ∪ {0}. The polycyclic monoid P′2 is the quotient of the free monoid �∗ by the
monoid congruence ρ2 above. Since ·/ρ2 :�∗ → P′2 is a surjective homomorphism, every R ∈
RP′2 is the image under ·/ρ2 of some S ∈R�∗, i.e. R= nf2(S)=

{
nf2(w) | w ∈ S

}
.

We first show that we may assume R⊆ S. Let

A = (A, 〈 x−→ | x ∈�∪ {1}〉, IA , FA)

be a finite automaton over � that recognizes S, with transition relations x−→ ⊆A×A for x ∈�

and identity relation 1−→ ⊆A×A, and sets IA ⊆A of initial and FA ⊆A of final states. Let

A ′ = (A, 〈 x−→ ′ | x ∈�∪ {1}〉, IA , FA)

be the automaton obtained from A by “path-compression,” i.e. the relations x−→ ′ ⊇ x−→ are
obtained as follows: for edges s

pi−→ t
qi−→ u, i< 2, add an edge s 1−→ u, for edges s x−→ t 1−→ u or

s 1−→ t x−→ u, add an edge s x−→ u. Likewise, for edges s
pi−→ t

q1−i−→ u, i< 2, add an edge s 0−→ u,
and for edges s x−→ t 0−→ u or s 0−→ t x−→ u add s 0−→ u. Let S′ ∈R�∗ be the set recognized by
A ′. As each accepting path of A ′ is the compression of an accepting path of A , we have S⊆ S′,
and as their labellings have the same normal form, nf2(S′)= nf2(S)= R. Since for each �q�p ∈ R there
is some w ∈ S with nf2(w)= �q�p, there is an accepting path in A ′ labeled by �q�p, likewise for 0 ∈ R,
so R⊆ S′. Henceforth, we assume S= S′ and A =A ′.

We can now show that R cannot be infinite, by applying the pumping lemma. Let m be the
number of states of an automaton A recognizing a set S ∈R�∗ with nf2(S)= R⊆ S. Suppose
R⊆ I is infinite. Then there is �q�p ∈ R⊆ S with |�q|>m, �q ∈Q∗2, �p ∈ P∗2 and �p�q= 1. Since A has an
accepting path labeled �q�p andm> |�q|, by the pumping lemma for S there is a splitting �q= xyzwith
x, y, z ∈Q∗2 with 0< |y| ≤m such that xykz�p ∈ S for all k≥ 0. But since xz ∈Q∗2, �p ∈ P∗2 and xz�p ∈ S,
we have nf2(xz�p)= xz�p (and �= 0), which is impossible since |xz|< |�q| = |�p| and nf2(S)= R⊆ I. It
follows that R cannot be infinite.

https://doi.org/10.1017/S0960129522000329 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000329

Mathematical Structures in Computer Science 711

When usingC′2 �RP′2/ν according to Proposition 9, we write 0′ and 1′ for the neutral elements
of+ and · in C′2, respectively, to distinguish them from the elements 0 and 1 of P′2. The following
lemmata characterize the elements of the centralizer of C′2 in C′2 and in RM⊗R C′2, respectively:

Lemma 24. ZC′2 (C
′
2)= {0′, 1′} = Z�2 (C′2).

Proof. {0′, 1′} ⊆ ZC′2 (C
′
2)⊆ ZP′2 (C

′
2)⊆ Z�2 (C′2): Clearly, 0′ = ∅/ν = {0}/ν and 1′ = {1}/ν =

{0, 1}/ν commute with R/ν for every R ∈RP′2. The other two inclusions follow from the
representations of w ∈ P′2 and δ ∈�2 in C′2 by {w}/ν and {δ}/ν.

Z�2 (C′2)⊆ {0′, 1′}: Suppose R ∈RP′2 and R/ν commutes with {δ}/ν for every δ ∈�2. Then, by
Proposition 9, {δ}R \ {0} = R{δ} \ {0} for every δ ∈�2, so R⊆ I by Proposition 22, then R is finite
by Proposition 23, and so by Proposition 22 again, R⊆ {0, 1}. It follows that R/ν =∅/ν = {0}/ν =
0′ or R/ν = {1}/ν = {0, 1}/ν = 1′; hence, Z�2 (C′2)⊆ {0′, 1′}.

Lemma 25. ZC′2 (RM⊗R C′2)=
{
[R] | R ∈R(RM× C′2), R⊆RM× {0′, 1′} } .

Proof. ⊇: For each c ∈ C′2, cb= bc for b ∈ {0′, 1′}, so by R-distributivity,

({1} ⊗ c)[R] = ({1} ⊗ c)
∑ {

A⊗ b | (A, b) ∈ R
}

=
(∑ {

A⊗ b | (A, b) ∈ R
})

({1} ⊗ c)= [R]({1} ⊗ c).

⊆: Every element of RM⊗R C′2 is of the form [Rν] with R ∈R(RM×RP′2) and Rν =
{ (A, B/ν) | (A, B) ∈ R }. The isomorphism

RM⊗R C′2 �R(M× P′2)/ν̃
of Corollary 13 maps [Rν] to (SR)/ν̃, where SR =⋃ {A× B | (A, B) ∈ R }. Suppose [Rν] ∈
ZC′2 (RM⊗R C′2). Then for every w ∈ P′2 \ {0}, [Rν] commutes with [Tν] for T = {({1}, {w})},
so the image (SR)/ν̃ of [Rν] commutes with the image (ST)/ν̃ = {(1,w)}/ν̃ of [Tν]. Therefore,
(SR)/ν̃ ∈ ZP′2 (R(M× P′2)/ν̃). In particular, (SR)/ν̃ ∈ Z�2 (R(M× P′2)/ν̃), which is equivalent to

{(1, δ)}SR \ (M× {0})= SR{(1, δ)} \ (M× {0}), for all δ ∈�2.

Let X ∈RP′2 be the second projection of SR ∈R(M× P′2). Then
{δ}X \ {0} = X{δ} \ {0}, for all δ ∈�2,

i.e. X/ν ∈ Z�2 (C′2), and by the proof of Lemma 24, X⊆ {0, 1}; hence, SR ⊆M× {0, 1}. So for
(A, B) ∈ R, B⊆ {0, 1}, which implies Rν ⊆RM× {0′, 1′}.

We can now prove the algebraic form of the reverse CST for monoids:

Theorem 26 (Algebraic reverse CST for monoids). For any monoid M and R ∈R(RM× C′2),⋃ {
A | (A, 1′) ∈ R

} ∈ CM.

In fact, there is an injective, monotone map ∨ : ZC′2 (RM⊗R C′2)→CM defined by

[R] �→ [R]∨ :=
⋃ {

A | (A, 1′) ∈ R
}

for R ∈R(RM× C′2).

Proof. We switch the notation and use [Rν] for the [R] of the statement above, where

Rν = { (A, B/ν) | (A, B) ∈ R } ∈R(RM× C′2)

https://doi.org/10.1017/S0960129522000329 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000329

712 H. Leiß

for some R ∈R(RM×RP′2). For these R, put

LR :=
⋃
{A | (A, B) ∈ R, 1 ∈ B } .

By Lemma 25, if [Rν] ∈ ZC′2 (RM⊗R C′2), then Rν ⊆RM× {0′, 1′} and R⊆RM×P{0, 1}.

Claim 1. The map ·∨ : ZC′2 (RM⊗R C′2)→PM, given by

[Rν]∨ =
⋃ {

A | (A, 1′) ∈ Rν

}
for R ∈R(RM×RP′2), is well-defined and has values in CM.

Proof of Claim 1. Clearly,
⋃ {

A | (A, 1′) ∈ Rν

}= LR. Suppose there is T ∈R(RM×RP′2) with
[Rν]= [Tν]. By the isomorphism [Rν] �→ (SR)/ν̃ of Corollary 13, (SR)/ν̃ = (ST)/ν̃; hence,

SR \ (M× {0})= ST \ (M× {0}).
Therefore, using the fact that SR, TR ⊆M× {0, 1},

LR =
⋃
{A | (A, B) ∈ R, 1 ∈ B }

= {m | (A, B) ∈ R, (m, 1) ∈A× B }
= {m | (m, 1) ∈ SR }
= {

m | (m,w) ∈ SR \ (M× {0}),w ∈ P′2
}

= {
m | (m,w) ∈ ST \ (M× {0}),w ∈ P′2

}
= LT .

