
JFP 28, e7, 48 pages, 2018. c© Cambridge University Press 2018

doi:10.1017/S0956796818000035

1

A programming model and foundation for
lineage-based distributed computation

PHIL IPP HALLER

School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology,

SE-100 44 Stockholm, Sweden

(e-mail: phaller@kth.se)

HEATHER MILLER

School of Computer and Communication Sciences, EPFL, CH-1015 Lausanne, Switzerland

and

College of Computer and Information Science, Northeastern University, Boston, MA-02115, USA

(e-mail: heather.miller@epfl.ch)

NORMEN MÜLLER

Safeplace, DE-40667 Meerbusch, Germany

Abstract

The most successful systems for “big data” processing have all adopted functional APIs.

We present a new programming model, we call function passing, designed to provide a more

principled substrate, or middleware, upon which to build data-centric distributed systems

like Spark. A key idea is to build up a persistent functional data structure representing

transformations on distributed immutable data by passing well-typed serializable functions

over the wire and applying them to this distributed data. Thus, the function passing model can

be thought of as a persistent functional data structure that is distributed, where transformations

performed on distributed data are stored in its nodes rather than the distributed data itself.

One advantage of this model is that failure recovery is simplified by design – data can be

recovered by replaying function applications atop immutable data loaded from stable storage.

Deferred evaluation is also central to our model; by incorporating deferred evaluation into

our design only at the point of initiating network communication, the function passing model

remains easy to reason about while remaining efficient in time and memory. Moreover, we

provide a complete formalization of the programming model in order to study the foundations

of lineage-based distributed computation. In particular, we develop a theory of safe, mobile

lineages based on a subject reduction theorem for a typed core language. Furthermore, we

formalize a progress theorem that guarantees the finite materialization of remote, lineage-

based data. Thus, the formal model may serve as a basis for further developments of the

theory of data-centric distributed programming, including aspects such as fault tolerance.

We provide an open-source implementation of our model in and for the Scala programming

language, along with a case study of several example frameworks and end-user programs

written atop this model.

https://doi.org/10.1017/S0956796818000035 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000035

2 P. Haller et al.

1 Introduction

Data-centric programming is growing in importance with the most successful systems

for programming with “big data” all adopting ideas from functional programming;

i.e., programming with first-class functions. These functional ideas are often touted

to be the key to the success of these frameworks. Functional, declarative interfaces

to data, distributed over tens to thousands of nodes, provide a more natural way

for end-users and data scientists to reason about data.

While leveraging functional programming concepts, popular implementations of

Google’s MapReduce (Dean & Ghemawat, 2008) model, such as Apache Hadoop’s

MapReduce Framework (Apache, 2015) for Java, have been developed without

making use of functional language features such as closures. For nearly a decade,

the Apache Hadoop open source interpretation of this model grew in popularity,

remaining largely unchallenged–causing nearly all of industry to synchronize on this

one implementation for nearly all large-scale data processing needs.

However, in recent years, a new generation of distributed systems for large-scale

data processing have suddenly cropped up, built on top of emerging functional lan-

guages like Scala (Odersky et al., 2010); such systems include Apache Spark (Zaharia

et al., 2010), Twitter’s Scalding (Twitter, 2015), and Scoobi (NICTA, 2015). These

systems make use of functional language features in Scala in order to provide high-

level, declarative APIs to end-users. Further, the benefits provided by functional pro-

gramming have also won over framework designers as well – some have noticed that

immutability, and data transformation via higher-order functions, makes it much eas-

ier, by design, to tackle concerns central to distributed systems such as concurrency.

While widely adopted in practice, the aforementioned programming systems are

not without important issues. On the one hand, their programming interfaces do

not prevent common usage errors, such as unsafe closure serialization. As a result,

the complexities of distribution may trickle even to end users, who are increasingly

non-expert users. On the other hand, the foundations of their programming models

remain largely unclear, in particular, foundations of core aspects such as fault

tolerance, a critical aspect for distributed operation on a large scale.

This paper introduces a new programming model that embraces the principle of

stationary data containers and mobile functions (move computation to the data). It

can be viewed as a generalization of the MapReduce/Spark programming model.

Our programming model, which we call function passing can be thought of as

a programming model for a middleware, meant to underly systems like Spark.

Function passing adopts the concept of lineage which is used by systems like Spark

to handle fault tolerance. Importantly, lineage-based fault tolerance is facilitated by

the core computational principle of functional transformations on immutable data.

The programming model is based on functional abstractions for lineage-based

distributed computation. In order to prevent common usage errors, the model

builds upon two previous veins of work – type-safe serialization based on func-

tional pickler combinators (Kennedy, 2004; Rossberg et al., 2004; Elsman, 2005;

Miller et al., 2013), and serializable closures (Epstein et al., 2011; Miller et al.,

2014). We believe this unique combination of functional programming techniques

https://doi.org/10.1017/S0956796818000035 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000035

Lineage-based distributed computation 3

provides a more principled substrate upon which to build data-centric, distributed

systems.

Importantly, we provide a complete formalization of the programming model. In

particular, we develop a theory of safe, mobile lineages based on a subject reduction

theorem for a typed core language. Furthermore, we formalize a progress theorem

that guarantees the finite materialization of remote, lineage-based data. To our

knowledge, these theorems constitute the first correctness results for a programming

model for lineage-based distributed computation. Thus, our formal model may

serve as a basis for further developments of the theory of data-centric distributed

programming, including aspects such as fault tolerance.

1.1 Contributions

This paper makes the following contributions:

• A new data-centric programming model for functional processing of distributed

data, which provides abstractions for building fault-tolerant distributed sys-

tems, including first-class lineages. The main computational principle is based

on the idea of sending safe, guaranteed serializable functions to stationary data

containers. Using standard monadic operations, our model enables creating

directed acyclic graphs (DAG) of computations. Deferred evaluation enables

optimizations such as operation fusion while keeping programs simple to

reason about.

• A formalization of lineage-based distributed computation based on a small-

step operational semantics. Our formalization extends previous theories of

serializable closures to serializable lineages. The technical development enabling

this extension combines (a) serializable types, (b) “static” closures, and (c)

lineages.

• A proof of a subject reduction theorem for a typed, distributed core language

based on lineages. To our knowledge, we present the first such proof for a

lineage-based distributed programming model.

• A proof establishing the preservation of lineage mobility by reduction for

a typed, distributed core language. This property provides a foundation for

lineage-based fault tolerance.

• The formalization of a progress theorem, guaranteeing the finite materialization

of remote, lineage-based data, including a detailed proof sketch.

• A distributed implementation of the programming model in and for Scala as

a middleware.1 In addition, we present prototype versions of programming

abstractions provided by popular frameworks like Apache Spark and MBrace

using the function passing model, and end-user applications we have built

using these prototypes.

In the rest of the paper, our approach is as follows. First, we describe our model

on a high level, elaborating upon key benefits and trade-offs, and then we zoom in to

1 See the Git repository at https://github.com/heathermiller/f-p/, branch jfp.

https://doi.org/10.1017/S0956796818000035 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000035

4 P. Haller et al.

make each component part of our model more precise. We describe the basic model

this way in Section 2. In Section 3, we go on to show how essential higher-order

operations on distributed frameworks like Apache Spark can be implemented in

terms of the primitives presented in Section 2. We formalize our programming model

in Section 4, providing an operational semantics and a type system. In Section 5, we

present the proof of a subject reduction theorem and formalize important progress

properties. Finally, we discuss related work in Section 6, and conclude in Section 7.

2 Overview

2.1 Essence

The function passing model is intended to act as a middleware upon which to build

up data-centric distributed systems like Spark.

In the broadest sense, it can be thought of as a sort of persistent functional

data structure with monadic operations and structural sharing. However, rather

than containing pure data, instead this data structure represents a graph2 of functional

transformations, or operations, on distributed data. The root node contains immutable

data read from stable storage (e.g., Amazon S3); edges represent functional transfor-

mations. Said another way, the core of the function passing model can be thought

of as a persistent functional data structure representing a history of the operations

performed on some data, rather than the data itself.

Importantly, since this DAG of computations is a persistent data structure itself,

it is safe to exchange (copies of) subgraphs of a DAG between remote nodes.

Subgraphs of the DAG are called lineages; lineages enable restoring the data of

failed nodes through re-applying their transformations. This sequence of applications

must begin with data available from stable storage.

Central to the function passing model is the careful use of deferred evaluation.

Computations on distributed data are typically not executed eagerly; instead,

applying a function to distributed data just creates an immutable, local lineage.

To make a network call and thus obtain the result of a computation, it is

necessary to first “kick off” the computation in order to materialize the nodes

of its lineage. Within our programming model, this force operation3 makes network

communication (and thus possibilities for latency) explicit, which is considered to be a

strength when designing distributed systems (Waldo et al., 1996). Deferred evaluation

also enables optimizing distributed computations through operation fusion, which

avoids the creation of unnecessary intermediate data structures–this is efficient in

time as well as space. This kind of optimization is particularly important and

effective in distributed systems (Chambers et al., 2010). For these reasons, we believe

that deferred evaluation should be viewed as an enabler in the design of distributed

systems.

2 A directed acyclic graph (DAG).
3 Called send(), discussed in more depth in Section 2.4 along with the other primitive operations in

the function passing model.

https://doi.org/10.1017/S0956796818000035 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000035

Lineage-based distributed computation 5

2.2 Basic usage

We begin with a simple visual example to illustrate the intuition behind the function

passing model. The function passing model consists of three main components:

• Silos, stationary, typed, immutable data containers.

• Silo references to local or remote silos.

• Spores, safe, and serializable functions.

The main handle users have to the framework is via SiloRefs. A SiloRef[T] can

be thought of as an immutable handle to a remote value of type T contained within

a corresponding silo. Users interact with this remote data by applying functions (as

spores) to silo references. Those functions are transmitted over the wire and later

applied to the data within the corresponding silo. As is the case for persistent data

structures, when a function is applied to a piece of remote data via a SiloRef[T],

a new SiloRef[T’], representing a new silo containing the transformed data T’, is

returned.

We go into more detail about each of these components later in Section 2.3.

The simplest illustration of the model is shown in Figure 1 (time flows vertically

from top to bottom). Here, we start with a SiloRef[T] that points to a piece

of remote data contained within a Silo[T]. When the function, shown as λ,

of type T ⇒ SiloRef[S] is applied to SiloRef[T] and “forced” (sent over the

network), a new silo reference of type SiloRef[S] is immediately returned. Note

that SiloRef[S] contains a reference to its parent silo reference, SiloRef[T]. (This

is how lineages are constructed.) Meanwhile, the function is asynchronously sent

over the network and is then applied to Silo[T], eventually producing a new

Silo[S]4 containing the data transformed by function λ. This new SiloRef[S] can

be operated on even before its corresponding silo is materialized (i.e., before the

data in Silo[S] is computed) the function passing framework queues up operations

applied to SiloRef[S] and applies them when Silo[S] is fully materialized.

Different sorts of complex DAGs can be asynchronously built up in this way.

Though first, to see how this is possible, we need to develop a clearer idea of the

primitive operations available on silo references and their semantics. We describe

these in the following.

2.3 Programming model

With a basic intuition under our belt for how distributed computation is performed

in the function passing model, we focus now on its three main components; silos,

silo references, and spores.

Silos. A silo is a typed and immutable data container. The container is stationary

in the sense that it does not move between machines – it remains on the machine

where it was created. Data stored in a silo may either be loaded from stable storage,

4 New silos are materialized on the same node as their parent.

https://doi.org/10.1017/S0956796818000035 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000035

6 P. Haller et al.

Fig. 1. Basic function passing model.

such as a distributed file system, or it may be the result of a computation. Thus, the

data stored in a silo is often not stationary (in contrast to the containers, the silos,

which are stationary), because it may need to be transferred to other machines to

compute the contents of other silos. A program operating on data stored in a silo

can only do so using a reference to the silo.

Silo references. Similar to a proxy object, a silo reference represents, and allows

interacting with both local and remote silos. Silo references are immutable, storing

identifiers to locate possibly remote silos. They are also typed (SiloRef[T])

corresponding to the type T of their silo’s data, leading to well-typed network

communication. A silo reference provides two principal operations: apply and

send. The apply method makes use of deferred evaluation; it eventually applies a

user-defined function to data pointed to by the SiloRef[T], creating a new silo

containing the result of this application, though this application is deferred. That is,

this computation is only “kicked off” when the send method is invoked. This makes

it possible to queue up transformations in order to optimize network communication.

Note that the user-defined function passed to apply returns a SiloRef[S] whose

contents is transferred to the new silo returned by apply. Essentially, apply enables

accessing the contents of (local or remote) silos from within remote computations.

We illustrate these primitives in more detail in Section 2.4.

https://doi.org/10.1017/S0956796818000035 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000035

Lineage-based distributed computation 7

Fig. 2. The shape of a spore.