It follows that
⋃ {

A | (A, 1′) ∈ Rν

}= LR = LT =⋃ {
A | (A, 1′) ∈ Tν

}
, and ·∨ is well-defined.

Since LR = {m | (m, 1) ∈ SR } for SR ∈R(M× P′2), we have LR ∈CM by Proposition 20. �

Claim 2. The map ·∨ : ZC′2 (RM⊗R C′2)→CM is injective.

Proof of Claim 2.We show that the map ·̂ :CM→ ZC′2 (RM⊗R C′2) of Theorem 17 is an inverse
to ·∨. It maps [Rν]∨ = LR ∈CM back to [Rν], because

[̂Rν]∨ = L̂R =
∑ { {m} ⊗ 1′ | m ∈ LR

}
=

∑ {
A⊗ 1′ | (A, B) ∈ R, 1 ∈ B

}
=

∑ {
A⊗ 1′ | (A, 1′) ∈ Rν

}
= [Rν]

since Rν ⊆R(RM× {0′, 1′}) and A⊗ 0′ = 0. �

Claim 3. The map ·∨ : ZC′2 (RM⊗R C′2)→CM is monotone.

Proof of Claim 3. Suppose R, S ∈R(RM×RP′2) such that [Rν], [Sν] ∈ ZC′2 (RM⊗R C′2) and
[Rν]≤ [Sν]. By the definition of ≤ on RM⊗R C′2, [Rν ∪ Sν]= [Sν]; hence with Claim 1,

[Rν]∨ ⊆
⋃ {

A | (A, 1′) ∈ Rν ∪ Sν

}=⋃ {
A | (A, 1′) ∈ Sν

}= [Sν]∨,

so ·∨ is monotone. �

https://doi.org/10.1017/S0960129522000329 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000329

Mathematical Structures in Computer Science 713

5. Algebraic Representation of theC -Closure CM ofRM
We can now prove our first main result, which combines the algebraic Chomsky–Schützenberger
theorem for monoidsM and its reverse, Theorems 17 and 26, to an algebraic representation of the
μ-continuous Chomsky algebra CM in the ∗-continuous Kleene algebra RM⊗R C′2:

Theorem 27. For any monoid M, ZC′2 (RM⊗R C′2) is a C -dioid, and the maps

·̂ :CM� ZC′2 (RM⊗R C′2) : ·∨

form a C -isomorphism, where for L ∈CM and R ∈R(RM× C′2) with [R] ∈ ZC′2 (RM⊗R C′2),

L̂ :=
∑ { {m} ⊗ 1′ | m ∈ L

}
and [R]∨ :=

⋃ {
A | (A, 1′) ∈ R

}
.

Proof. We use D := ZC′2 (RM⊗R C′2) to simplify the notation.

Claim 1. The maps ·∨ :D→CM and ·̂ :CM→D are inverse to each other.

Proof of Claim 1. In the proof of Theorem 17, we already showed that ·̂ is an inverse of ·∨. For
L ∈CM, there is R ∈R(RM×RP′2) with Rν ⊆RM× {0′, 1′} and L̂= [Rν]; hence,

(̂L)∨ =
(∑ { {m} ⊗ 1′ | m ∈ L

})∨ = [Rν]∨ =
⋃ {

A | (A, 1′) ∈ Rν

}= LR.

By applying ·̂ , we get L̂= L̂R, and since ·̂ is injective by Theorem 17, (̂L)∨ = LR = L. �
It remains to be shown that the bijection between CM and D given by the maps ·̂ and ·∨ is a

C -isomorphism.

Claim 2. The maps ·̂ :CM�D : · ∨ are monotone homomorphisms.

Proof of Claim 2. Obviously, ·̂ is monotone; the monotonicity of ·∨ is noted in Theorem 17.
1. The map ·∨ :D→CM is a homomorphism: first,

1∨ = ({1} ⊗ 1′)∨ = [{({1}, 1′)}]∨ = {1},
and, second, for [R], [S] ∈D represented by R, S ∈R(RM× C′2) with R, S⊆RM× {0′, 1′},

([R] · [S])∨ = [RS]∨

=
⋃ {

C | (C, 1′) ∈ RS
}

=
⋃ {

AB | (A, 1′) ∈ R, (B, 1′) ∈ S
}

=
⋃ {

A | (A, 1′) ∈ R
} ·⋃ {

B | (B, 1′) ∈ S
}

= [R]∨ · [S]∨,
because (C, 1′)= (A, a)(B, b) iff AB= C and a= 1′ = b, since a, b ∈ {0′, 1′}.

2. The map ·̂ :CM→D is a homomorphism: clearly {̂1} = {1} ⊗ 1′ = 1, and for L1, L2 ∈CM,
since ·∨ is a homomorphism and inverse to ·̂ by Claim 1, we have

(̂L1 · L̂2)∨ = (̂L1)∨ · (̂L2)∨ = L1 · L2 = L̂1 · L2∨;
by the injectivity of ·∨, we get L̂1 · L̂2 = L̂1 · L2. �

Claim 3. D is a C -dioid.

https://doi.org/10.1017/S0960129522000329 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000329

714 H. Leiß

Proof of Claim 3. By Theorem 17, for L ∈ CM, L̂=∑ { {m} ⊗ 1′ | m ∈ L
}
is the least upper

bound of the image f̃ (L) of L under the homomorphism f :M→D given by f (m)= {m} ⊗ 1′.
By the previous claims, ·̂ :CM→D is a surjective homomorphism. By Proposition 14, D is an
R-dioid; hence, a dioid, and so by Lemma 3, D is a C -dioid. �

Claim 4. ·̂ :CM→D and ·∨ :D→CM are C -morphisms.

Proof of Claim 4. Since ·̂ is a homomorphism, so is C (·̂) :C CM→CD. Hence for U ∈ C CM,{
L̂ | L ∈U

} ∈CD, and by the proof of Lemma 3, its least upper bound is
∑ {

L̂ | L ∈U
}=⋃̂

U. Since ·̂ is a monotone homomorphism, this shows that ·̂ is a C -morphism.
For ·∨, for each V ∈CD there is U ∈C CM such that V = {

L̂ | L ∈U
}
and

∑
V = ⋃̂

U.
Hence, since ·̂ :CM�D : ·∨ is a bijection, (̂L)∨ = L for each L ∈ CM. With

⋃
U ∈ CM, it

follows that(∑
V

)∨ = (⋃̂
U

)∨
=

⋃
U =

⋃ {
L̂∨ | L ∈U

}=⋃ {
v∨ | v ∈V

}
.

As ·∨ is a monotone homomorphism, this shows that it is a C -morphism. �
Before considering an algebraic representation of the fixed-point closure of an arbitrary R-

dioid K, we remark that the case K =RM treated so far is sufficient to provide a semantics to
regular expression tools for context-free languages, like the one proposed by Hopkins (2007).

The results proven for n= 2 hold as well for n> 2, which is convenient to treat 〈0|, |0〉 as a
fresh, unused pair of brackets. If X is a finite set disjoint from �n, all regular expressions over
X ∪�n have an interpretation in RX∗ ⊗R C′n. Using the tensor product embeddings, atoms x ∈
X are interpreted by {x} ⊗ 1 and atoms δ ∈�n by {1} ⊗ {δ}/ρn, as in Example 5. A subset of
the regular expressions over X ∪�n that are sufficient to name all context-free sets of CX∗ �
ZC′n(RX∗ ⊗R C′n) is easily selected as follows.

Corollary 28. For n> 2, an element e ∈RX∗ ⊗R C′n belongs to ZC′n(RX∗ ⊗R C′n) iff e is the value
of a regular expression 〈0|r|0〉 over X ∪�n where 〈0| and |0〉 do not occur in r.