Spores. Spores (Miller et al., 2014) are safe closures that are guaranteed to be

serializable and thus distributable. Essentially, a spore is a closure-like abstraction

with associated type rules that gives authors of distributed frameworks a principled

way of controlling the environment which a closure (provided by client code) can

capture. This is achieved by (a) enforcing a specific syntactic shape that dictates how

the environment of a spore is declared, and (b) providing additional type-checking

to ensure that types being captured have certain properties.

A spore consists of two parts: the spore header, composed of a list of value definitions,

and the spore body, a regular closure; sometimes referred to as the “spore closure.”

This shape is illustrated in Figure 2.

The characteristic property of a spore is that the spore body is only allowed to

access its parameter, the values in the spore header, as well as top-level singleton

objects (Scala’s form of modules). The spore closure is not allowed to capture

variables other than those declared in the spore header (i.e., a spore may not capture

variables in the environment). By enforcing this shape, the environment of a spore is

always declared explicitly in the spore header, which avoids accidentally capturing

problematic references. Moreover, importantly for object-oriented languages like

Scala, it is no longer possible to accidentally capture the this reference.

Spores also come with additional type-checking. Type information corresponding

to captured variables are included in the type of a spore. This enables authors of

distributed frameworks to customize type-checking of spores to, for example, exclude

a certain type from being captured by user-provided spores. Authors of distributed

frameworks may enable this type-checking by simply including information about

excluded types (or other type-based properties) in the signature of a method. A

concrete example would be to ensure that the map method on RDDs in Apache Spark

(a distributed collection) accepts only spores that do not capture SparkContext (a

non-serializable internal framework class).

2.4 Primitives

There are five basic primitive operations on silo references that together can be used

to build the higher-order operations common to popular data-centric distributed

systems. (How to build some of these higher-order operations is described in

Section 3.) In this section, we introduce these primitives in the context of a running

example. These primitives include apply, send, persist, unpersist, and populate;

https://doi.org/10.1017/S0956796818000035 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000035

8 P. Haller et al.

Fig. 3. Type signatures of primitive operations.

their type signatures are shown in Figure 3.5 Note that populate does not operate

on a SiloRef, unlike the other primitives. Instead, populate is used to create new

SiloRefs; therefore, it is defined as a (factory) method in the SiloRef singleton

object.6

apply. def apply[S](p: Spore[T, SiloRef[S]]): SiloRef[S]

The apply method takes a spore that is to be applied to the data in the silo

associated with the given SiloRef (i.e., the receiver of the method call). Rather than

immediately sending the spore across the network, and waiting for the operation

to finish, the apply method’s evaluation is deferred. Without involving any network

communication, it immediately returns a SiloRef referring to a new, to-be-created

silo. This new silo reference only contains lineage information, namely, a reference

to the original SiloRef and a reference to the argument spore. As we explain

below, another method, send, must be called explicitly to force the materialization

of the result silo. Note that the result type of the spore parameter is a SiloRef[S].

Semantically, the new silo created by apply is defined to contain the data of the

silo that the user-defined spore returns. This way, the apply combinator enables

expressing computation DAGs.

To better understand how DAGs are created and how remote silos are mate-

rialized, we will develop a running example throughout this section. Given a silo

containing a list of Person records, the following invocation of apply defines a

(not-yet-materialized) silo containing only the records of adults (graphically shown

in Figure 5, part 1):

val persons: SiloRef[List[Person]] = ...

val adults: SiloRef[List[Person]] = persons.apply(spore { ps =>

SiloRef.populate(currentHost, ps.filter(p => p.age >= 18))

})

5 A trait in Scala can be thought of as an abstract class supporting mixin composition, essentially
providing a safe form of multiple inheritance (Odersky & Zenger, 2005).

6 Singleton objects are Scala’s form of modules. The name of a singleton object refers to a value. Since
in Scala the namespace for types is disjoint from the namespace for values, the trait and the singleton
object can have the same name.

https://doi.org/10.1017/S0956796818000035 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000035

Lineage-based distributed computation 9

Fig. 4. Matching persons and vehicle owners using the apply combinator.

When the spore is received on the machine hosting the silo corresponding to the

persons silo reference, it is applied to the contents of the silo, a List[Person].

The body of the spore (a) filters this list (ps), creating a new list of adults, and (b)

populates a new silo with the result of the filter invocation. Note that populate

takes the host of the new silo as an argument; in the above example, this argument

is currentHost that returns the host currently computing the silo’s contents.

Section 2.4.1 below describes additional ways to create new silos. However, in each

case, the host on which the silo should be created must be specified. The reason is

that each instance of SiloRef[T] contains the host of the corresponding silo; this

information is necessary for accessing the silo’s data. Given the fact that the host of

a SiloRef is fixed, SiloRefs are not suitable for direct use by applications requiring

fault tolerance. Instead, SiloRefs should be regarded as a (low-level) building block

for distributed systems, which implement fault-recovery mechanisms on top of the

basic functionality provided by SiloRefs.

The apply combinator enables expressing also more interesting computation

DAGs. For example, consider the problem of combining the information contained

in two different silos (potentially located on different hosts). Suppose the information

of a silo containing Vehicle records should be enriched with other details only found

in the adults silo. In the example shown in Figure 4 apply is used to create a silo

of (Person, Vehicle) pairs where the names of person and vehicle owner match.

Here, it is necessary to read the data of the vehicles silo in addition to the persons,

the list of Person records. This requires calling apply on localVehicles on line 6,

whose argument spore captures the persons list and takes the vs list as a parameter;

thereby, the two lists can be combined, and the result stored in a new silo (line 9).

Note that with the use of apply on line 3, the call to localVehicles.apply(..) on

https://doi.org/10.1017/S0956796818000035 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000035

10 P. Haller et al.

Fig. 5. A simple DAG in the function passing model.

https://doi.org/10.1017/S0956796818000035 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000035

Lineage-based distributed computation 11

line 6 creates the final result silo, whose data is then also contained in the owners

silo declared on line 2. (See Appendix A.1 for a diagram illustrating also the use of

regular Scala collection combinators in the listing.)

To illustrate the data flow between hosts, let us kick off the materialization of the

involved silos:

val adults: SiloRef[List[Person]] = ...

val vehicles: SiloRef[List[Vehicle]] = ...

val owners: Future[List[(Person,Vehicle)]] =

adults.apply(...).send()

For illustration, we use the informal notation @m to denote the location of a value. We

assume that the silo references are at machine m1 but the actual data is distributed

over m2 and m3 (note that these locations are different from Figure 5, part 2; however,

they help make the required data transfers more precise):

adults @ m1 --> Silo[List[Person]] @ m2

vehicles @ m1 --> Silo[List[Vehicle]] @ m3

To create owners, we must combine data hosted at m2 with data hosted at m3. First,

the invocation of apply on adults (line 3) transfers its spore, i.e., the silo reference

vehicles and the closure (persons: List[Person]) => ..., to m2 hosting the

referenced silo of grown-up Person records. Next, the invocation of apply on

localVehicles (line 6) transfers its spore, i.e., the collection of adults persons

and the closure (vs: List[Vehicle]) => ..., to m3 hosting the referenced silo of

Vehicle records. Now, at m3, we have all required information: the adults persons,

the vehicles vehicles, and the necessary computations to combine corresponding

records, resulting in a new (anonymous) silo reference at m2 referencing the new silo

of (Person,Vehicle) records hosted at m3. This new silo reference at m2 is used to

transfer its referenced data from m3 to m2, the origin of the apply, and, eventually,

to m1 where the materialization has been kicked off.

To reduce the amount of data that is transferred, the implementation in fact

leverages silo reference proxies, delegating to the actual data:

adults @ m1 --> Silo[List[Person]] @ m2

vehicles @ m1 --> Silo[List[Vehicle]] @ m3

owners @ m1 --> proxy @ m2 --> Silo[List[(Person,Vehicle)]] @ m3

The anonymous silo reference created at m2 will not lead to a materialization of its

contents at m2; instead, the silo reference functions as a proxy for the data hosted

at m3. As a result, when m1 requests the actual list of persons owning a vehicle,

it is retrieved from m3. Avoiding a materialization also on m2 alleviates network

communication overhead.

Finally, note that the spore passed to apply on line 3 in Figure 4 declares the

capturing of the vehicles silo reference in its spore header. The spore header

spans all variable definitions between the spore marker and the parameter list of

the spore’s closure. The spore header defines the variables that the spore’s closure is

allowed to access. Essentially, spores limit the free variables of their closure’s body

to the closure’s parameters and the variables declared in the spore’s header.

https://doi.org/10.1017/S0956796818000035 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000035

12 P. Haller et al.

send. def send(): Future[T]

As mentioned earlier, the execution of computations built using silo references

is deferred. The send operation forces the deferred computation defined by the

given SiloRef[T]. Forcing is explicit in our model, because it requires sending

the lineage to the remote node on which the result silo should be created. Given

that network communication has a latency several orders of magnitude greater than

accessing a word in main memory, providing an explicit send operation is a judicious

choice (Waldo et al., 1996).

To enable materialization of remote silos to proceed concurrently, the send

operation immediately returns a future (Haller et al., 2012). This future is then

asynchronously completed with the data of the given silo. Since calling send will

materialize a silo on the same node as its parent, and will send its resulting data to

the current node, send should only be called on silos with reasonably small data

(for example, in the implementation of an aggregate operation such as reduce on a

distributed collection).

persist. def persist(): SiloRef[T]

The performance of typical data analytics jobs can be increased dramatically by

caching large datasets in memory (Zaharia et al., 2010). To do this, silos containing

computed datasets need to be materialized, and furthermore, re-materialization

should be avoided when datasets are used multiple times.

The only way, that we have shown so far, to materialize a silo is using the send

primitive. However, using send does not prevent the system from evicting the silo

from memory at a later point in time, e.g., when its host is running low on memory.

In addition, send transfers the contents of the silo to the requesting host – too much

if a large remote dataset should merely be cached in memory remotely.

Therefore, we provide an additional primitive called persist which immediately

returns a SiloRef representing a silo which (a) has the same data when materialized,

and (b) is guaranteed to remain in memory as long as at least one host has persisted

the SiloRef.

Given the running example so far, we can add another lineage branching off

of adults by sorting the list of Person records by age, and producing a greeting

String for each record:

val sorted = adults.apply(spore { ps =>

SiloRef.populate(currentHost, ps.sortWith(p => p.age))

})

val labels = sorted.apply(spore { ps =>

SiloRef.populate(currentHost, ps.map(p => "Hi " + p.name))

})

val cachedLabels = labels.persist()

val done: Future[Boolean] = cachedLabels.map(x => true).send()

The cachedLabels silo contains the same (logical) data as the labels silo, however,

the data of cachedLabels is cached in memory. Thus, cachedLabels needs to be

materialized just once. In order to “kick off” remote computation, it is still necessary

to call send; however, it is always possible to “prefetch” data into remote memory

https://doi.org/10.1017/S0956796818000035 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000035

Lineage-based distributed computation 13

by mapping the data to a trivial value (true above) and invoking send to materialize

the lineage.7 The lineage for the above example looks as illustrated in Figure 5.

unpersist. def unpersist(): SiloRef[T]

The final primitive operation on silo references is unpersist. By invoking unpersist

on a silo reference r the current host declares that it is no longer interested in the

data of r. As a result, unless other hosts have persisted r, the memory occupied

by the data of r may be reclaimed without negatively impacting performance. Just

like persist, invoking unpersist immediately returns a SiloRef representing a

silo which may not be cached in memory. However, if another host has persisted

r, the silo’s data remains cached in memory. In the context of future work, we

plan to investigate techniques for inferring invocations of unpersist in order to

automatically and efficiently manage silo memory (see Section 7).

2.4.1 Creating silos

As mentioned earlier, besides a type definition for SiloRef[T], our framework also

provides a companion singleton object. The singleton object provides a variety of

factory methods for obtaining silo references referring to silos populated with some

initial data:

object SiloRef {

def populate[T](host: Host, value: T): SiloRef[T] = ...

def fromTextFile(host: Host, file: File): SiloRef[List[String]] = ...

def fromFun[T](host: Host, s: Spore[Unit, T]): SiloRef[T] = ...

def fromLineage[T](host: Host, s: SiloRef[T]): SiloRef[T] = ...

}

Each of the factory methods has a host parameter that specifies the target host

(address/port) on which to create the silo. Note that the fromFun method takes a

spore closure as an argument to make sure it can be serialized and sent to host.

In each case, the returned SiloRef[T] contains its host as well as a host-unique

identifier. The fromLineage method is particularly interesting as it creates a copy

of a previously existing silo based on the lineage of a silo reference s. Note that

only the silo reference is necessary for this operation to successfully complete; the

silo is not required to be materialized.

2.4.2 Type polymorphism and Silos/SiloRefs

An important property of silos is that they are polymorphic in the type of data that

they hold (Silo[T]). Importantly, silos may not only store collections; silos are poly-

morphic in the type of their entire dataset. For example, a silo might contain a Red–

Black tree with elements of type Person for some ADT Person, ordered by one of the

fields of the Person type. Another silo might contain a completely different collection

7 Our system also provides a cache operation which abbreviates this pattern: semantically, ref.cache()
is equivalent to ref.persist().map(x => ()).send().

https://doi.org/10.1017/S0956796818000035 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000035

14 P. Haller et al.

type, say, a linked list. This type polymorphism enables optimizing silos according

to their data access patterns. Given that different data types may have specialized

operations (e.g., a tree map could provide a range projection), the key to enabling this

type polymorphism is the fact that a spore, sent to a silo, may apply arbitrary func-

tions to the silo’s data. Thus, the SiloRef API itself is not limited to providing just a

fixed set of built-in operations (in contrast to RDDs in Apache Spark, for example).

2.5 Limitations

Although fairly small and simple, the introduced programming model is quite

flexible, and we have used it to implement a variety of examples and abstractions

from the literature (see Section 3). However, as presented, the function passing model

also has important limitations. Two principal limitations pertain to distributed data

and distributed behavior:

• Data maintained in silos is immutable. As a result, computational patterns

based on mutating distributed state cannot be expressed in the model. An

example would be (potentially long-lived) distributed graph data that is

asynchronously updated. Another example would be mutable, distributed data

structures such as CRDTs (Shapiro et al., 2011).

• A computation cannot spawn independent activities. While it is possible to

create spore closures and send them to remote hosts for execution, a spore is

applied only once, to materialize (the contents of) a silo. However, there is

no way to create a behavior that remains active in some way across multiple

interactions, like actors (Agha, 1986) or processes in the π-calculus (Milner

et al., 1992).

3 Examples

The introduced primitives enable expressing surprisingly intricate computational

patterns.

Higher-order operations such as variants of map, reduce, and join, operating on

collections of data partitions, distributed across a set of hosts, are required when im-

plementing abstractions like Spark’s distributed collections (Zaharia et al., 2010). Sec-

tion 3.1 demonstrates the implementation of some such operations in terms of silos.

Section 3.2 shows an extension of the higher-order operations of Section 3.1,

providing a distributed collections abstraction reminiscent of Spark’s RDDs. Finally,

Section 3.3 shows an implementation of k-means clustering that demonstrates

computational patterns supported by the MBrace framework (Dzik et al., 2013),

a programming system closely related to the function passing model.

3.1 Higher-order operations

Join. Suppose we are given two silos with the following types:

val silo1: SiloRef[List[A]]

val silo2: SiloRef[List[B]]

https://doi.org/10.1017/S0956796818000035 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000035

Lineage-based distributed computation 15

as well as two hash functions computing hashes (of type K) for elements of type A

and type B, respectively:

val hashA: A => K = ...

val hashB: B => K = ...

The goal is to compute the hash-join of silo1 and silo2 using a higher-order

operation hashJoin:

def hashJoin[A, B, K](s1: SiloRef[List[A]], s2: SiloRef[List[B]], f: A => K, g: B => K)

: SiloRef[List[(K, (A, B))]] = ???

To implement hashJoin in terms of silos, the types of the two silos first have to be

made equal, through initial apply invocations:

val s12: SiloRef[List[(K, Option[A], Option[B])]] =

s1.apply(spore { l1 =>

SiloRef.populate(currentHost, l1.map(x => (f(x), Some(x), None)))

})

val s22: SiloRef[List[(K, Option[A], Option[B])]] =

s2.apply(spore { l2 =>

SiloRef.populate(currentHost, l2.map(x => (g(x), None, Some(x))))

})

Then, we can use apply to create a new silo that contains the elements of both silo

s12 and silo s22:8

val combined = s12.apply(spore {

val locals22 = s22

(triples1: List[(K, Option[A], Option[B])]) =>

locals22.apply(spore {

val localTriples1 = triples1

(triples2: List[(K, Option[A], Option[B])]) =>

SiloRef.populate(currentHost, localTriples1 ++ triples2)

})

})

The combined silo contains triples of type (K, Option[A], Option[B]). Using

an additional apply, the collection can be sorted by key, and adjacent triples be

combined, yielding a SiloRef[List[(K, (A, B))]] as required.9

Partitioning and groupByKey. A groupByKey operation on a group of silos contain-

ing collections needs to create multiple result silos, on each host, with ranges of keys

supposed to be shipped to destination hosts. These destination hosts are determined

using a partitioning function. Our goal, concretely:

val groupedSilos = groupByKey(silos)

Furthermore, we assume that silos.size = N where N is the number of hosts,

with hosts h1, h2, etc. We assume each silo contains an unordered collection of

key-value pairs (a multi-map). Then, groupByKey can be implemented as follows:

8 The expression localTriples1 ++ triples2 denotes the concatenation of lists localTriples1 and
triples2.

9 Note that this way of merging triples would not be correct if multiple A or B values could have the
same hash value. Using more sophisticated hash algorithms based on hash tables could be supported
as well.

https://doi.org/10.1017/S0956796818000035 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000035

16 P. Haller et al.

• Each host hi applies a partitioning function (example: hash(key) mod N) to

the key-value pairs in its silo, yielding N (local) silos.

• Using apply, each pair of silos containing keys of the same range can be

combined and materialized on the destination host.

3.2 Distributed collections

To show that the function passing model is able to serve as a substrate upon which

to build different sorts of data-centric distributed frameworks, we have implemented

a miniaturized example system that is inspired by Spark’s Resilient Distributed

Dataset (RDD).

RDDs provide an API for executing data-parallel operations on distributed data.

Our simplified RDD implementation provides a collections abstraction distributed

using a group of silos. We have implemented some of the operations of Spark’s

RDD, such as map, reduce, groupBy, and join, in terms of the primitives of the

function passing model.

Virtually all methods on RDDs are implemented using the apply method of

SiloRef. RDD methods like flatMap or filter that do not require communication

across silos are implemented using simple spores, which call the corresponding

methods of the underlying Scala collections; each spore directly creates its result

silo using the populate primitive. (Several examples shown earlier make use of this

pattern.) In contrast, methods combining multiple silos, such as join, require nested

invocations of the apply method, similar to the example shown in Figure 4.

Below, we show a simple example using our RDD abstraction. The example

processes two documents, content and lorem, which are represented as RDDs

containing lists of strings:

val content: RDD[String, List[String]] = ...

val lorem: RDD[String, List[String]] = ...

val contentWord = content.flatMap(line => {

line.split(’ ’).toList

}).map(word => (word.length, word))

val loremWord = lorem.flatMap(line => {

line.split(’ ’).toList

}).map(word => (word.length, word))

val res: Map[Int, Set[String]] =

contentWord.join[Set, Map](loremWord).collectMap()

In this example, the closure passed to RDD’s flatMap method invoked on

contentWord and loremWord splits each line into a list of words, and flattens

everything as a single list. Each word is then mapped to a tuple containing its length

and the word. Finally, we do an inner join, which in turn associates each length

to the set of words of the same length, removing duplicate words in the process.

https://doi.org/10.1017/S0956796818000035 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000035

Lineage-based distributed computation 17

Finally, we collect the final result in a Map using the collectMap method on RDDs.

Several other more detailed example programs using RDDs on top of the function

passing model are available online.10

3.3 K-means clustering

In order to illustrate how the function passing model supports computation patterns

provided by the closely related MBrace (Dzik et al., 2013) framework, we ported an

example implementation of k-means clustering.11 Below, we show an excerpt of the

implementation. (See Appendix A.2 for a diagram illustrating various Scala features

used in the listing.) Our implementation of distributed k-means clustering using the

function passing model is an almost identical port of the version using MBrace

written in F�. K-means is an algorithm to categorize data points across k different

clusters. It starts with the centroids of the k clusters.

def kMeansIterate(partitionedPoints: Seq[SiloRef[Array[Point]]],

centroids: Array[Point],

iteration: Int): Array[Point] = {

val clusterParts =

partitionedPoints.map(silo => silo.apply(

spore {

val lCentroids = centroids // spore header

(points: Array[Point]) =>

SiloRef.populate(currentHost, kmeansLocal(points, lCentroids))

}

).send())

val newCentroids =

Await.result(Future.sequence(clusterParts).map(seq => {

seq.reduce((x, y) => x ++ y)

.groupBy(x => x._1)

.toSeq

.sortBy(x => x._1)

.map(x => x._2)

.map(clp => clp.map(x => x._2).toArray.unzip)

.map({ case (ns, points) => (ns.sum, sumPoints(points)) })

.map({ case (n, sum) => divPoint(sum, n) })

}), Duration.Inf).toArray

val diff =

newCentroids.zip(centroids).map({ case (p1, p2) => dist(p1, p2) }).max

if (diff < epsilon) // check if converged, else iterate again

newCentroids

else

kMeansIterate(partitionedPoints, newCentroids, iteration + 1)

}

The algorithm proceeds in two steps. It first assigns data points to the closest

cluster. Then, it assigns to each cluster a new centroid by computing the mean of

10 See the Git repository at https://github.com/heathermiller/f-p/, branch jfp.
11 See the MBrace website, http://mbrace.io/starterkit/HandsOnTutorial.FSharp/examples/

200-kmeans-clustering-example.html.

https://doi.org/10.1017/S0956796818000035 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000035

18 P. Haller et al.

Fig. 6. Abstract syntax of core language. Integer operators are represented using

⊕ ∈ {+, -, *, /}.

all points assigned to the cluster.12 It stops when the centroids stop changing; if

this convergence condition has not been met, the algorithm is called recursively

with the updated set of centroids. In the distributed version of k-means clustering,

we start with a master node that partitions the points into silos. In each iteration,

apply is called on the SiloRef that results in a spore function being applied to the

data within the corresponding silo. The spore captures the centroids of the current

iteration and uses them to compute the new cluster for its local set of points (using

the kmeansLocal function). The results are then sent back to the master node to

compute the new centroids, and to verify the algorithm’s convergence condition.

4 Formalization

We formalize our programming model in the context of a typed lambda calculus.

Figure 6 shows the abstract syntax of our core language. Besides standard terms,

12 Simply for the sake of illustration we assume no node failures in this computation.

https://doi.org/10.1017/S0956796818000035 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000035

Lineage-based distributed computation 19

Fig. 7. Types of core language.

the language includes terms related to (a) spores, (b) silos, and (c) futures. The

spore term creates a new spore. It contains a list of variable definitions, the spore

header, and a closure which may only refer to its parameter and variables in the

spore header. The populate term initializes a new silo on a given host with a given

value. The apply term creates a lineage of silo transformations represented as a silo

reference (see below). The send term forces the materialization of the argument silo.

The send expression returns a future which is asynchronously completed with the

silo’s value. The await term waits for the completion of its argument future and

returns the future’s value. Decentralized identifiers ι are used to refer to futures and

to identify silos via their lineages (each element in a lineage carries a decentralized

identifier).

Values in our language are as expected: besides abstractions and integer literals

they include spore values, decentralized identifiers, and silo references. Decentralized

identifiers and silo references are not part of the “surface syntax” of our language;

they are only introduced by evaluation (see Section 4.1). Silo reference values have

the form Ref(l, h) where l is a lineage and h is a host. Lineages are values of

a simple datatype with constructors Mat and Applied. The constructors include all

information required for materializing a silo with the result of applying the described

transformations. We defer a detailed explanation of the transformations described

by a lineage to the following Section 4.1.

In addition to standard function types and Int and Unit types, the language

has types for spores, futures, silo references, and hosts (see Figure 7). A spore type

T ⇒ T ′ { type C = T } includes the types T of the variables declared in the header

of the spore.

4.1 Operational semantics

In the following, we present a small-step operational semantics of the introduced

core language. The semantics is clearly stratified into a local (sequential) layer

and a distributed (concurrent) layer. Importantly, this means our programming

model can benefit from existing reasoning techniques for sequential programs.

Program transformations that are correct for sequential programs are also correct

for distributed programs. Our programming model shares this property with some

existing approaches (Peyton Jones et al., 1996).

https://doi.org/10.1017/S0956796818000035 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000035

20 P. Haller et al.

Fig. 8. Evaluation contexts.

Fig. 9. Local reduction.

The semantics is based on two reduction relations for (a) local reduction of

terms and (b) distributed reduction of sets of hosts. The reduction relations use the

definition of evaluation contexts shown in Figure 8. Evaluation contexts capture the

notion of the “next subterm to be evaluated.” Following a standard approach (Pierce,

2002), we write E[t] for the term obtained by replacing the hole in evaluation context

E with term t.

Figure 9 shows the rules for local reduction. The local reduction relation has

the form E[t] | σ →h E[t′] | σ′ with stores σ and σ′. Stores are required for the

dynamic allocation of silos. A store σ is a partial function mapping decentralized

identifiers ι to values v. The annotation with host h is used for creating decentralized

identifiers ι = (h, i) for lineages. Rule R-IntOp reduces integer operator applications;

function I interprets the operator symbol ⊕, mapping it to an actual operation on

integer values. (The definition of I is trivial and standard, and thus omitted.) Rule

R-AppAbs is completely standard. Analogous to rule R-AppAbs, rule R-AppSpore

describes the application of a spore value to an argument value. Rule R-Await

reduces await(ι) to v if future ι is already completed with v in store σ.