Proof. ⇒: Suppose e ∈ ZC′n(RX∗ ⊗R C′n). By Theorem 27, there is L ∈ CX∗ with L= e∨. Let
y1 ≥ p1, . . . , yk ≥ pk

be a context-free grammar for L, i.e. L is the first component L1 of its least solution L1, . . . , Lk ∈
CX∗. Construct the right-linear grammar

y1 ≥ p′′1 , . . . , pk ≥ p′′k , yF1 ≥ pF1 + 1, yF2 ≥ pF2 , . . . , y
F
k ≥ pFk

as in the proof of Theorem 15. We can assume that 〈1|, . . . , 〈n|, |1〉, . . . , |n〉 are sufficient to wrap
each occurrence of a variable y1, . . . , yk in p1, . . . , pk by a different bracket pair 〈i|, |i〉, otherwise
use the two pairs 〈1|, |1〉 and 〈2|, |2〉 to encode new bracket pairs. Let r be the regular expression
over X ∪�n for the least solution in y1 of the right-linear grammar; r does not contain 〈0| and
|0〉. The corresponding regular set R ∈R(X∗[�n]) satisfies L= hX∗(R∩Dn(X)), and the value of
〈0|r|0〉 in RX∗ ⊗R C′2 is e= L̂ ∈ ZC′n(RX∗ ⊗R C′n). We can see 〈0|r|0〉 as the solution term for ŷ
of the right-linear grammar

ŷ≥ 〈0|y1, y1 ≥ p′′1 , . . . , y′′k ≥ p′′k , yF1 ≥ pF1 + |0〉, yF2 ≥ pF2 , . . . , y
F
k ≥ pFk .

(Cf. the automata in Example 6.)
⇐: Let r be a regular expression over X ∪�n not containing 〈0|, |0〉. By Corollary 13,

RM⊗R C′2 �RX∗ ⊗R (RP′n/ν)�R(X∗ × P′n)/ν̃,

https://doi.org/10.1017/S0960129522000329 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000329

Mathematical Structures in Computer Science 715

where ν̃ is the R-congruence generated by {(1, 0)} = ∅. So the value of r in RM⊗R C′2 can
be represented by T/ν̃ with T ∈R(X∗ × P′n). By the choice of r, for no (m,w) ∈ T do 〈0| or
|0〉 occur in its second component w ∈ P′n =Q∗nP∗n ∪ {0}. So the value of 〈0|r|0〉 is S/ν̃ for S=
{(1, 〈0|)}T{(1, |0〉)}, and S⊆ X∗ × {0, 1} due to bracket mismatches in the second components.
The isomorphisms of Theorem 12 and Proposition 9 map S/ν̃ to some [R] ∈RM⊗R C′2 with
R⊆RX∗ × {0′, 1′}. By Lemma 25, the value [R] of 〈0|r|0〉 belongs to the centralizer of C′n.

Notice that regular combinations of expressions of the above form 〈0|r|0〉 are no longer of this
form, but of course also denote sets in CX∗.

There is another way to find, for L ∈CX∗, a regular expression r such that 〈0|r|0〉 evaluates
to L̂ in RM⊗R C′n, which is perhaps more appealing than the one in the proof above: a non-
deterministic bottom-up, top-down or Earley parser (cf. Sikkel 1998) for a context-free grammar
G= (X, Y , P, S) for L is an iterative program, i.e. a regular expression r over an alphabet of basic
commands. Suppose that �n contains, besides 〈0| and |0〉, an opening bracket 〈z| and a closing
bracket |z〉 for each z ∈ X ∪ Y . The bottom-up parser, for example, can then be expressed by

r=
(∑ {

shiftx | x ∈ X
}+∑ {

reduce(A,α) | (A, α) ∈ P
})∗

with shiftx = x〈x| and reduce(A,α) = |α〉〈A|, where |z1 . . . zk〉 = |zk〉 . . . |z1〉 for zi ∈ X ∪ Y . Then,
L̂=∑ { {m} ⊗ 1 | m ∈ L } = 〈0|r|S〉|0〉. If G is the grammar of Example 6, the word baac is
accepted by the shift-reduce sequence

shiftb; shifta; reduce(y,a); shifta; reduce(y,a); reduce(z,yy); shiftc; reduce(y,bzc);

its value in RX∗ ⊗R C′n is {baac} ⊗ {〈y|}, and since y was the start symbol S, {baac} ⊗ 1≤
〈0|r|S〉|0〉 = L̂. This indicates that RX∗ ⊗R C′2 may be useful to study parsing algebraically.

6. Algebraic Representation of theC -Closure of an ArbitraryR-Dioid K
We can now generalize Theorem 27, the algebraic representation of the C -closure of R-dioids
RM with monoid M to an algebraic construction of the C -closure QC

R :DR→DC on the
Eilenberg-Moore category DR of all R-dioids. We need a series of steps.

Lemma 29. For any R-dioid K,

CK = { {m | (m, 1) ∈ R } | R ∈R(K × C′2), R⊆K × {0, 1} } .
Proof. ⊆: For�2 = {p0, q0, p1, q1}, let ρ2 be theR-congruence onR�∗2 generated by the semiring
equations

piqj = δi,j, 0≤ i, j≤ 1,

and ·/ρ2 :R�∗2→ C′2 =R�∗2/ρ2 the canonical R-morphism. By Corollary 16 there is a set S ∈
R(M×�∗2) such that

L= {
m | (m, d) ∈ S, d ∈D2

}
,

and for each (m, d) ∈ S,

{d}/ρ2 =
{
1 d ∈D2,
0, d /∈D2.

(12)

The isomorphism R(K ×�∗2)�RK ⊗R R�∗2 of Proposition 11 maps S to [RS], where

RS =
{
({m}, {d}) | (m, d) ∈ S

} ∈R(RK ×R�∗2).

https://doi.org/10.1017/S0960129522000329 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000329

716 H. Leiß

The lifting of the homomorphism
∑×(· /ρ2) :RK ×R�∗2→K × C′2, maps RS to

R := {
(m, {d}/ρ2) | (m, d) ∈ S

} ∈R(K × C′2).

By (12), R is a subset of K × {0, 1} such that

L= {
m | (m, d) ∈ S, d ∈D2

}= {m | (m, 1) ∈ R } .
⊇: Suppose R ∈R(K × C′2) and R⊆K × {0, 1}. Then for R′ = { ({m}, c) | (m, c) ∈ R }, we have

R′ ∈R(RK × C′2) and R′ ⊆RK × {0, 1}, so [R′] ∈ ZC′2 (RK ⊗R C′2) by Lemma 25; hence,

{m | (m, 1) ∈ R } =
⋃ {

A | (A, 1) ∈ R′
}= [R′]∨ ∈ CK.

by Theorem 26.

Since for L ∈CK, �̃1(L)= {m⊗ 1 | m ∈ L } ∈C (ZC′2 (K ⊗R C′2)), the next lemma is a step
towards the C -completeness of ZC′2 (K ⊗R C′2).

Lemma 30. For each R-dioid K, there is a surjective homomorphism

·̂ :CK→ ZC′2 (K ⊗R C′2),

that assigns to each L ∈CK a least upper bound of �̃1(L) in K ⊗R C′2,

L̂ =
∑

�̃1(L)=
∑

{m⊗ 1 | m ∈ L } .

Proof. For each L ∈ CK, there is, by Lemma 29, a set R ∈R(K × C′2) with R⊆K × {0, 1} and
L= {m | (m, 1) ∈ R }. Asm⊗ 0= 0 for allm ∈K, it follows that

[R]=
∑ {

m⊗ d | (m, d) ∈ R
}=∑

{m⊗ 1 | (m, 1) ∈ R } ,
showing that �̃1(L)= {m⊗ 1 | m ∈ L } has a least upper bound in K ⊗R C′2, namely

L̂ :=
∑

{m⊗ 1 | m ∈ L } = [R].

Since all m⊗ d with (m, d) ∈ R belong to ZC′2 (K ⊗R C′2), we have [R] ∈ ZC′2 (K ⊗R C′2) by
Proposition 14. This defines a map ·̂ :CK→ ZC′2 (K ⊗R C′2).

The map ·̂ is a homomorphism: {̂1} =∑{1⊗ 1} = 1⊗ 1= 1 and for L1, L2 ∈ CK, by
Lemma 29 there are R1, R2 ∈R(K × C′2) such that Ri ⊆K × {0, 1} and Li = {m | (m, 1) ∈ Ri } for
i= 1, 2. Therefore,

L̂1 · L̂2 = [R1][R2]= [R1R2]
= [{ (m1m2, 1) | (m1, 1) ∈ R1, (m2, 1) ∈ R2 }]
= [{ (m1m2, 1) | m1 ∈ L1,m2 ∈ L2 }]
=

∑
{m⊗ 1 | m ∈ L1L2 }

= L̂1L2,

as summandsm1m2 ⊗ 0= 0 in [R1R2] can be ignored.
We still have to show that ·̂ is surjective. We use

∑
and ⊗ for the given operations of

K ⊗R C′2,
∑′ and⊗′ for those of RK ⊗R C′2. By the universal property of RK ⊗R C′2, the given∑ :RK→K induces an R-morphism h= hf ,g for f =�1 ◦∑

and g =�2 such that f = h ◦ �′1

https://doi.org/10.1017/S0960129522000329 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000329

Mathematical Structures in Computer Science 717

and g = h ◦ �′2:
K �1 � K ⊗R C′2

RK

∑ �

�′1
�

f
�

RK ⊗R C′2

h
�
...............

�
�′2

C′2

g

�

Since h is a homomorphism and h(�′2(c))=�1(c) for c ∈ C′2, h preserves commutativity relations
with C′2, so its restriction is an R-morphism

h : ZC′2 (RK ⊗R C′2)→ ZC′2 (K ⊗R C′2).

Clearly, h :RK ⊗R C′2→K ⊗R C′2 is surjective: if R ∈R(K × C′2) we have

[R] =
∑

{m⊗ c | (m, c) ∈ R }
=

∑ { (∑
{m}

)
⊗ c | (m, c) ∈ R

}
= h

(∑′ { {m} ⊗′ c | (m, c) ∈ R
})

= h([R′])
for R′ = { ({m}, c) | (m, c) ∈ R } ∈R(RK × C′2). And if [R] ∈ ZC′2 (K ⊗R C′2), then [R′] ∈
ZC′2 (RK ⊗R C′2), so the restriction h : ZC′2 (RK ⊗R C′2)→ ZC′2 (K ⊗R C′2) also is surjective.

Now take [R] ∈ ZC′2 (K ⊗R C′2) with R ∈R(K × C′2), and let R′ = { ({m}, c) | (m, c) ∈ R }. By
Theorem 27, for [R′] ∈ ZC′2 (RK ⊗R C′2) there is L ∈ CK such that

[R′]=
∑′�̃′1(L)=

∑′ { {m} ⊗′ 1 | m ∈ L
}
.

We claim that [R]= L̂=∑ {m⊗ 1 | m ∈ L }. By Lemma 29, there is S ∈R(K × C′2) with S⊆
K × {0, 1} and L= {m | (m, 1) ∈ S }. Then S′ = { ({m}, c) | (m, c) ∈ S } ∈R(RK × C′2) and

[S′]=
∑′ { {m} ⊗′ 1 | m ∈ L

}= [R′];

hence, [R]= h([R′])= h([S′])= [S]=∑ {m⊗ c | (m, c) ∈ S } =∑ �̃1(L)= L̂.

In contrast to Theorem 17, the map ·̂ :CK→ ZC2 (K ⊗R C2) need not be injective:

Example 7. Take K =RM forM= {a, b}∗. For L ∈K, { {m} | m ∈ L } ∈R(RM), and since L �→
L⊗ 1 is the R-morphism�1 :K→K ⊗R C′2, we have

L⊗ 1=
(⋃

{ {m} | m ∈ L }
)
⊗ 1=

∑
{ {m} ⊗ 1 | m ∈ L } .

It follows that for U ∈CK,

Û =
∑

{ L⊗ 1 | L ∈U } =
∑ {

{m} ⊗ 1 | m ∈
⋃

U
}
.

Consider the following two polynomial systems over K:

x ≥ {{1, ab}} ∪ x ∪ {{a}}x{{b}} ∪ {{a2}}x{{b2}},
x ≥ {{1, a2b2}, {ab, a3b3}} ∪ x ∪ {{a2}}x{{b2}}

https://doi.org/10.1017/S0960129522000329 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000329

718 H. Leiß

The least solutions U1,U2 ∈CK of these are, respectively,

U1 =
{ {anbn, an+1bn+1} | n ∈N

}
and U2 =

{ {anbn, an+2bn+2} | n ∈N
}
.

But while U1 �=U2, we have
⋃

U1 =⋃
U2 =

{
anbn | n ∈N

}
; hence, Û1 = Û2. �

Lemma 31. For each R-dioid K, ZC′2 (K ⊗R C′2) is a C -dioid. Moreover,

ZC′2 (K ⊗R C′2)=
{
[R] | R ∈R(K × C′2), R⊆K × {0, 1} } .

Proof. By Lemma 30, the map ·̂ :CK→ ZC′2 (K ⊗R C′2) is a surjective homomorphism that
assigns to L ∈CK the least upper bound of the image of L under the homomorphism �1 :K→
K ⊗R C′2, L̂ =

∑ �̃1(L). By Lemma 3, ZC′2 (K ⊗R C′2) is a C -dioid, i.e. there is a C -distributive
least upper bound operator∑

:C (ZC′2 (K ⊗R C′2))→ ZC′2 (K ⊗R C′2),

where for V ∈C (ZC′2 (K ⊗R C′2)),
∑

V = ⋃̂
U for any U ∈C CK such that V = {

L̂ | L ∈U
}
.

For⊇ of the equation, suppose R ∈R(K × C′2) and R⊆K × {0, 1}. By⊇ of Lemma 29,

L := {m | (m, 1) ∈ R } ∈CK.

But then [R]= L̂ ∈ ZC′2 (K ⊗R C′2) by Lemma 30. The reverse inclusion ⊆ follows from the
surjectivity of ·̂ and⊆ of Lemma 29, as shown at the beginning of the proof of Lemma 30.

Before we can present the second main result, that for any R-dioid K, ZC′2 (K ⊗R C′2) is the
C -closure of K, we have to consider a special case8:

Theorem 32. Let C be a C -dioid and K its restriction to an R-dioid. The R-morphism �1 :K→
K ⊗R C′2 is a C -isomorphism

C �−→ ZC′2 (K ⊗R C′2).

Proof. By Lemma 31,D := ZC′2 (K ⊗R C′2) is aC -dioid, so let
∑ :CD→D be its supremum oper-

ator. Since C and K have the same multiplicative monoid, CC=CK, so let
∑′ :CK→K be the

supremum operator of the C -dioid C. We show that the R-morphism�1 of the tensor product

�1 :K −→K ⊗R C′2←− C′2 : �2,

is a surjective C -morphism�1 : C→D, and its inversem⊗ 1 �→m is a C -morphism j :D→ C.
With η :K→CK, η(m)= {m} form ∈K, we have

�1(m)=m⊗ 1=
∑
{m⊗ 1} =

∑
�̃1({m})=

(∑
◦�̃1 ◦ η

)
(m),

and consider the following diagram:

https://doi.org/10.1017/S0960129522000329 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000329

Mathematical Structures in Computer Science 719

To show that�1 :K→D is a C -morphism, we must show that for every L ∈ CK,(∑′
L
)
⊗ 1=

∑
{m⊗ 1 | m ∈ L } . (13)

Clearly, (
∑′ L)⊗ 1 is an upper bound of {m⊗ 1 | m ∈ L } = �̃1(L), so

L̂ :=
∑

{m⊗ 1 | m ∈ L } ≤ (
∑′

L)⊗ 1.

For the reverse inequation L̂≥ (
∑′ L)⊗ 1, recall that C′2 =R�∗2/ρ2 embeds into the polycyclic

C -dioid C′2,C =C �∗2/ρ2 of Section 2.2. Consider the tensor product

�′1 : C−→ C⊗C C′2,C ←− C′2,C : �′2
in the category of C -dioids. Since�′1 is a C -morphism,(∑′

L
)
⊗′ 1′ = �′1

(∑′
L
)
=

∑′�̃′1(L)=
∑′ {

m⊗′ 1′ | m ∈ L
}
,

where we write 1′ for the unit in C′2,C , �′1(c)= c⊗′ 1′ for c ∈ C, and on the right,
∑′ also for the

supremum operator of C⊗C C′2,C . Combined with the identity from K to C, the embedding of C′2
into C′2,C gives a monotone embedding R-morphism h :K ⊗R C′2→ C⊗C C′2,C . Therefore,

h
((∑′L

)⊗ 1
) = (∑′L

)⊗′ 1′
=

∑′ {
m⊗′ 1′ | m ∈ L

}
=

∑′ {
h(m⊗ 1) | m ∈ L

}
=

∑′
h̃(�̃1(L))

≤ h(̂L),
where the inequation holds since L̂ is an upper bound of �̃1(L). Together with L̂≤ (