Rule R-Apply creates a lineage using the constructor Applied . The new lineage

has a fresh identifier (h, i), which uniquely identifies the corresponding (logical) silo.

The spore value p is stored in the new lineage; this enables a materialization of the

silo identified by (h, i) using parent lineage l and spore p.

https://doi.org/10.1017/S0956796818000035 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000035

Lineage-based distributed computation 21

Fig. 10. Messages.

Distributed reduction. The distributed reduction rules use helper functions host, id,

and parent, which are defined as follows:

Definition 4.1 (Host identifier) The host identifier of a silo reference.

host(Ref(l, h)) := h

Definition 4.2 (Lineage identifier) The identifier of a lineage.

id(l) :=

{
ι if l = Mat(ι)

ι if l = Applied(ι, ,)

Definition 4.3 (Lineage parent) The parent of a lineage.

parent(l) :=
{
l′ if l = Applied(, l′,)

The distributed reduction relation has the form H | M � H ′ | M ′, where H,H ′

are sets of hosts and M,M ′ are multisets of messages. A host is a machine that

executes a computation, and that can store silos in its local memory. In our formal

model, a host is represented as a pair (t, σ)h consisting of a term t which is the

executed computation, and a partial function σ which is the local store. Note that

each host has a unique host identifier; for instance, the host identifier of host (t, σ)h

is h. When it is clear from the context, we use the terms “host” and “host identifier”

interchangeably. The multisets M,M ′ model message sends that are “in flight;” a

message send h ← m expresses the sending of message m to host h. If h ← m ∈ M

then message m has not yet been delivered to h (the message is still in transit).

As shown in Figure 10, there are two kinds of messages. A message of the form

Req(h, r, ι) requests the value of silo r to be sent to host h for materialization of

identifier ι. A message of the form Res(ι, v) represents the corresponding response,

containing the identifier ι to be materialized using value v.

Figure 11 shows the distributed reduction rules. Rule R-Local reduces a host h

chosen non-deterministically from the set of hosts (the rule “schedules” host h for

execution). Term t of host h is reduced according to the local reduction rules. Thus,

no communication is taking place; this means that the multiset of in-flight messages

M remains unchanged.

Rule R-Send reduces a term send(r) on host h. The reduction initiates the

materialization of silo r by sending a message m = Req(h, r, id(l)) to the host of r,

h′. Thus, the message send h′ ← m is added to the resulting multiset of in-flight

messages M ′. The send term itself is reduced to the identifier of r’s lineage, id(l).

Rule R-Populate asynchronously populates a new silo on host h′ with value v by

sending message Res(ι, v) to h′. Note that the fresh decentralized identifier ι = (h, i)

is already created on host h, which does not require any communication. The new

lineage l is materialized under identifier ι, represented using the lineage value Mat(ι).

Rule R-Respond reduces a term respond(h′, ι, v) by sending a response message

Res(ι, v) to h′.

https://doi.org/10.1017/S0956796818000035 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000035

22 P. Haller et al.

Fig. 11. Distributed reduction.

Rule R-Process models the processing of a message m taken from the multiset

M of in-flight messages. Note that this rule is only enabled if h is suspended, waiting

for a silo ι to be materialized in local store σ. A host is suspended if its current

term has the form E[await(ι)] and ι /∈ dom(σ) (there is no mapping for ι in store

σ). The premise ι /∈ dom(σ) is important, since otherwise rule R-Local would also

be enabled.

Rule R-Process-Val allows a host h to process a message when the host’s term

has been reduced to a value v. Note that host h may have silos, stored in σ, that

are still required by other hosts. Therefore, hosts with terminated computations

remain available to respond to messages. In rule R-Process-Val, the message to be

processed is taken non-deterministically from the multiset M of in-flight messages

(analogous to other rules, this reflects the non-deterministic order in which messages

are received). Processing message m results in a term t to be evaluated next by host

h, a set of produced messages M ′′, and the new state σ′ of h. Since h is supposed

to evaluate t next, t replaces v in the resulting host configuration. Note that term t

may be of a different type than v. Importantly, this does not break soundness: in

the resulting configuration (t, σ′)h it is sufficient for term t to be well-typed for some

type T . In contrast, local reduction of a term does not permit changing a term’s

type (see Theorem 5.2 in Section 5.1 as well as its proof in Appendix B.2.)

The actual message processing logic is factored out into function process that we

discuss in the following. In general, processing a message m on host h in store σ

results in (a) a term t to be evaluated by h, (b) a set of new in-flight messages M ′,

and (c) an updated store σ′.

https://doi.org/10.1017/S0956796818000035 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000035

Lineage-based distributed computation 23

Fig. 12. Message processing.

Definition 4.4 (Message processing) The function process ∈ H×m×S ⇀ t×P(H×
m)× S handles the processing of a message resulting in a term to be evaluated, a set

of messages, and an updated store; here, S =H×� ⇀ v is the type of a store. The

process function is defined in Figure 12.

The process function must handle the two kinds of messages, Req(h′, r, ι) and

Res(ι, v). Processing a message of the form Res(ι, v) means that a host is responding

with the value v of a silo whose materialization has been requested by the current

host h to complete its future ι. Thus, it suffices to create an updated store σ′, which

maps ι to v (rule Proc-Res).

Processing a message of the form Req(h′, r, ι) means that host h′ requests the

value of silo r in order to complete a future with identifier ι. In the absence of

caching/persisting, this requires the receiver of the request to materialize the silo

whose value is requested. Section 4.4 introduces a refinement of these rules to enable

caching, thereby avoiding repeated materializations of the same silo.

The requested silo r = Ref(l, h) is materialized using its lineage l. Rule Proc-

ReqParent handles the case where r’s parent id(l′) is not yet materialized (l′ is the

lineage of r’s parent). In this case, process returns the term send(Ref(l′, h)); this

causes host h to request the materialization of the parent silo Ref(l′, h) before any

other message is processed. Note that a silo is always materialized on the same host

as its parent silo; therefore, the hosts of r and its parent are guaranteed to be the

same. The original request Req(h′, r, ι) is included in the new in-flight messages M,

so that it is eventually handled, namely when r’s parent is materialized.

Rules Proc-ReqMat1 and Proc-ReqMat2 handle the case where r does not have

a parent. In the case of Proc-ReqMat1, the materialization of r is just the value v

of its materialized lineage Mat(ι′); thus, a response Res(ι, v) is sent to host h′. In the

case of Proc-ReqMat2, lineage Mat(ι′) is not yet materialized (i.e., host h is still

https://doi.org/10.1017/S0956796818000035 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000035

24 P. Haller et al.

Fig. 13. Type assignment.

waiting for a message Res(ι′, v′)); thus, the original request Req(h′, r, ι) sent to h is

re-sent, to be processed again later.

Rule Proc-ReqApply is only enabled when the requested silo r can be materialized

using its lineage l; in particular, r’s parent must be materialized. In this case, the

lineage of r begins with an Applied constructor. The materialization of r consists

of the result of applying the spore p provided by the lineage to the value v of

the parent silo. Evaluating the application p v requires multiple reduction steps in

general. Therefore, rule Proc-ReqApply returns a term containing the application

p v for evaluation by host h. However, note that p v reduces to a silo reference.

Therefore, the value of silo p v is obtained by requesting its materialization (using

send(p v)) and waiting for the completion of the returned future (using await).

Finally, when the future is resolved, a response Res(ι, v′) (for some value v′) is sent

to host h′ by evaluating the respond term.

4.2 Type assignment

Type assignment is based on a judgment of the form Γ; Σ 	 t : T that assigns

term t type T . Γ is a type environment which maps variables x to types T ; Σ is a

store typing which maps identifiers ι to types T . Figure 13 shows type assignment

rules. Rules T-Var, T-Abs, and T-App correspond to a standard typed lambda

calculus (Pierce, 2002). Rules T-Int and T-IntOp assign types to integer literals

and applications of integer operators, respectively. Rule T-Spore assigns a type to

https://doi.org/10.1017/S0956796818000035 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000035

Lineage-based distributed computation 25

Fig. 14. Serializable types.

spore literals. Importantly, the body of the spore’s closure, t, must be well-typed

in a type environment containing only the closure parameter x and the variables x

in the spore’s header, as well as an empty store typing. Furthermore, the types of

captured variables as well as the result type T ′ must be serializable. The predicate

serializable is defined in Figure 14. These constraints ensure that spore values are

always independent of the environment of the creating host. This independence is

expressed by the following theorem:

Theorem 4.1 (Serializable Values) If Γ; Σ 	 v : T and serializable(T) then ∅; Σ 	
v : T .

Proof

By induction on the derivation of Γ; Σ 	 v : T . See Appendix B.1. �

Rule T-AppSpore is analogous to rule T-App. Rules T-Populate and T-Apply

are straightforward; note that apply is polymorphic in the types of the captured

variables of its spore argument type. Rules T-Send and T-Await are entirely

unsurprising. Rules T-Ident and T-SiloRef are the only rules that use the store

typing Σ. The type of an identifier ι has the form Future[T] where type T is looked

up in the store typing. Rule T-SiloRef is analogous; additionally, it requires the silo

reference Ref(l, h) to be well-formed in Σ (see below).

4.3 Well-formed configurations

Figure 15 shows the rules for well-formed configurations. These rules are essen-

tial for establishing subject reduction (see Section 5.1). Rules WF-Store1-3 are

straightforward. Rule WF-Lin1 requires Σ to be defined for the identifier of a

materialized lineage Mat(ι). Rule WF-Lin2 requires the types of ι and id(l) given

by the store typing Σ to be consistent with the corresponding type of spore p.

Parent lineage l must be well-formed in Σ. Rule WF-Ref extends well-formedness of

lineages to silo references. Rules WF-Res and WF-Req specify well-formedness of

messages in Σ. The remaining rules lift well-formedness to host configurations (WF-

HostConfig), sets of hosts (WF-Host1-2), multisets of messages (WF-Messages-

Emp, WF-Messages), and configurations (WF-Config), respectively.

4.4 Persist and unpersist

As explained in Section 2.4, silos may be cached in memory to avoid repeated

materialization, which may be expensive for large data sets. The design is inspired

by the popular Spark (Zaharia et al., 2010) data processing system. Essentially, a

silo r may be persisted using the persist primitive: the call persist(r) immediately

https://doi.org/10.1017/S0956796818000035 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000035

26 P. Haller et al.

Fig. 15. Well-formedness.

returns a new silo reference r′ whose value, when materialized, is equal to the value

of r. The lineage of r′ is equal to that of r except for one additional element: if l is

the lineage of silo r, then the lineage of r′ is of the form l′ = Persist(ι, l, f). As for the

Applied constructor ι is the identifier of lineage l′. (As before, ι = (h, i) implies that

host h has called persist.) The last argument is a binary operator f ∈ {· ∪ ·, · \ ·},
which toggles between the behavior of persist and unpersist. If f = · ∪ · then the

lineage Persist(ι, l, f) implements the behavior of persist; otherwise, the behavior

of unpersist. The extensions to syntax, lineages, and evaluation contexts are

summarized in Figure 16.

4.4.1 Operational semantics

In order to distinguish between silos that have been persisted and those that have

not, we extend stores σ to map identifiers ι not just to their associated value, but

also to a so-called “persist set” P ; if σ(ι) = (v, P) then P contains all hosts that

have persisted silo ι. Stores have thus the following extended type:

Definition 4.5 (Store) σ ∈ H×� ⇀ v ×P(H).

As a next step, we extend the local reduction relation, as shown in Figure 17.

First, we introduce the reduction rules R-Persist and R-Unpersist to enable the

creation of Persist lineages. Second, we adjust reduction rule R-Await to use the

extended store.

The rules for message processing are affected most. Intuitively, the reason is that

the fact whether a silo is (re-)materialized is determined in the context of message

processing. Figure 18 shows new or extended rules for message processing. Rule

Proc-Res is simply adjusted to the new store definition. Rule Proc-ReqPersist is

new; the rule enables processing requests Req(h′, r, ι) in cases where r has a Persist

https://doi.org/10.1017/S0956796818000035 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000035

Lineage-based distributed computation 27

Fig. 16. Extensions to syntax, lineages, and evaluation contexts for persist/unpersist. f

is a binary operator with f ∈ {· ∪ ·, · \ ·}.

Fig. 17. Extension to local reduction.

lineage and r’s parent is materialized (otherwise, the above Proc-ReqParent rule

would be enabled). Importantly, a silo with lineage Persist(ι′, l′, �) has the same

value as the parent silo which has identifier id(l′). Therefore, rule Proc-ReqPersist

updates the store to map the identifier of the persisted silo, ι′, to the value of id(l′)

in σ. In addition, a persist set P ′ is computed based on (1) the persist set P of the

parent silo, (2) the host h′′ that created the Persist lineage, and (3) the operator �

provided in the Persist lineage. The latter may either be set union or set difference;

accordingly, the persisting host h′′ is either added or removed from the persist set

P of the parent of the silo to-be-persisted. In case h′′ is added to the persist set

(because host h′′ called persist rather than unpersist), it means that the persist

set P ′ is non-empty. As a result, the mapping for ι′ remains resident in the store,

avoiding re-materialization, as the following rules show.