∑′ L)⊗ 1,
this gives h((

∑′ L)⊗ 1)= h(̂L), and as h is injective, (13). So�1 :K→D is a C -morphism.
It follows that ·̂ = �1 ◦∑′ :CK→D is a C -morphism, because

∑′ :CC→ C and�1 : C→
D are C -morphisms. Since ·̂ :CK→D is surjective, so is�1 :K→D, by (13); hence,

D= {m⊗ 1 | m ∈K } .
It remains to be shown that its inverse j :D→K, m⊗ 1 �→m, is a C -morphism. The surjective
homomorphism ·̂ :CK→D lifts to a surjective homomorphism from C CK to CD. Hence for
V ∈ CD, there isU ∈C CK withV = {

L̂ | L ∈U
}
, and since

⋃
U ∈CK and ·̂ is aC -morphism,∑

V =
∑ {

L̂ | L ∈U
}= ⋃̂

U = (
∑′ ⋃

U)⊗ 1

by (13). By applying j and using (13) for each L ∈U,

j
(∑

V
)
=

∑′ ⋃
U

=
∑′ { ∑′

L | L ∈U
}

=
∑′ {

j((
∑′

L)⊗ 1) | L ∈U
}

=
∑′ {

j(̂L) | L ∈U
}

=
∑′ {

j(v) | v ∈V
}
.

Therefore, j :D→K is C -continuous, i.e. preserves suprema of C -sets.

https://doi.org/10.1017/S0960129522000329 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000329

720 H. Leiß

Under the assumptions of Theorem 32,
{
(L, {

∑′
L}) | L ∈ CK

}
⊆ ker (·̂), because by (13)

L̂= (
∑′

L)⊗ 1=
∑ {

m⊗ 1 | m ∈ {∑′L} }= {̂∑′ L}.
We can now prove our second main result, which will imply that CK/ ker (·̂)�QC

R(K):

Theorem 33 (Algebraic representation of C -closure). For any R-dioid K, there is a
C -isomorphism

QC
R(K)� ZC′2 (K ⊗R C′2).

Proof. It is sufficient to prove that D := ZC′2 (K ⊗R C′2) is a C -completion of K. Let η :K→D be
the embedding obtained from�1 :K→K ⊗R C′2,

η(m) :=�1(m)=m⊗ 1 ∈D form ∈K,
and f :K→ C an R-morphism to a C -dioid C. Define f̄ :D→ C by

f̄ (̂L) :=
∑ {

f (m) | m ∈ L
}=∑

f̃ (L) for L ∈CK.

We prove later that f̄ is well-defined and first show the remaining properties.
f = f̄ ◦ η: form ∈K, f̄ (η(m))= f̄ (

∑{m⊗ 1})= f̄ ({̂m})=∑{f (m)} = f (m).
f̄ is a monotone homomorphism: f̄ (1)= f̄ ({̂1})=∑{f (1)} = f (1)= 1, and since ·̂ :CK→D

is a homomorphism and
∑ ◦̃f :CK→ C is C -distributive,

f̄ (̂L · L̂′)= f̄ (L̂L′)=
∑

f̃ (LL′)=
∑

f̃ (L)
∑

f̃ (L′)= f̄ (̂L)f̄ (L̂′).

f̄ is C -continuous: Suppose V ∈CD. Since ·̂ :CK→D is a surjective homomorphism, so is its
lifting to C CK→CD; hence, there is U ∈C CK such that V = {

L̂ | L ∈U
} ∈CD. Therefore,

f̄
(∑

V
)
= f̄

(∑ {
m⊗ 1 | m ∈

⋃
U

})
= f̄

(⋃̂
U

)
=

∑
f̃
(⋃

U
)

=
∑ ⋃ {

f̃ (L) | L ∈U
}

=
∑ {

f̄ (̂L) | L ∈U
}
.

=
∑ {

f̄ (v) | v ∈V
}
.

f̄ is well-defined: Suppose L, L′ ∈CK and L̂= L̂′. We must show∑
f̃ (L)=

∑
f̃ (L′). (14)

Let K ′ =QR
C (C) be the restriction of C to an R-dioid,

�′1 :K ′ −→K ′ ⊗R C′2←− C′2 : �′2
its tensor product with C′2 in DR, and D′ := ZC′2 (K

′ ⊗R C′2). By Theorem 32, �′1 : C→D′ is a
C -isomorphism, with inverse j :D′ → C. We write �′1(c)= c⊗′ 1 for c ∈K ′ and

∑′ for the least
upper bound operator of D′ or K ′ ⊗R C′2.

https://doi.org/10.1017/S0960129522000329 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000329

Mathematical Structures in Computer Science 721

Consider the commuting R-morphisms f ′ = �′1 ◦ f and g′ = �′2 shown in

K ′
�′1� K ′ ⊗R C′2

K

f

�

�1
�

f ′
�

K ⊗R C′2

hf ′,g′
�
...............

� �2
C′2.

g′
�

Let hf ′,g′ be the R-morphism with f ′ = hf ′,g′ ◦ �1 and g′ = hf ′,g′ ◦ �2. For R ∈R(K × C′2), put
Rf =

{
(f (m), c) | (m, c) ∈ R

} ∈R(K ′ × C′2). Then,

hf ′,g′([R]) = hf ′,g′
(∑

{m⊗ c | (m, c) ∈ R }
)

=
∑ {

f ′(m)g′(c) | (m, c) ∈ R
}

=
∑ {

(f (m)⊗ 1)(1′ ⊗ c) | (m, c) ∈ R
}

=
∑ {

f (m)⊗ c | (m, c) ∈ R
}

= [Rf].

The restriction of hf ′,g′ to D⊆K ⊗R C′2 clearly is an R-morphism h′ :D→D′. The situation is
visualized by the following diagram:

C � j

�′1
� D′ ⊆ K ′ ⊗R C′2

CK ′

·̂ ′

�

∑
�

CK

f̃

�

K

f

�

�1 �

ηK

�

D

h′

�
...

·̂
�

⊆ K ⊗R C′2

hf ′,g′

�
...

By Lemma 29, there are R, R′ ∈R(K × C′2) with R, R′ ⊆K × {0, 1} and L= {m | (m, 1) ∈ R },
L′ = {

m | (m, 1) ∈ R′
}
, so

[R]= L̂= L̂′ = [R′].

https://doi.org/10.1017/S0960129522000329 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000329

722 H. Leiß

By an application of hf ′,g′ , [Rf]= [R′f]. Using f̃ (L) ∈ CK ′, we get

[Rf] = ̂̃f (L)′
=

∑′ {
f (m)⊗′ c | (m, c) ∈ R

}
=

∑′ {
f (m)⊗′ 1 | (m, 1) ∈ R

}
(R⊆K × {0, 1})

=
∑′ {

f (m)⊗′ 1 | m ∈ L
}

(L= {m | (m, 1) ∈ R })
=

(∑′̃
f (L)

)
⊗′ 1 (by (13) on D′).

Likewise, [R′f]= ̂̃f (L′)′ = (
∑

f̃ (L′))⊗′ 1, and so(∑
f̃ (L)

)
⊗′ 1= [Rf]= [R′f]=

(∑
f̃ (L′)

)
⊗′ 1.

(Hence, h′ ◦ ·̂ = ·̂ ′ ◦ f̃ is a C -morphism.) An application of j gives (14).
f̄ is the unique C -morphism h :D→ C with f = h ◦ η: Suppose h is such a C -morphism and e

an element of D. By Lemma 30 there is L ∈CK such that e= L̂=∑{m⊗ 1 | m ∈ L}; hence,
h(e) = h(̂L)

= h
(∑

{m⊗ 1 | m ∈ L }
)

=
∑ {

h(m⊗ 1) | m ∈ L
}

=
∑ {

h(η(m)) | m ∈ L
}

=
∑ {

f (m) | m ∈ L
}

= f̄ (̂L)= f̄ (e).

Therefore, h= f̄ .

Corollary 34. For any R-dioid K, the C -closure of K is CK/ ker (·̂).

Proof. By Theorem 33, D := ZC′2 (K ⊗R C′2) is the C -closure of K, so we must show that
CK/ ker (·̂) is a C -dioid and there is a C -isomorphism between D and CK/ ker (·̂). By
Lemma 30, ·̂ :CK→D is a monotone and surjective homomorphism between C -dioids. It is
a C -morphism, because

⋃̂
U =∑ {

L̂ | L ∈U
}
for U ∈ C CK. Hence, its kernel ker (·̂) is a C -

congruence on CK, and so CK/ ker (·̂) is a C -dioid. Let us verify that the bijection between
CK/ ker (·̂) and D is a C -isomorphism. In the one direction, the mapping f :CK/ ker (·̂)→D,
well-defined by f (L/ ker (·̂))= L̂ for L ∈CK, is a C -morphism, since for V ∈C (CK/ ker (·̂))
there is U ∈ C CK such that V = { L/ ker (·̂) | L ∈U }, and by the definition of

∑
on quotients,∑

V = (
⋃

U)/ ker (·̂), so f (
∑

V)= ⋃̂
U =∑ {

L̂ | L ∈U
}=∑

f̃ (V). In the other direction,
by Lemmas 31 and 29, elements of D are congruence classes [R] of sets R ∈R(K × C′2) with
R⊆K × {0, 1}, such that [R]= L̂R for LR := {m | (m, 1) ∈ R } ∈CK. Hence, a map g :D→
CK/ ker (·̂) is well-defined by

g([R])= LR/ ker (·̂), for R ∈R(K × C′2) with R⊆K × {0, 1},
and obviously g and f are inverses of each other. To see that g is a C -morphism, suppose V ∈CD.
There is U ∈C CK such that V = {

L̂ | L ∈U
}
, and

∑
V = ⋃̂

U. There is R ∈R(K × C′2) with
R⊆K × {0, 1} and ⋃̂

U = [R]= L̂R, and so

https://doi.org/10.1017/S0960129522000329 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000329

Mathematical Structures in Computer Science 723

g
(∑

V
)
= LR/ ker (·̂)=

(⋃
U

)
/ ker (·̂)=

∑
{ L/ ker (·̂) | L ∈U } =

∑
g̃(V),

using suitable RL ∈R(K × C′2) with RL ⊆K × {0, 1} and L̂= [RL] for the last step.

7. Conclusion
The algebraic abstraction of the regular subsetsRM and the context-free subsets CM of a monoid
M are the categories of R-dioids or ∗-continuous Kleene algebras and C -dioids or μ-continuous
Chomsky algebras. Just as CM is the closure of RM under a well-behaved least fixed-point oper-
ator μ, each R-dioid K has a closure K as C -dioid, briefly called its fixed-point closure. We have
shown thatK can be represented in the productK ⊗R C′2 ofK withC′2 in the category ofR-dioids,
where the polycyclic R-dioid C′2 on two generators is a quotient of the regular sets R�∗2 over an
alphabet �2 = {b, d, p, q} of two pairs of brackets, b, d and p, q. Namely, K is isomorphic to the
centralizer ZC′2 (K ⊗R C′2) of C′2 in K ⊗R C′2, which, intuitively, consists of the sums over regular
sets of elementsm⊗ c wherem ∈K and c ∈ C′2 is restricted to be 0 or 1.

This representation theorem is an algebraic form and categorical generalization of the clas-
sical Chomsky–Schützenberger theorem (and its reverse) of formal language theory. The latter
reduces the set CX∗ of context-free languages over a finite alphabet X to the set R(X ∪�2)∗
of regular languages over X ∪�2, by means of intersection with the context-free Dyck language
D2(X) ∈C (X ∪�2)∗ of balanced bracketed strings and the bracket-erasing homomorphism
from (X ∪�2)∗ to X∗. In the special case K =RX∗ with K =CX∗, the representation theo-
rem intuitively splits bracketed strings u ∈ (X ∪�2)∗ to pairs (w, t) ∈ X∗ ×�∗2 and performs the
balance-checking and bracket-erasure within C′2 by algebraically reducing the second component
of {w} ⊗ {t} ∈K ⊗R C′2 to 1 or 0, depending on whether t belongs to the pure Dyck language
D2 ∈C �∗2 or not. The underlying part of deriving from L ∈CX∗ a suitable regular set R of
strings u ∈ (X ∪�2)∗ is as in the classical Chomsky–Schützenberger theorem (cf. Theorem 15).
A finite automaton for R⊆ (X ∪�2)∗ represents L in the sense that the words u ∈ R evaluate in
RX∗ ⊗R C′2 to 0 or to the elements {w} ⊗ 1 with w= hX∗(u) ∈ L (cf. Figure 3).

The algebra RX∗ ⊗R C′2 is hoped to turn out useful to construct CFG-parsers for context-free
languages over X, for example by simplifying the calculation of item-sets of LR-parsers.

Some remarks on the difference between using the bra-ket R-dioid C2 and the polycyclic
R-dioid C′2 are in order. Theorem 5 of Hopkins and Leiß (2018) announced that CM�
ZC2 (RM⊗R C2) for monoids M, indicating that “the equation db+ qp= 1 not present in C′2
is needed to encode stack operations in C2.” We here have shown that one can actually do without
this equation and prove the stronger result CM� ZC′2 (RM⊗R C′2). One may obtain C2 as the
quotient C′2/

〈
db+ qp= 1

〉
of C′2 by the R-congruence generated by the completeness equation.

The quotient map is not injective, but its extension to RM⊗R C′2 apparently does not identify
different members of ZC′2 (RM⊗R C′2), so the announced claim with C2 should follow.

The motivation for writing this article came from an effort to understand Hopkins’ unpub-
lished proof that the fixed-point closure K of an R-dioid K can be algebraically represented
by ZC2 (K ⊗R C2). An inspection of the proof showed that the completeness assumption db+
qp= 1 of C2 was not used for the analog K ⊆ ZC2 (K ⊗R C2) of the Chomsky–Schützenberger
theorem. For the reverse ZC2 (K ⊗R C2)⊆K, the assumption is used to show that ·̂ :CK→
ZC2 (K ⊗R C2) given by L̂=∑ {m⊗ 1 | m ∈ L } is surjective. The surjectivity follows from an
interesting automata-theoretic Normal Form Theorem for elements of K ⊗R C2, which implicitly
assumes thatMatn,n(K ⊗R C2) is an R-dioid and shortly is as follows. For each element e= [R] ∈
K ⊗R C2, by induction on the construction of R ∈R(K × C2), there is an automaton 〈S,A, F〉
such that e is the language accepted by the automaton, i.e. e= SA∗F=∑ {

SAkF | k ∈N

}
,

where for some n, S ∈ {0, 1}1×n and F ∈ {0, 1}n×1 code the sets of initial and final states and

https://doi.org/10.1017/S0960129522000329 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000329

724 H. Leiß

A is a transition matrix U + X+V ∈Matn,n(K ⊗R C2) with X ∈Kn×n, U ∈ {b, p, 0}n×n, V ∈
{d, q, 0}n×n. It is then shown that N = b(Up+ X+ qV)d is a least solution of y≥ (UyV + X)∗
in Matn,n(K ⊗R C2), a version of Dyck’s language, and N ∈ (ZC2 (K ⊗R C2))n×n. Using the
completeness assumption db+ qp= 1, Hopkins proves

e= S(NV)∗N(UV)∗F,

which simplifies to e= SNF for e ∈ ZC2 (K ⊗R C2). Notice that the Normal Form Theorem pro-
vides us with a description both of elements in the centralizer of C2 and of arbitrary elements
of K ⊗R C2, while the proof of K = ZC′2 (K ⊗R C′2) in Section 6 above only gives us a descrip-
tion of elements of the centralizer of C′2 as equivalence classes [R] of R ∈R(K × C′2) with
R⊆K × {0, 1}. In Section 6, the surjectivity of ·̂ :CK→ ZC′2 (K ⊗R C′2) is reduced to that of
·̂ :CK→ ZC′2 (RK ⊗R C′2), which in turn is shown by giving an inverse. However, it is an inter-
esting question whether the Normal Form Theorem also holds for K ⊗R C′2; Hopkins (personal
communication, 2021) has found a partial positive answer. A least solution N of y≥ (UyV + X)∗
in Matn,n(ZC′2 (K ⊗R C′2)) exists, since ZC′2 (K ⊗R C′2) is a C -dioid, and this category is closed
under n× n-matrix semirings.

Another difference of the proofs is that in the case RM⊗R C′2 we can replace the tensor prod-
uct by a quotient (Corollary 13) and so, strictly speaking, need the tensor product only to represent
the C -closure of arbitrary R-dioids K in K ⊗R C′2.