Rule Proc-Req is also new. The rule is enabled when the requested silo r has

already been materialized, i.e., σ(id(l)) = (v, P). In this case, a response Res(ι, v) can

directly be sent back to the requesting host h′. Importantly, the rule also checks

whether the silo has been persisted, by examining its persist set P in store σ.

Using the consume function, the mapping for identifier id(l) is removed from the

updated store σ′ if the persist set P is empty. An empty persist set indicates that

the corresponding silo has not been persisted. Concretely, the consume function is

defined as follows:

Definition 4.6 (Consume silo) Consume silo referenced by ι with persist set P in

store σ consume(ι, P , σ) :=

{
σ − ι if P = ∅
σ otherwise

https://doi.org/10.1017/S0956796818000035 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000035

28 P. Haller et al.

Fig. 18. Extensions to message processing.

Fig. 19. Extension to type assignment and well-formedness.

Rule Proc-ReqApply is extended to consume the parent silo in case it has not

been persisted.

Figure 19 shows the required extensions to type assignment and well-formedness.

The type rules T-Persist and T-Unpersist are straightforward. Rule WF-Store2

is simply adjusted to the extended store definition. Rule WF-Lin3 defines well-

formedness for Persist lineages: the store typings for ι and id(l) must be equal and

parent lineage l must be well-formed.

5 Correctness properties

5.1 Subject reduction

This section establishes a subject reduction theorem for the presented core language.

The complete proof is provided in the appendix; here, we restrict ourselves to

summarizing the main results.

Lemma 5.1 (Substitution) If Γ, x : T ′; Σ 	 t : T and Γ;Σ 	 v : T ′ then Γ;Σ 	 [x �→
v]t : T .

Proof

By induction on the derivation of Γ, x : T ′; Σ 	 t : T . �

https://doi.org/10.1017/S0956796818000035 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000035

Lineage-based distributed computation 29

Theorem 5.2 (Subject Reduction) 1. If Γ; Σ 	 t : T , Σ 	 σ, and t | σ →h t′ | σ′
then Γ;Σ′ 	 t′ : T and Σ′ 	 σ′ for some Σ′ ⊇ Σ.

2. If Σ 	 H | M and H | M � H ′ | M ′ then Σ′ 	 H ′ | M ′ for some Σ′ ⊇ Σ.

Proof
Part 1: by induction on the derivation of t | σ →h t′ | σ′. Part 2: by induction on the

derivation of H | M � H ′ | M ′. See Appendix B.2 for the complete proof. �

5.2 Progress

This section formulates progress properties. The main Theorem 5.5 states that

materialization requests are satisfied after a finite number of reduction steps in

so-called “responsive configurations.”

In the following, we assume a fair scheduling property that ensures that in a well-

formed configuration H | M, each message h ← m ∈ M is eventually received by

host h. Fair scheduling is also assumed in other models of distributed computing like

actors (Agha, 1986; Agha et al., 1997). Formally, fair scheduling is defined as follows:

Definition 5.1 (Fair Scheduling) Let Σ 	 H | M and h← m ∈M where Σ 	 m.

Then H | M �∗ H ′ | M ′ � H ′′ | M ′′ after a finite number of reduction steps,

and H ′ | M ′ � H ′′ | M ′′ by rule R-Process or R-Process-Val such that M ′ =

Mold � {h← m}, (t, σ)h ∈ H ′, process(h, m, σ) = (t′,Mnew, σ
′), and M ′′ = Mold �Mnew .

Although our focus is the establishment of desirable progress properties for

distributed reduction, it is necessary to consider the following strong normalization

property of single-host reductions. For this, we consider the reduction relation

� defined as the subset of the reduction relation � excluding reduction rules

R-Process and R-Process-Val.

Lemma 5.3 (Single-Host Strong Normalization) Let Σ 	 H | M where H = {(t, σ)h}
∪H ′. Then H | M �∗ {(t′, σ′)h}∪H ′ | M ′ after a finite number of reduction steps and

either t′ is a value or t′ = E[await(ι)].

Note that in the above reduction, only a single host h is reduced. Furthermore,

the set of in-flight messages may change, e.g., by applying rule R-Send. A proof

of Lemma 5.3 is outside the scope of this paper. However, our core language is,

fundamentally, not more expressive than the simply typed lambda calculus, for

which strong normalization holds.

As a prerequisite for the establishment of our main progress theorem, we introduce

a small amount of bookkeeping into the reduction relations. The aim is to keep track

of silo references created during reduction. Importantly, this additional bookkeeping

information does not introduce any change in the semantic behavior–the information

can be erased without affecting the run-time semantics in any way.

The augmented local reduction relation has the form E[t] | σ →h E[t′] | σ′ | R
where R is either the empty set or a singleton set containing the created silo reference.

Rule R-Apply is the only rule resulting in a non-empty set of created references:

R-Apply

r = Ref(l, h′) l′ = Applied((h, i), l, p) i fresh r′ = Ref(l′, h′)

E[apply(r, p)] | σ →h E[r′] | σ | {r′}

https://doi.org/10.1017/S0956796818000035 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000035

30 P. Haller et al.

The augmented distributed reduction relation has the form H | M | R �
H ′ | M ′ | R′ where R is the set of references already existing before performing

the reduction step and R′ is the set of references existing after performing the

reduction step. Rules R-Local and R-Populate are the only rules resulting in a set

of references R′ where R′ �= R is possible:

R-Local

t | σ →h t′ | σ′ | R′

{(t, σ)h} ∪H | M | R � {(t′, σ′)h} ∪H | M | R ∪ R′

R-Populate

ι = (h, i) i fresh l = Mat(ι) M ′ = M � {h′ ← Res(ι, v)} r′ = Ref(l, h′)

{(E[populate(h′, v)], σ)h} ∪H | M | R � {(E[r′], σ)h} ∪H | M ′ | R ∪ {r′}

Finally, the extension of well-formed configurations is straightforward:

WF-Config

Σ 	 H Σ 	M Σ 	 R

Σ 	 H | M | R

WF-Refs

Σ 	 r Σ 	 R

Σ 	 {r} ∪ R

Using the augmented reduction rules, we introduce a responsiveness property,

responsive configurations. Informally, in a responsive configuration requesting (the

materialization of) any previously created silo reference results in a corresponding

response after a finite number of reduction steps. The property is defined as follows:

Definition 5.2 (Responsive Configuration) A configuration Σ 	 H | M | R is respon-

sive, written Responsive(H,M,R), iff

∀r = Ref(l, h) ∈ R. (m = Req(h′, r, ι) ∧ Σ 	 m) =⇒ H | M � {h ← m} | R �∗
H ′ | M ′ � {h′ ← Res(ι, v)} | R′ after a finite number of reduction steps.

The following lemma ensures that the ability to materialize a silo after a finite

number of reduction steps is preserved under reduction.

Lemma 5.4 (Responsiveness) Let Σ 	 H | M | R ∪ R̂ and Responsive(H,M, R̂).

If H | M | R ∪ R̂ � H ′ | M ′ | R′ ∪ R̂ then Responsive(H ′,M ′, R̂).

Proof Sketch

By induction on the derivation of H | M | R ∪ R̂ � H ′ | M ′ | R′ ∪ R̂ with case

analysis of the last applied rule, using Def. 5.1 and Lemma 5.3. �

We are now ready to introduce the main progress theorem. Theorem 5.5 states

that finite materialization of silos is a universal property of our core language.

Theorem 5.5 (Finite Materialization) Let Σ 	 H | M | R such that Responsive(H,

M,R).

If H | M | R � H ′ | M ′ | R′ then Responsive(H ′,M ′, R′).

Proof

See Appendix B.3. �

https://doi.org/10.1017/S0956796818000035 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000035

Lineage-based distributed computation 31

6 Related work

Alice ML (Rossberg et al., 2004) is an extension of Standard ML that adds a

number of important features for distributed programming such as futures and

proxies. The design leading up to the function passing model has incorporated many

similar ideas, such as type-safe, generic and platform-independent pickling. In Alice,

functions intend to be mobile. Only those functions which capture (either directly

or indirectly) local resources remain stationary. In the case of functions that must

remain stationary, it is possible to send proxies, mobile wrappers for functions.

Sending a proxy will not transfer the wrapped function; instead, when a proxy

function is applied, the call is forwarded by the system to the original site as a

remote invocation (pickling arguments and result appropriately). In our function

passing model, however, functions are not wrapped in proxies but sent directly.

Thus, calling a received function will not lead to remote invocations.

Cloud Haskell (Epstein et al., 2011) leverages guaranteed-serializable, static clo-

sures for a message-passing communication model inspired by Erlang. In con-

trast, in our model spores are sent between passive, persistent silos. Moreover,

the coordination of concurrent activity is based on futures, instead of message

passing. Closures and continuations in Termite Scheme (Germain, 2006) are always

serializable; references to non-serializable objects (like open files) are automatically

wrapped in processes that are serialized as their process ID. Similar to Cloud Haskell,

Termite is inspired by Erlang. In contrast to Termite, the function passing model

is statically typed, enabling advanced type-based optimizations. In non-process-

oriented models, parallel closures (Matsakis, 2012) and RiverTrail (Herhut et al.,

2013) address important safety issues of closures in a concurrent setting. However,

RiverTrail currently does not support capturing variables in closures, which is

critical for the apply combinator in the function passing model. In contrast to

parallel closures, spores do not require a type system extension in Scala.

Acute ML (Sewell et al., 2005) is a dialect of ML that proposes numerous

primitives for distributed programming, such as type-safe serialization, dynamic

linking and rebinding, and versioning. The function passing model, in contrast,

is based on spores, which ship with their serialized environment or they fail to

compile, obviating the need for dynamic rebinding. HashCaml (Billings et al., 2006)

is a practical evolution of Acute ML’s ideas in the form of an extension to the OCaml

bytecode compiler, which focuses on type-safe serialization and providing globally

meaningful type names. In contrast, function passing is merely a programming

model, which does not require extensions to the Scala compiler.

ML5 (Murphy VII et al., 2007) provides mobile closures verified not to use

resources not present on machines where they are applied. This property is enforced

transitively (for all values reachable from captured values), which is stronger

than what plain spores provide. However, type constraints allow spores to require

properties not limited to mobility. Transitive properties are supported either using

type constraints based on type classes which enforce a transitive property or by

integrating with type systems that enforce transitive properties. Unlike ML5, spores

do not require a type system extension. Further, the function passing model sits on

https://doi.org/10.1017/S0956796818000035 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000035

32 P. Haller et al.

top of these primitives to provide a full programming model for distribution, which

also integrates spores and type-safe pickling.

MapReduce (Dean & Ghemawat, 2008), Dryad (Isard et al., 2007), and Apache

Spark (Zaharia et al., 2010) are distributed systems for large-scale data processing,

building on concepts from functional programming, such as higher-order functions.

Ciel (Murray et al., 2011) is an execution engine for distributed data-flow programs

which, like the function passing model, supports dynamic task dependencies and

data-dependent control flow, thereby going beyond the capabilities of MapReduce

and Dryad. Like Spark, MapReduce, and Dryad, Ciel supports transparent scaling,

and fault tolerance is transparent. Our system shares several aspects of its design with

Spark, such as lazy materialization of datasets, and serialization of computations,

including closures, for remote shipping. In contrast to Spark’s RDDs, silos in

the function passing model are lower-level abstractions without transparent fault

tolerance or transparent scaling. Instead, the goal of our programming model is

to provide a foundation on top of which higher-level abstractions for distributed

programming, like RDDs, can be built. An important focus of our work is the precise

and detailed formalization of lineages and silos as a first step toward formal models

of distributed systems like Spark. DryadLINQ (Yu et al., 2008) extends Dryad with

a functional language, LINQ, for expressing transformations on distributed datasets

that enables sophisticated optimizations, including those typically employed by

databases. Like the function passing model, DryadLINQ enables the use of function

closures within distributed computations. DryadLINQ uses dynamic code generation

to ensure the serializability of these closures: captured variables are either eliminated

by partial evaluation or serialized as resources shipped to machines in the cluster

at runtime. In our system, serializability of closures (spores) is ensured at compile

time using macros instead of using dynamic code generation. Like Spark, but unlike

DryadLINQ and MapReduce, silos may be persisted in memory across multiple

usages in our system. Nectar (Gunda et al., 2010) provides a caching service to

improve the resource utilization of Dryad/DryadLINQ clusters. For this, Nectar

identifies derived datasets by the computations that generate them, similar to lineages

in the function passing model. Nectar has been shown to significantly improve space

utilization as well as provide speed-ups via incremental computation and shared sub-

computations. It would be interesting to investigate potential usages of the lineages of

the functional passing model for similar purposes. In contrast to these above systems,

the function passing model is meant to act as more of a middleware to facilitate

the design and implementation of such systems, and as a result provides finer-

grained control over details such as fault handling. Rather than system building and

experimental evaluation, our focus is on a precise formalization of the programming

model, as well as the proof of preservation and progress properties.

The Clojure programming language proposes agents (Hickey, 2008)–stationary

mutable data containers that users apply functions to in order to update an agent’s

state. The function passing model, in contrast, proposes that data in stationary

containers be immutable, and that transformations by function application form a

persistent data structure. Further, Clojure’s agents are designed to manage state in

a shared memory scenario, whereas the function passing model is designed with

remote references for a distributed scenario.

https://doi.org/10.1017/S0956796818000035 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000035

Lineage-based distributed computation 33

The function passing model is also related to the actor model of concur-

rency (Agha, 1986), which features multiple implementations in Scala (Haller &

Odersky, 2009; He et al., 2014; Typesafe, 2015). Actors can serve as in-memory data

containers in a distributed system, like our silos. Unlike silos, actors encapsulate

behavior in addition to immutable or mutable values. While only some actor

implementations support mobile actors (none in Scala), mobile behavior in the form

of serializable closures is central to the function passing model.

7 Future work and conclusion

7.1 Ongoing and future work

Our ongoing efforts are three-fold; (a) we are working on a semantics and implemen-

tation of fault handling on top of the function passing model, (b) we are exploring

approaches for memory reclamation, and (c) we are working to better understand

the concerns of separate compilation.

7.1.1 Fault handling

The current implementation of the function passing model includes overloaded

variants of function passing’s primitive operations to enable flexible fault handling

semantics. The main idea is to specify fault handlers for subgraphs of computation

DAGs. Our guiding principle is to make the definition of the failure-free path through

a computation DAG as simple as possible, while still enabling the handling of faults

at the fine-granular level of individual silo references.

What follows are illustrations of this ongoing work based on the running example

introduced in Section 2.3.

Defining fault handlers. Fault handlers may be specified whenever the lineage of

a silo reference is extended. For this purpose, the introduced apply primitive is

overloaded. For example, consider the running example illustrated in Figure 5, but

extended with a fault handler:

val persons: SiloRef[List[Person]] = ...

val vehicles: SiloRef[List[Vehicle]] = ...

// copy of ‘vehicles‘ on different host ‘h‘, see Section 2.4.1

val vehicles2 = SiloRef.fromLineage(h, vehicles)

val adults = persons.apply(spore { ps =>

SiloRef.populate(currentHost, ps.filter(p => p.age >= 18))

})

// adults that own a vehicle

def computeOwners(v: SiloRef[List[Vehicle]]) = spore {

val localVehicles = v

(ps: List[Person]) => localVehicles.apply(...)

}

val owners: SiloRef[List[(Person, Vehicle)]] =

adults.apply(computeOwners(vehicles),

computeOwners(vehicles2))

https://doi.org/10.1017/S0956796818000035 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000035

34 P. Haller et al.

Importantly, in the apply call on the last line, in addition to computeOwners

(vehicles), the regular spore argument of apply, computeOwners(vehicles2) is

passed as an additional argument. The second argument registers a failure handler

for the subgraph of the computation DAG starting at adults. This means that if

during the execution of computeOwners(vehicles) it is detected that the vehicles

silo reference has failed, it is checked whether the SiloRef that the higher-order

combinator was invoked on (in this case, adults) has a failure handler registered.

In that case, the failure handler is used as an alternative spore to compute the result

of adults.apply(..). In this example, we specified computeOwners(vehicles2)

as the failure handler; thus, in case vehicles has failed, the computation is retried

using vehicles2 instead.

A limitation of this basic failure handling model is the fact that in the above

example, the fall-back silo vehicles2 is defined up front using a specific host

h. However, note that the computation DAG defined by a SiloRef can easily

be materialized on any host using the SiloRef.fromLineage function shown in

Section 2.4.1. Thus, assuming the existence of a function that randomly returns one

of the healthy hosts in the cluster, say, getHealthyHost(), the above fault handler

could be made more dynamic as follows:

val owners: SiloRef[List[(Person, Vehicle)]] =

adults.apply(computeOwners(vehicles),

spore {

val localVehicles = vehicles

(ps: List[Person]) =>

val recoveredVehicles =

SiloRef.fromLineage(getHealthyHost(), localVehicles)

recoveredVehicles.apply(...)

}

)

In order to implement more flexible fault handling mechanisms, including strategies

for straggler mitigation, additional information pertaining to the execution of

(parts of) DAGs would need to be provided. For example, to mitigate stragglers,

materializations could be initiated on alternative machines after a timeout. The

specification (on the API level) and implementation of more flexible execution

policies is left for future work.

7.1.2 Memory reclamation

We are exploring multiple approaches for memory reclamation. The first approach

uses Java’s weak references to detect when a SiloRef is no longer reachable from

local GC roots. Upon detection the host of the corresponding silo is notified to

decrease the silo’s reference count; the host’s reference(s) to the silo are nulled out

when the reference count reaches zero. It is important to note that this strategy

requires notifying a silo’s host whenever a SiloRef to the silo reaches a new machine,

to increase the silo’s reference count. The second approach leverages uniqueness

types in Scala (Haller & Odersky, 2010; Haller & Loiko, 2016). Here, SiloRefs are

locally unique, and the programmer can explicitly declare a SiloRef as unused; the

https://doi.org/10.1017/S0956796818000035 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000035

Lineage-based distributed computation 35

type system ensures that such an “unused” SiloRef is not used again subsequently.

As in the first approach, upon marking a SiloRef as unused, the corresponding silo’s

host is notified to decrease the silo’s reference count.

Other future work includes better understanding concerns of separate compilation

in order to evaluate whether our model could be of help in coordinating between

microservices.13

7.2 Conclusion

We have presented the function passing model, a new programming model and

new substrate or middleware upon which to build data-centric distributed systems.

This enables two important benefits for distributed system builders; since (a)

all computations are functional transformations on immutable data, the model

directly provides lineages which can form the basis for fault recovery, and (b)

communication is made well-typed by design, the function passing model attempts

to more naturally model the paradigm of data-centric programming by extending

monadic programming to the network. One insight of our model is that lineage-

based fault recovery mechanisms, used in widespread frameworks for distribution,

are closely related to persistent data structures in functional programming. Therefore,

we believe that fault tolerance based on lineages may benefit from further study by

the functional programming community. We have also presented a formalization of

the function passing model, providing an operational semantics and a type system

for lineage-based distributed computation. While our formal model does not yet

provide an approach to fault tolerance, our hope is that aspects of the model

including lineages, silo references, and silo materialization can eventually form the

basis of a complete formal treatment of lineage-based fault tolerance in future work.

Finally, we have implemented our approach in and for Scala, and have shown

that it is possible to support different popular patterns of distributed processing,

such as batch processing with Apache Spark’s RDDs and MBrace’s cloud-based

asynchronous tasks.

References

Agha, G. (1986) ACTORS: A Model of Concurrent Computation in Distributed Systems.

Cambridge, MA, USA: MIT Press.

Agha, G. A., Mason, I. A., Smith, S. F. & Talcott, C. L. (1997) A foundation for actor

computation. J. Funct. Prog. 7(1), 1–72.

Apache. (2015) Hadoop. Available at: http://hadoop.apache.org/, accessed January 30,

2018.

Billings, J., Sewell, P., Shinwell, M. & Strniša, R. (2006) Type-safe distributed programming

for OCaml. In Proceedings of the 2006 Workshop on ML. New York, NY, USA: ACM,

pp. 20–31.

13 Microservices are small, independent (separately-compiled) services running on different machines
that communicate with each other to together make up a single and complex application. They are a
predominant trend in industry amongst rich and complicated web-based services.

https://doi.org/10.1017/S0956796818000035 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000035

36 P. Haller et al.

Chambers, C., Raniwala, A., Perry, F., Adams, S, Henry, R. R., Bradshaw, R. & Weizenbaum,

N. (2010) FlumeJava: Easy, efficient data-parallel pipelines. In Proceedings of the ACM

SIGPLAN Conference on Programming Language Design and Implementation. New York

NY, USA: ACM. pp. 363–375.

Dean, J. & Ghemawat, S. (2008) MapReduce: Simplified data processing on large clusters.

Commun. ACM 51(1), 107–113.

Dzik, J., Palladinos, N., Rontogiannis, K., Tsarpalis, E. & Vathis, N. (2013) MBrace: Cloud

computing with monads. In PLOS@SOSP, Harris, T. & Madhavapeddy, A. (eds). New

York, NY, USA: ACM.

Elsman, M. (2005) Type-specialized serialization with sharing. In Proceedings of the

Symposium on Trends in Functional Programming, pp. 47–62.

Epstein, J., Black, A. P. & Jones, S. L. P. (2011) Towards Haskell in the cloud. In Proceedings

of the Haskell Symposium, pp. 118–129.

Germain, G. (2006) Concurrency oriented programming in Termite Scheme. In Proceedings

of the 2006 ACM SIGPLAN workshop on Erlang, p. 20.

Gunda, P. K., Ravindranath, L., Thekkath, C. A., Yu, Y. & Zhuang, L. (2010) Nectar:

Automatic management of data and computation in datacenters. In OSDI, Arpaci-Dusseau,

R. H. & Chen, B. (eds). Berkeley, CA, USA: USENIX Association, pp. 75–88.

Haller, P. & Loiko, A. (2016) LaCasa: Lightweight affinity and object capabilities in Scala. In

OOPSLA, Visser, E. & Smaragdakis, Y. (eds). New York, NY, USA: ACM, pp. 272–291.

Haller, P. & Odersky, M. (2009) Scala actors: Unifying thread-based and event-based

programming. Theor. Comput. Sci. 410(2), 202–220.

Haller, P. & Odersky, M. (2010) Capabilities for uniqueness and borrowing. In Proceedings

of the European Conference on Object-Oriented Programming, Maribor, Slovenia, June

21–25, 2010, pp. 354–378.

Haller, P., Prokopec, A., Miller, H., Klang, V., Kuhn, R. & Jovanovic, V. (2012) Futures and

promises. Available at: http://docs.scala-lang.org/overviews/core/futures.html,

accessed January 30, 2018.

He, J., Wadler, P. & Trinder, P. (2014) Typecasting actors: From Akka to TAkka. In

Proceedings of the 5th Scala Workshop. New York, NY, USA: ACM, pp. 23–33.

Herhut, S., Hudson, R. L., Shpeisman, T. & Sreeram, J. (2013) River Trail: A path to

parallelism in JavaScript. In Proceedings of the ACM SIGPLAN International Conference

on Object-Oriented Programming, Systems, Languages, and Applications. New York, NY,

USA: ACM, pp. 729–744.

Hickey, R. (2008) The Clojure programming language. In Proceedings of the Dynamic

Languages Symposium. New York, NY, USA: ACM, p. 1.

Isard, M., Budiu, M., Yu, Y., Birrell, A. & Fetterly, D. (2007) Dryad: Distributed data-parallel

programs from sequential building blocks. In Proceedings of the ACM SIGOPS/EuroSys

European Conference on Computer Systems. New York, NY, USA: ACM,

pp. 59–72.

Kennedy, A. (2004) Pickler combinators. J. Funct. Program. 14(6), 727–739.

Matsakis, N. D. (2012) Parallel closures: A new twist on an old idea. In Proceedings of the 4th

USENIX Workshop on Hot Topics in Parallelism, Boehm, H.-J. & Ceze, L. (eds), HotPar.

Berkeley, CA, USA: USENIX Association, p. 5.

Miller, H., Haller, P., Burmako, E. & Odersky, M. (2013) Instant pickles: Generating object-

oriented pickler combinators for fast and extensible serialization. In Proceedings of the

ACM SIGPLAN International Conference on Object-Oriented Programming, Systems,

Languages, and Applications. New York, NY, USA: ACM, pp. 183–202.

https://doi.org/10.1017/S0956796818000035 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000035

Lineage-based distributed computation 37

Miller, H., Haller, P. & Odersky, M. (2014) Spores: A type-based foundation for closures in

the age of concurrency and distribution. In Proceedings of the European Conference

on Object-Oriented Programming. Berlin, Heidelberg, Germany: Springer-Verlag,

pp. 308–333.

Milner, R., Parrow, J. & Walker, D. (1992) A calculus of mobile processes. Inf. Comput. 100(1),

1–77.

Murphy, T. VII, Crary, K. & Harper, R. (2007) Type-safe distributed programming with

ML5. In Proceedings of the International Symposium on Trustworthy Global Computing.

Berlin, Heidelberg, Germany: Springer-Verlag, pp. 108–123.

Murray, D. G., Schwarzkopf, M., Smowton, C., Smith, S., Madhavapeddy, A. & Hand,

S. (2011) CIEL: A universal execution engine for distributed data-flow computing.

In Proceedings of the USENIX Symposium on Networked Systems Design and

Implementation, Andersen, D. G. & Ratnasamy, S. (eds). Berkeley, CA, USA: USENIX

Association.

NICTA. (2015) Scoobi. Available at: https://github.com/nicta/scoobi, accessed January

30, 2018.