A minor question is whether our proof for the special case K =RM can be simplified. Since
it is well-known that CX∗ is related to the polycyclic monoids P′n, Propositions 20–23 might
be implicit in existing literature, such as the one referred to by Render and Kambites (2009).
Moreover, it seems inelegant to first show that the maps ·̂ :CM� ZC′2 (RM⊗R C′2) : ·∨ form
a bijection and then use this to show that they are C -morphisms.

Acknowledgements. I am glad to have had the opportunity to organize several joint seminars with Martin Hofmann and
enjoy remembering our friendly and pleasant cooperation. I also had the pleasure to be welcome as a regular guest in his
Oberseminar and thank all members of his group for interesting talks, questions, and conversations. Both Martin Hofmann’s
Oberseminar in Computer Science and Helmut Schwichtenberg’s Oberseminar in Logic gave me the opportunity to present
my current and previous work on formal language theory and to profit from comments and questions.

I am deeply indebted to Mark Hopkins for sharing his unpublished material with me and for giving numerous explana-
tions of his ideas not only on the algebraization of formal language theory but also on the background in category theory and
the relation to quantum physics. The essential idea of relating the fixed-point closure of a Kleene algebra to the centralizer of
the bra-ket algebra in the tensor product is exclusively due to Hopkins.

Finally, I thank the library of the Deutsche Museum in Munich for offering a great opportunity to work in a quiet envi-
ronment and the referees for careful reading and many comments that helped to improve the presentation considerably. The
commutative diagrams are drawn with Paul Taylor’s package “diagrams.sty,” version 3.96.

Conflicts of interest. The author declares none.

Notes
1 The equations are semiring equations, in which elements w ∈�∗2 stand for the singleton sets {w} and 0 for the empty set.
2 The term “completeness” refers to the fact that the embedding is based on a complete suffix code of n opening brackets by
two opening brackets and a complete prefix code of n closing brackets by two closing brackets, see Remark 7.
3 This generalizes the definition in Hopkins (2008a), Hopkins and Leiß (2018), which demand (A1) A M contains all finite
subsets ofM. The generalization serves to cover the example under (1) in Example 1 below.
4 Actually, the graph contains infinitely many stacks: for each �q ∈Q∗2 the subgraph with nodes in {�q}P∗2 forms a stack.
5 The hint to prove Prop.7 of Leiß and Hopkins (2018) erroneously says that [R] maps to

{
(
∑

A,
∑

B) | (A, B) ∈ R
}
.

6 It can be shown that PM⊗P MatP∗2 ,P∗2 (B)�MatP∗2 ,P∗2 (PM), so L⊗ I is the diagonal matrix LI ∈MatP∗2 ,P∗2 (PM).
7 The following proposition and properties of P′2 and RP′2 have been developed independently of the work of Render and
Kambites (2009), who mention that the subsets of X∗ accepted by P′2-valence automata over a finite set X coincide with CX∗.
This seems closely related to Proposition 20.
8 The next two proofs elaborate proofs of Hopkins (2006), Section 3.6

https://doi.org/10.1017/S0960129522000329 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000329

Mathematical Structures in Computer Science 725

References
Chomsky, N. and Schützenberger, M. (1963). The algebraic theory of context free languages. In: Braffort, P. and Hirschberg,

D. (eds.) Computer Programming and Formal Systems, 118–161.
Conway, J. H. (1971). Regular Algebra and Finite Machines, London, Chapman and Hall.
Grathwohl, N. B. B., Henglein, F. and Kozen, D. (2013). Infinitary axiomatization of the equational theory of context-free

languages. In: Baelde, D. and Carayol, A. (eds.) Fixed Points in Computer Science (FICS 2013), EPTCS, vol. 126, 44–55.
Hopkins, M. (1993). The Untold Story of Formal Languages. Submissions to USENET forum comp.theory (1993/95) and

sci.math.research Jan./Feb. 1996.
Hopkins, M. (2006). The Theory of Context-Free Expressions. Unpublished Typoscript. Partly based on submissions to

USENET forum comp.theory, May 2004.
Hopkins, M. (2007). CEX - A Context-Free Expression Filter. https://compilers.iecc.com/comparch/article/

07-02-067.
Hopkins, M. (2008a). The algebraic approach I: The algebraization of the Chomsky hierarchy. In: Berghammer, R., Möller,

B. and Struth, G. (eds.) Relational Methods in Computer Science/Applications of Kleene Algebra, LNCS, vol. 4988, Berlin
Heidelberg, Springer Verlag, 155–172.

Hopkins, M. (2008b). The algebraic approach II: Dioids, quantales andmonads. In: Berghammer, R., Möller, B. and Struth, G.
(eds.) Relational Methods in Computer Science/Applications of Kleene Algebra, LNCS, vol. 4988, Berlin Heidelberg, Springer
Verlag, 173–190.

Hopkins, M. and Leiß, H. (2018). Coequalizers and tensor products for continuous idempotent semirings. In: Desharnais,
J., Guttmann, W. and Joosten, S. (eds.) 17th International Conference on Relational and Algebraic Methods in Computer
Science (RAMiCS 2018), LNCS, vol. 11194, Cham, Springer Nature Switzerland AG, 37–52.

Hulden, M. (2011). Parsing CFGs and PCFGs with a Chomsky-Schützenberger representation. In: Vetulani, Z. (ed.) LTC
2009, LNAI, vol. 6562, Springer-Verlag, 151–160.

Kozen, D. (1981). On induction vs. ∗-continuity. In: Kozen, D. (ed.) Proceedings of the Workshop on Logics of Programs 1981,
Lecture Notes in Computer Science, vol. 131, Springer Verlag, 167–176.

Kozen, D. (1990). OnKleene algebras and closed semirings. In: Rovan, B. (ed.) 15th International Symposium onMathematical
Foundations of Computer Science, Banská Bystrica, 1990, LNCS, vol. 452, Springer Verlag, 26–47.

Kozen, D. (1991). The Design and Analysis of Algorithms, New York, Springer-Verlag.
Kozen, D. (1994). A completeness theorem for Kleene algebras and the algebra of regular events. Information and

Computation 110 (2) 366–390.
Leiß, H. (2016). The matrix ring of a μ-continuous Chomsky algebra is μ-continuous. In: Regnier, L. and Talbot, J.-M. (eds.)

25th EACSL Annual Conference on Computer Science Logic (CSL 2016), Leibniz International Proceedings in Informatics,
Leibniz-Zentrum für Informatik, Dagstuhl Publishing, 1–16.

Leiß, H. and Hopkins, M. (2018). C-dioids and μ-continuous Chomsky algebras. In: Desharnais, J., Guttmann, W. and
Joosten, S. (eds.) 17th International Conference on Relational and Algebraic Methods in Computer Science, RAMiCS 2018,
Cham, Springer Nature Switzerland AG, 21–36.

Mac Lane, S. (1971). Categories for the Working Mathematician, New York, Springer-Verlag, New York Inc.
Nivat, M. and Perrot, J.-F. (1970). Une géneralisation du monoide bicyclique. C.R.Acad.Sci. Paris, Sér A 271.
Render, E. and Kambites, M. (2009). Rational subsets of polycyclic monoids and valence automata. Information and

Computation 207 1329–1339.
Rosenthal, K. I. (1990). Quantales and Their Applications, Harlow, Essex, Longman Scientific & Technical.
Sikkel, K. (1998). Parsing Schemata. A Framework for Specification and Analysis of Parsing Algorithms, EATCS Monographs,

Berlin, Springer Verlag.

Appendix A
The postponed part of the proof of Theorem 12 is as follows.

Proof. To prove A M⊗A (A N/ν)�A (M×N)/ν̃, it is sufficient to show that

�′1 :A M−→A (M×N)/ν̃←−A N/ν : �′2
form a tensor product of A M and A N/ν in DA , where�′1 and�′2 are defined by

�′1(A)= (A× {1})/ν̃ and �′2(B/ν)= ({1} × B)/ν̃.

�1 is an A -morphism, since A �→A× {1} and the quotient map ·/ν̃ are. To see that �′2 is
well-defined, we first check that

https://doi.org/10.1017/S0960129522000329 Published online by Cambridge University Press

https://compilers.iecc.com/comparch/article/07-02-067
https://compilers.iecc.com/comparch/article/07-02-067
https://doi.org/10.1017/S0960129522000329

726 H. Leiß

(1) For B, B′ ∈A N, B/ν = B′/ν ⇐⇒ B \ {0} = B′ \ {0},
(2) for S, S′ ∈A (M×N), S/ν̃ = S′/ν̃ ⇐⇒ S \ (M× {0})= S′ \ (M× {0}).