Odersky, M. & Zenger, M. (2005) Scalable component abstractions. In Proceedings of the

ACM SIGPLAN International Conference on Object-Oriented Programming, Systems,

Languages, and Applications, Johnson, R. E. & Gabriel, R. P. (eds). New York, NY, USA:

ACM, pp. 41–57.

Odersky, M., Spoon, L. & Venners, B. (2010) Programming in Scala, 2nd edn. Walnut Creek,

CA, USA: Artima.

Peyton Jones, S., Gordon, A. & Finne, S. (1996) Concurrent Haskell. In Proceedings of the

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. New

York, NY, USA: ACM, pp. 295–308.

Pierce, B. C. (2002) Types and Programming Languages. Cambridge, MA, USA: MIT

Press.

Rossberg, A., Le Botlan, D., Tack, G., Brunklaus, T. & Smolka, G. (2004) Alice through the

looking glass. Trends Funct. Program. 5, 79–96.

Sewell, P., Leifer, J. J., Wansbrough, K., Nardelli, F. Z., Allen-Williams, M., Habouzit, P.

& Vafeiadis, V. (2005) Acute: High-level programming language design for distributed

computation. In Proceedings of the ACM SIGPLAN International Conference on

Functional Programming. New York, NY, USA: ACM, pp. 15–26.

Shapiro, M., Preguiça, N. M., Baquero, C. & Zawirski, M. (2011) Conflict-free replicated data

types. In SSS, Défago, X., Petit, F. & Villain, V. (eds), Lecture Notes in Computer Science,

vol. 6976. Berlin, Heidelberg, Germany: Springer, pp. 386–400.

Twitter. (2015) Scalding. Available at: https://github.com/twitter/scalding, accessed

January 30, 2018.

Typesafe. (2015) Akka. Available at: http://akka.io/, accessed January 30, 2018.

Waldo, J., Wyant, G., Wollrath, A. & Kendall, S. C. (1996) A note on distributed computing.

In Proceedings of the International Workshop on Mobile Object Systems, Vitek, J., &

Tschudin, C. (eds). Berlin, Heidelberg, Germany: Springer-Verlag, pp. 49–64.

Yu, Y., Isard, M., Fetterly, D., Budiu, M., Erlingsson, Ú., Gunda, P. K. & Currey, J. (2008)

DryadLINQ: A system for general-purpose distributed data-parallel computing using a

high-level language. In Proceedings of the USENIX Symposium on Operating Systems

Design and Implementation, Draves, Richard, & van Renesse, Robbert (eds). Berkeley, CA,

USA: USENIX Association, pp. 1–14.

Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S. & Stoica, I. (2010) Spark:

Cluster computing with working sets. In Proceedings of the USENIX Workshop on Hot

https://doi.org/10.1017/S0956796818000035 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000035

38 P. Haller et al.

Topics in Cloud Computing. HotCloud’10. Berkeley, CA, USA: USENIX Association,

pp. 10–10.

Appendix A. Illustrated listings

A.1 Matching vehicles and owners

Figure A1 shows an illustrated version of the listing in Figure 4.

Fig. A1. Matching persons and vehicle owners using the apply combinator.

A.2 K-means clustering

Figure A2 shows an illustrated version of the listing of the k-means clustering

example in Section 3.3.

Appendix B. Proofs

B.1 Proof of Theorem 4.1

Theorem (Serializable Values) If Γ; Σ 	 v : T and serializable(T) then ∅; Σ 	 v : T .

Proof

By induction on the derivation of Γ; Σ 	 v : T with a case analysis of the last

applied rule.

• Cases T-Int, T-Unit, and T-Host are trivial.

• Case T-SiloRef.

https://doi.org/10.1017/S0956796818000035 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000035

Lineage-based distributed computation 39

Fig. A2. Excerpt of an implementation of k-means clustering.

1. By the assumptions

a. Γ; Σ 	 v : T

b. serializable(T)

2. By 1. (a) and T-SiloRef

a. v = Ref(l, h)

b. T = SiloRef[T ′]

c. Σ(id(l)) = T ′

d. Σ 	 Ref(l, h)

3. By 2. (a–d), and T-SiloRef, ∅; Σ 	 v : T .

• Case T-Spore follows by S-Spore and the IH.

�

B.2 Proof of Theorem 5.2

Lemma B.1 (Weakening) If Γ; Σ 	 t : T and x /∈ dom(Γ), then Γ, x : T ′; Σ 	 t : T .

https://doi.org/10.1017/S0956796818000035 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000035

40 P. Haller et al.

Proof

By induction on the derivation of Γ; Σ 	 t : T . �

Lemma B.2 (Weakening of Store Typing)

1. If Γ; Σ 	 t : T and ι /∈ dom(Σ) then Γ;Σ′ 	 t : T where Σ′ = [ι �→ T ′]Σ.

2. If Σ 	 (t, σ)h and ι /∈ dom(Σ) then Σ′ 	 (t, σ)h where Σ′ = [ι �→ T]Σ.

3. If Σ 	 H and ι /∈ dom(Σ) then Σ′ 	 H where Σ′ = [ι �→ T]Σ.

Proof

Part 1: By induction on the derivation of Γ; Σ 	 t : T . Part 2: By induction on the

derivation of Σ 	 (t, σ)h. Part 3: By induction on the derivation of Σ 	 H . �

Lemma B.3 (Process) If Σ 	 σ, Σ 	 m, and process(h, m, σ) = (t,M, σ′) then ∅; Σ′ 	
t : T for some T , Σ′ 	M, and Σ′ 	 σ′ for some Σ′ ⊇ Σ.

Proof

• Case Proc-Req.

1. By the assumptions

a. Σ 	 σ

b. Σ 	 m

c. process(h, m, σ) = (t,M, σ′)

2. By Proc-Req

a. m = Req(h′, r, ι)

b. r = Ref(l, h)

c. σ(id(l)) = (v, P)

d. M = {h′ ← Res(ι, v)}
e. σ′ = consume(id(l), P , σ)

f. t = unit

3. Define Σ′ := Σ.

4. By 2. (e) and Definition 4.6, dom(σ′) ⊆ dom(σ).

5. By 1. (a), 3., 4., and WF-Store1-3, Σ′ 	 σ′.

6. By 1. (b), 2. (a,b), and WF-Req

a. Σ(id(l)) = Σ(ι)

b. Σ 	 r

7. Define T := Σ(id(l)).

8. By 1. (a), 2. (c), 7., and WF-Store2, ∅; Σ 	 v : T .

9. By 6. (a), 7., 8., and WF-Res, Σ 	 Res(ι, v).

10. By 2. (d), 9., and WF-Messages, Σ 	M.

11. By 2. (f), T-Unit, and Lemma B.2, ∅; Σ 	 t : T ′ for some T ′.

12. 3., 5., 10., and 11. close this case.

• Cases Proc-ReqMat1, Proc-ReqMat2, and Proc-ReqParent follow analo-

gously.

• Case Proc-ReqApply.

https://doi.org/10.1017/S0956796818000035 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000035

Lineage-based distributed computation 41

1. By the assumptions

a. Σ 	 σ

b. Σ 	 m

c. process(h, m, σ) = (t,M, σ′)

2. By Proc-ReqApply

a. m = Req(h′, r, ι)

b. r = Ref(l, h)

c. l = Applied(ι′, l′, p)

d. σ(id(l′)) = (v, P)

e. t = respond(h′, ι, await(send(p v)))

f. σ′ = consume(id(l′), P , σ)

g. M = ∅
3. By 1. (b), 2. (a,b), and WF-Req

a. Σ(id(l)) = Σ(ι)

b. Σ 	 r

4. By 2. (b,c), 3. (b), WF-Ref, and WF-Lin2

a. Σ(ι′) = T

b. Σ(id(l′)) = T ′

c. ∃Γ. Γ; Σ 	 p : T ′ ⇒ SiloRef[T] {. . .}
d. Σ 	 l′

5. By 1. (a), 2. (d), 4. (b), and WF-Store2, ∅; Σ 	 v : T ′.

6. By 4. (c), T-Spore, Def. serializable, and Lemma 4.1, ∅; Σ 	 p : T ′ ⇒
SiloRef[T] {. . .}.

7. By 5., 6., and T-AppSpore, ∅,Σ 	 p v : SiloRef[T].

8. By 7. and T-Send, ∅,Σ 	 send(p v) : Future[T].

9. By 8. and T-Await, ∅,Σ 	 await(send(p v)) : T .

10. By 3. (a), 4. (a), and Def. 4.2, Σ(ι) = T and thus by T-Ident, ∅; Σ 	 ι :

Future[T].

11. By 2. (e), 9., 10., and T-Respond, ∅,Σ 	 t : Unit.

12. By 2. (g) and WF-Messages-Emp, Σ 	M.

13. By 2. (f) and Def. 4.6, dom(σ′) ⊆ dom(σ).

14. By 1. (a), 13., and WF-Store1-3, Σ 	 σ′.

15. 11., 12., and 14. close this case.

• Cases Proc-ReqPersist and Proc-Res follow analogously.

�

Theorem (Subject Reduction)

1. If Γ; Σ 	 t : T , Σ 	 σ, and t | σ →h t′ | σ′ then Γ;Σ′ 	 t′ : T and Σ′ 	 σ′ for

some Σ′ ⊇ Σ.

2. If Σ 	 H | M and H | M � H ′ | M ′ then Σ′ 	 H ′ | M ′ for some Σ′ ⊇ Σ.

https://doi.org/10.1017/S0956796818000035 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000035

42 P. Haller et al.

Proof

Part 1: by induction on the derivation of t | σ →h t′ | σ′ with case analysis of the

last applied rule.

• Case R-AppAbs.

1. By the assumptions

a. Γ; Σ 	 t : T

b. Σ 	 σ

c. t | σ →h t′ | σ′

2. By R-AppAbs

a. t = E[((x : T ′)⇒ t′′) v′]

b. t′ = E[[x �→ v′]t′′]

c. σ′ = σ

3. By 1. (a) and 2. (a), Γ; Σ 	 ((x : T ′)⇒ t′′) v′ : T ′′.

4. By 3. and T-App,

a. Γ; Σ 	 ((x : T ′)⇒ t′′) : T ′ ⇒ T ′′

b. Γ; Σ 	 v′ : T ′

5. By 4. (a) and T-Abs, Γ, x : T ′; Σ 	 t′′ : T ′′.

6. By 4. (b), 5., and Lemma 5.1, Γ; Σ 	 [x �→ v′]t′′ : T ′′.

7. By 1. (a), 2. (a–b), 3., and 6., Γ; Σ 	 t′ : T .

8. 2. (c) and 7. close this case.

• Cases R-IntOp, R-AppSpore, and R-Await follow analogously.

• Case R-Apply.

1. By the assumptions

a. Γ; Σ 	 t : T

b. Σ 	 σ

c. t | σ →h t′ | σ′

2. By R-Apply

a. t = E[apply(r, p)]

b. r = Ref(l, h′)

c. t′ = E[r′]

d. r′ = Ref(l′, h′)

e. l′ = Applied((h, i), l, p) where i fresh

f. σ′ = σ

3. By 1. (a) and 2. (a), Γ; Σ 	 apply(r, p) : T̂ .

4. By 3. and T-Apply,

a. T̂ = SiloRef[T ′]

b. Γ; Σ 	 r : SiloRef[T ′′]

c. Γ; Σ 	 p : T ′′ ⇒ SiloRef[T ′] { type C = T }

https://doi.org/10.1017/S0956796818000035 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000035

Lineage-based distributed computation 43

5. By 2. (b), 4. (b), T-SiloRef, and WF-Ref

a. Σ(id(l)) = T ′′

b. Σ 	 r

c. Σ 	 l

d. h′ ∈ H
6. Define Σ′ := [(h, i) �→ T ′]Σ.

7. By 2. (d–e), 4. (c), 5. (a–d), 6., WF-Lin2, and WF-Ref, Σ′ 	 r′.

8. By 2. (d–e), 6., 7., and T-SiloRef, Γ; Σ′ 	 r′ : SiloRef[T ′].

9. By 2. (e), 3., 4. (a), 6., and part 1 of Lemma B.2, Γ; Σ′ 	 apply(r, p) :

SiloRef[T ′].

10. By 1. (a), 2. (e), 6., and part 1 of Lemma B.2, Γ; Σ′ 	 t : T .

11. By 2. (a,c), 8., 9., and 10., Γ; Σ′ 	 t′ : T .

12. By 1. (b) and 2.f), Σ 	 σ′.

13. By 6., Σ′ ⊇ Σ.

14. By 12., 13., and WF-Store3, Σ′ 	 σ′.

15. 11., 13., and 14. close this case.

• Cases R-Persist and R-Unpersist follow analogously.

Part 2: by induction on the derivation of H | M � H ′ | M ′ with case analysis of

the last applied rule.

• Case R-Local.

1. By the assumptions

a. Σ 	 H | M
b. H | M � H ′ | M ′

2. By R-Local

a. H = {(t, σ)h} ∪H ′′

b. H ′ = {(t′, σ′)h} ∪H ′′

c. t | σ →h t′ | σ′

d. M ′ = M

3. By 1. (a) and WF-Config, Σ 	 H .

4. By 2. (a), 3., and WF-Host2

a. Σ 	 (t, σ)h

b. Σ 	 H ′′

5. By 4. (a) and WF-HostConfig

a. Σ 	 σ

b. Γ; Σ 	 t : T for some Γ

6. By 2. (c), 5. (a,b), and part 1

a. Γ; Σ′ 	 t′ : T

b. Σ′ 	 σ′ for some Σ′ ⊇ Σ

7. By 6. (a,b) and WF-HostConfig, Σ′ 	 (t′, σ′)h.

https://doi.org/10.1017/S0956796818000035 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000035

44 P. Haller et al.

8. By 4. (b), 6. (b), and part 3 of Lemma B.2, Σ′ 	 H ′′.

9. By 2. (b), 7., 8., and WF-Host2, Σ′ 	 H ′.

10. By 1. (a), 2. (d), 9., WF-Config, and WF-Messages, Σ′ 	 H ′ | M ′.

• Case R-Send.

1. By the assumptions

a. Σ 	 H | M
b. H | M � H ′ | M ′

2. By R-Send

a. H = {(E[send(r)], σ)h} ∪H ′′

b. H ′ = {(E[id(l)], σ)h} ∪H ′′

c. r = Ref(l, h′)

d. m = Req(h, r, id(l))

e. M ′ = M � {h′ ← m}
3. By 1. (a) and WF-Config

a. Σ 	 H

b. Σ 	M

4. By 2. (a), 3. (a), and WF-Host2

a. Σ 	 (E[send(r)], σ)h

b. Σ 	 H ′′

5. By 4. (a) and WF-HostConfig

a. Σ 	 σ

b. Γ; Σ 	 E[send(r)] : T for some Γ

6. By 5. (b), Γ; Σ 	 send(r) : T̂ .

7. By 6. and T-Send

a. T̂ = Future[T ′′]

b. Γ; Σ 	 r : SiloRef[T ′′]

8. By 2. (c), 7. (b), and T-SiloRef

a. Σ(id(l)) = T ′′

b. Σ 	 r

9. By 8. (a) and T-Ident, Γ; Σ 	 id(l) : Future[T ′′].

10. By 5. (b), 6., 7. (a), and 9., Γ; Σ 	 E[id(l)] : T .

11. By 5. (a), 10., and WF-HostConfig, Σ 	 (E[id(l)], σ)h.

12. By 4. (b), 11., and WF-Host2, Σ 	 H ′.

13. By 2. (c,d), 8. (b), and WF-Req, Σ 	 m.

14. By 2. (c,e), 3. (b), 8. (b), 13., WF-Ref, and WF-Messages, Σ 	M ′.

15. By 12., 14., and WF-Config, Σ 	 H ′ | M ′.

• Cases R-Populate and R-Respond follow analogously.

• Case R-Process.

1. By the assumptions

https://doi.org/10.1017/S0956796818000035 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000035

Lineage-based distributed computation 45

a. Σ 	 H | M
b. H | M � H ′ | M ′

2. By R-Process

a. H = {(E[await(ι)], σ)h} ∪H ′′

b. H ′ = {(E[t ; await(ι)], σ′)h} ∪H ′′

c. M ′ = M̂ �M ′′

d. process(h, m, σ) = (t,M ′′, σ′)

e. M = M̂ � {h← m}
3. By 1. (a) and WF-Config

a. Σ 	 H

b. Σ 	M

4. By 2. (a), 3. (a), and WF-Host2

a. Σ 	 (E[await(ι)], σ)h

b. Σ 	 H ′′

5. By 4. (a) and WF-HostConfig

a. Σ 	 σ

b. Γ; Σ 	 E[await(ι)] : T for some Γ

6. By 2. (e), 3. (b), and WF-Messages, Σ 	 m.

7. By 2. (d), 5. (a), 6., and Lemma B.3 (Process), ∃Σ′, T ′ such that

a. ∅; Σ′ 	 t : T ′

b. Σ′ 	M ′′

c. Σ′ 	 σ′

d. Σ′ ⊇ Σ

8. By 5. (b), 7. (d), and part 1 of Lemma B.2, Γ; Σ′ 	 E[await(ι)] : T .

9. By 7. (a) and 8., Γ; Σ′ 	 E[t ; await(ι)] : T .

10. By 7. (c), 9., and WF-HostConfig, Σ′ 	 (E[t ; await(ι)], σ′)h.

11. By 4. (b), 7. (d), and part 3 of Lemma B.2, Σ′ 	 H ′′.

12. By 2. (b), 10., 11., and WF-Host2, Σ′ 	 H ′.

13. By 3. (b), 7. (d), WF-Res, WF-Req, WF-Ref, and WF-Messages, Σ′ 	M.

14. By 2. (c), 2. (e), 7. (b), 13., and WF-Messages, Σ′ 	M ′.

15. By 12., 14., and WF-Config, Σ′ 	 H ′ | M ′.

• Case R-Process-Val.

1. By the assumptions

a. Σ 	 H | M
b. H | M � H ′ | M ′

2. By R-Process-Val

a. H = {(v, σ)h} ∪H ′′

b. H ′ = {(t, σ′)h} ∪H ′′

https://doi.org/10.1017/S0956796818000035 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000035

46 P. Haller et al.

c. M ′ = M̂ �M ′′

d. process(h, m, σ) = (t,M ′′, σ′)

e. M = M̂ � {h← m}
3. By 1. (a) and WF-Config

a. Σ 	 H

b. Σ 	M

4. By 2. (a), 3. (a), and WF-Host2

a. Σ 	 (v, σ)h

b. Σ 	 H ′′

5. By 4. (a) and WF-HostConfig

a. Σ 	 σ

b. Γ; Σ 	 v : T for some Γ

6. By 2. (e), 3. (b), and WF-Messages, Σ 	 m.

7. By 2. (d), 5. (a), 6., and Lemma B.3 (Process), ∃Σ′, T ′ such that

a. ∅; Σ′ 	 t : T ′

b. Σ′ 	M ′′

c. Σ′ 	 σ′

d. Σ′ ⊇ Σ

8. By 7. (a), 7. (c), and WF-HostConfig, Σ′ 	 (t, σ′)h.

9. By 4. (b), 7. (d), and part 3 of Lemma B.2, Σ′ 	 H ′′.

10. By 2. (b), 8., 9., and WF-Host2, Σ′ 	 H ′.

11. By 3. (b), 7. (d), WF-Res, WF-Req, WF-Ref, and WF-Messages, Σ′ 	M.

12. By 2. (c), 2. (e), 7. (b), 11., and WF-Messages, Σ′ 	M ′.

13. By 10., 12., and WF-Config, Σ′ 	 H ′ | M ′.

�

B.3 Proof of Theorem 5.5

Lemma B.4 (Responsive Population) Let Σ 	 H | M | R and H = {(E[t], σ)h} � Ĥ .

Then ∀h′ ∈ hosts(H): {(E[send(r)], σ)h}�Ĥ | M�{h′ ← m}�∗ H ′ | M ′ �{h← m}
after a finite number of reduction steps where r = Ref(l, h′), l = Mat(ι) for some ι,

and m = Res(ι, v).

Proof Sketch

By R-Send, {(E[send(r)], σ)h} � Ĥ | M � {h′ ← m} � {(E[ι], σ)h} � Ĥ | M � {h′ ←
m}�{h′ ← m′} where m′ = Req(h, r, ι). By Def. 5.1 message m is processed by h′ after

a finite number of reduction steps. As a result, the store of h′ is updated with the

mapping ι �→ v. After another finite number of reduction steps, h′ processes message

m′. By R-Process, R-Process-Val, and Proc-ReqMat1, the resulting multiset of

messages includes {h← Res(ι, v)} as required. �

https://doi.org/10.1017/S0956796818000035 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000035

Lineage-based distributed computation 47

Lemma B.5 (Responsive Apply) Let Σ 	 H | M | R such that Responsive(H,M,R).

If H = {(E[apply(r, p)], σ)h}�Ĥ then H |M | R � H ′ |M ′ | R′ and Responsive(H ′,

M ′, R′).

Proof

1. By R-Local and R-Apply

a. E[apply(r, p)] | σ →h E[r′] | σ | {r′}
b. r′ = Ref(l′, h′)

c. r = Ref(l, h′)

d. l′ = Applied((h, i), l, p) where i fresh

e. H ′ = {(E[r′], σ)h} � Ĥ

f. M ′ = M

g. R′ = R � {r′}
2. By Lemma 5.4, Responsive(H ′,M ′, R).

3. Consider H ′ | M ′ � {h′ ← m} | R′ where m = Req(h′′, r′, ι).

4. By Def. 5.1 H ′ |M ′�{h′ ← m} | R′ �∗ Hp |Mp | Rp such that (Ep[await(ιp)], σp)h
′

∈ Hp ∨ (Ep[vp], σp)
h′ ∈ Hp and {h′ ← m} ∈Mp.

5. There are two cases. Case 1: id(l) /∈ dom(σ′). In this case, Hp | Mp | Rp can be

reduced according to R-Process (or R-Process-Val) and Proc-ReqParent. As

a result, h′ reduces send(Ref(l, h′)). By R-Send, Ref(l, h′) ∈ R, and Lemma 5.4,

Hp | Mp | Rp �∗ Hr | Mr � {h′ ← Res(id(l), v)} | Rr after a finite number of

reduction steps. By Def. 5.1 and Proc-Res, Hr |Mr�{h′ ← Res(id(l), v)} | Rr �∗

H ′′ | M ′′ | R′′ after a finite number of reduction steps, such that

a. H ′′ = {(E ′[t′], σ′)h′ } ∪H3 where t′ = v′ or t′ = await(ι′)

b. M ′′ = {h′ ← m} �M3

c. σ′(id(l)) = v

d. Σ′′ 	 H ′′ | M ′′ | R′′

Case 2: σ′(id(l)) = v. In this case, H ′′ = Hp, M
′′ = Mp, and R′′ = Rp.

6. By 5.a–c, R-Process, R-Process-Val, and Proc-ReqApply

a. process(h′, m, σ′) = (t′′, ∅, σ′)
b. t′′ = respond(h′′, ι, await(send(p v)))

c. H ′′ | M ′′ | R′′ � H3 | M3 | R′′
d. H3 = {(E ′[t′′ ; t′], σ′)h

′ } ∪H4

7. By 5 . (d), 6. (c), and Theorem 5.2 (Subject Reduction), Σ3 	 {(E ′[t′′ ; t′], σ′)h
′ }∪

H4 | M3 | R′′ for some Σ3 ⊇ Σ′′.

8. By 7., WF-Config, WF-Host2, and WF-HostConfig

a. Σ3 	 σ′

b. Γ3; Σ3 	 E ′[t′′ ; t′] : T3 for some Γ3, T3

9. By 6. (b), 8. (b), and the type rules

a. Γ4; Σ3 	 p : T ′ ⇒ SiloRef[T] { type C = T } for some Γ4

b. p = spore { x : T = v ; (x : T ′)⇒ t }
10. By 9. (a,b), and T-Spore

a. x : T , x : T ′; ∅ 	 t : SiloRef[T]

https://doi.org/10.1017/S0956796818000035 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000035

48 P. Haller et al.

b. ∀S ∈ T , SiloRef[T]. serializable(S)

11. By the type rules, derivation 10. (a) does not contain applications of T-SiloRef

or T-Ident. By 10. (b) spore p does not capture futures. Thus, any occurrence

of await(ι̂) within p v is preceded by a reduction of a corresponding send

resulting in future ι̂. By Lemma 5.4 (Responsiveness), Responsive(H3,M3, R).

There are two cases.

Case 1: d = 0. Then p does not contain a nested apply invocation. Therefore,

by Lemma B.4, p v reduces to a value r′′ after a finite number of reduction

steps. Since either r′′ ∈ R or r′′ is newly populated, send(r′′) results in a

response h′ ← Res(id(r′′), v′′) after a finite number of reduction steps. This

enables h′ to reduce respond(h′′, ι, v′′) which concludes this case.

Case 2: d > 0. The depth of nested applys of term p v is less than the depth

of the term apply(r, p). Therefore, by the induction hypothesis, reductions of

nested apply invocations within p v result in responsive configurations. By

Lemma B.4, p v reduces to a value r′′ after a finite number of reduction steps.

Since either r′′ ∈ R, or r′′ is newly populated, or r′′ is the result of a nested

apply invocation, send(r′′) results in a response h′ ← Res(id(r′′), v′′) after a

finite number of reduction steps. This enables h′ to reduce respond(h′′, ι, v′′)

which concludes this case.

�

Theorem (Finite Materialization) Let Σ 	 H | M | R such that Responsive(H,M,R).

If H | M | R � H ′ | M ′ | R′ then Responsive(H ′,M ′, R′).

Proof

Corollary of Lemmas 5.4, B.4, and B.5. �

https://doi.org/10.1017/S0956796818000035 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000035