Concerning (1), since {0}/ν =∅/ν is the least element of A N/ν, for B ∈A N we have

B/ν =
∑

{ {n}/ν | n ∈ B } =
∑

{ {n}/ν | n ∈ B \ {0} } .
Hence if B, B′ ∈A N with B \ {0} = B′ \ {0}, then B/ν = B′/ν. For the converse, one shows that

ν0 :=
{
(B, B′) ∈A N ×A N | B \ {0} = B′ \ {0} }

is an A -congruence on A N containing ({0}, ∅), and obviously ν ⊆ ν0.
For (2), notice that for eachm ∈M,

{(m, 0)}/ν̃ = {(m, 1)}/ν̃ · {(1, 0)}/ν̃ = {(m, 1)}/ν̃ · ∅/ν̃ =∅/ν̃.
Therefore, similar arguments as for (1) apply with S \ (M× {0}) instead of B \ {0}.

By (1) and (2), it follows that�2 is well-defined, since
B/ν = B′/ν ⇐⇒ B \ {0} = B′ \ {0}

⇐⇒ ({1} × B) \ (M× {0})= ({1} × B′) \ (M× {0})
⇐⇒ ({1} × B)/ν̃ = ({1} × B′)/ν̃.

�′2 is an A -morphism: it is clearly a monotone homomorphism, and if U ∈A (A N/ν), there is
U ′ ∈A A N such that U = {

B/ν | B ∈U ′
}
; hence,

�′2
(∑

U
)
= �′2

(∑ {
B/ν | B ∈U ′

})=�2
((⋃

U ′
)

/ν
)

=
(
{1} ×

(⋃
U ′

))
/ν̃ =

(⋃ { {1} × B | B ∈U ′
})

/ν̃

=
∑ {

({1} × B)/ν̃ | B ∈U ′
}=∑ {�′2(B/ν) | B/ν ∈U

}
.

Clearly,�′1 and�′2 are relatively commuting.
To show the universal property of a tensor product, let f , g be relatively commuting A -

morphisms to an A -dioid D as shown:

A M
�′1� A (M×N)/ν̃ ��′2 A N/ν

D

h′f ,g
�

................
g

�

f
�

We define an A -morphism h′f ,g :A (M×N)/ν̃→D by

h′f ,g(S/ν̃)=
∑ {

f ({m}) · g({n}/ν) | (m, n) ∈ S
}
, S ∈A (M×N).

• h′f ,g is well-defined: Since f and g are relatively commuting, (m, n) �→ f ({m}) · g({n}/ν)
defines a homomorphism from M×N to D, so its lifting maps S ∈A (M×N) to an A -set{
f ({m}) · g({n}/ν) | (m, n) ∈ S

} ∈A D, and the
∑

exists.
Since g is a semiring-morphism, for (m, 0) ∈ S we have

f ({m}) · g({0}/ν)= f ({m}) · g(0A N/ν)= f ({m}) · 0D = 0D,
whence the value of h′f ,g(S/ν̃) depends on S \ (M× {0}) only, i.e. on S/ν̃ by (2).

• h′f ,g is a homomorphism: clearly
h′f ,g({(1, 1}/ν̃) =

∑
{f ({1}) · g({1}/ν)} = f ({1}) · g({1}/ν)= 1D.

https://doi.org/10.1017/S0960129522000329 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000329

Mathematical Structures in Computer Science 727

Since f and g are relatively commuting, for S, S′ ∈A (M×N) the set{
f ({m}) · g({n}/ν) | (m, n) ∈ SS′

}
is the product in A D of{

f ({m}) · g({n}/ν) | (m, n) ∈ S
}
and

{
f ({m}) · g({n}/ν) | (m, n) ∈ S′

}
,

and since
∑ :A D→D is A -distributive, this gives

h′f ,g(S/ν̃ · S′/ν̃) = h′f ,g(SS
′/ν̃)

=
∑ {

f ({m}) · g({n}/ν) | (m, n) ∈ SS′
}
,

= h′f ,g(S/ν̃) · h′f ,g(S′/ν̃).
• h′f ,g is an A -morphism: If V ∈A (A (M×N)/ν̃), there isU ∈A (A (M×N)) such that V =
U/ν̃ := { S/ν̃ | S ∈U }, and ∑

V = (
⋃

U)/ν̃. So

h′f ,g
(∑

V
)
= h′f ,g

((⋃
U

)
/ν̃

)
=

∑ {
f ({m}) · g({n}/ν) | (m, n) ∈

⋃
U

}
,

=
∑ { ∑ {

f ({m}) · g({n}/ν) | (m, n) ∈ S
} | S ∈U

}
,

=
∑ {

h′f ,g(S/ν̃) | S ∈U
}
=

∑
(A h′f ,g)(V),

showing that h′f ,g is A -continuous; this implies that it is monotone.
• f = h′f ,g ◦ �′1 and g = h′f ,g ◦ �′2: for A ∈A M and B ∈A N,

h′f ,g(�′1(A)) = h′f ,g((A× {1})/ν̃)
=

∑ {
f ({m}) · g({n}/ν) | (m, n) ∈A× {1} }

=
∑ {

f ({m}) · g({1}/ν) | m ∈A
}

=
∑ {

f ({m}) | m ∈A
}

= f
(⋃

{ {m} | m ∈A }
)

= f (A),

h′f ,g(�′2(B/ν)) = h′f ,g(({1} × B)/ν̃)

=
∑ {

f ({m}) · g({n}/ν) | (m, n) ∈ {1} × B
}

=
∑ {

f ({1}) · g({n}/ν) | n ∈ B
}

=
∑ {

g({n}/ν) | n ∈ B
}

= g
(∑

{ {n}/ν | n ∈ B }
)

= g
(⋃

{ {n} | n ∈ B } /ν
)

= g(B/ν).

• h′f ,g is the only A -morphism h′ with f = h′ ◦ �′1 and g = h′ ◦ �′2: Suppose h′ :A (M×
N)/ν̃→D is such an A -morphism. Then,

https://doi.org/10.1017/S0960129522000329 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000329

728 H. Leiß

h′f ,g(S/ν̃) =
∑ {

f ({m}) · g({n}/ν) | (m, n) ∈ S
}

=
∑ {

h′(�′1({m})) · h′(�′2({n}/ν)) | (m, n) ∈ S
}

=
∑ {

h′(�′1({m}) · �′2({n}/ν)) | (m, n) ∈ S
}

= h′
(∑ {�′1({m}) · �′2({n}/ν) | (m, n) ∈ S

})
= h′

(∑
{ ({m} × {1})/ν̃ · ({1} × {n})/ν̃ | (m, n) ∈ S }

)
= h′

(∑
{ ({m} × {n})/ν̃) | (m, n) ∈ S }

)
= h′

(∑
{ {(m, n)}/ν̃ | (m, n) ∈ S }

)
= h′

((⋃
{ {(m, n)} | (m, n) ∈ S }

)
/ν̃

)
= h′(S/ν̃).

Cite this article: Leiß H (2022). An algebraic representation of the fixed-point closure of ∗-continuous Kleene alge-
bras – A categorical Chomsky–Schützenberger theorem. Mathematical Structures in Computer Science 32, 685–728.
https://doi.org/10.1017/S0960129522000329

https://doi.org/10.1017/S0960129522000329 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000329
https://doi.org/10.1017/S0960129522000329

	An algebraic representation of the fixed-point closure of *-continuous Kleene algebras – A categorical Chomsky–Schützenberger theorem
	Introduction
	The Category of A-Dioids and A-Morphisms
	Quotients in DA
	The polycyclic A-dioids Cn,A'
	The tensor product of A-dioids

	The CST for Monoids and its Algebraic Version
	The CST for monoids
	Algebraic version of the CST for monoids

	The Reverse CST for Monoids and its Algebraic Version
	The reverse CST for monoids
	Algebraic version of the reverse CST for monoids

	Algebraic Representation of the C-Closure CM of RM
	Algebraic Representation of the C-Closure of an Arbitrary R-Dioid K
	Conclusion

