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BARRELLED SPACES AND DENSE VECTOR SUBSPACES

W.J. ROBERTSON, S.A. SAXON AND A.P. ROBERTSON

This note presents a structure theorem for locally convex barrelled spaces. It is shown
that, corresponding to any Hamel basis, there is a natural splitting of a barrelled space into
a topological sum of two vector subspaces, one with its strongest locally convex topology.
This yields a simple proof that a barrelled space has a dense iunnite-codiinensional vector
subspace, provided that it does not have its strongest locally convex topology. Some
further results and examples discuss the size of the codimension of a dense vector subspace.

The notation and terminology are standard for the most part, as, for example, in
[2] or [5]. We use E for a locally convex Hausdorff space, E' for its (continuous) dual
and E* for its algebraic dual. The strongest (finest) locally convex topology is the
Mackey topology T{E,E*).

Any set of the form {(x;, / ; ) : i £ A} C E x E* is a biorthogonal system if and only
if fi(xj) = 1 for i = j , and fi(xj) = 0 for i'. ^ j .

THEOREM 1. Let E be a Hausdorff barrelled space, the algebraic direct sum of
the vector spaces M and N . If there is a biorthogonal system {(a;;,/;): i £ A} such
that {xi: i E A} is a Hamel basis of N and {ft: i e A} C E1 n M" , then N has its
strongest locally convex topology and E is the topological direct sum of M and N.

PROOF: Let V be an absolutely convex absorbent set in N. If i £ A, there is
some Oi ̂  0 with ct̂ a;; £ V. Put j/,- — a{Xi and </,- = a"1/,-; then {(yi,gi)' i £ 4̂} is
a biorthogonal system, {t/;: i £ A} is a basis for N and {gi: i £ 4̂} C E' PI M" . Let
G be the polar of {yi: i £ A} in span{jfi: i £ A}. Then G° C V + M. For if x £ G",
then x = ^2 \i\ji + z for some finite subset 5 of A and z £ M, and |<7(a;)| ^ 1 for

i€S

all g £ G. Take g = £ (sgn A{)5i- Then g £ G and \g(x)\ = £ |A;| ^ 1; thus

X< ̂ iVi 6 ^ since V is absolutely convex.

Also G'° is absorbent since M C G° and each y; £ G°. Thus G° is a barrel since
each gi is continuous, and so is a neighbourhood of the origin in E. Hence V is a
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neighbourhood of the origin in N, N has its strongest locally convex topology, and
the projector of E onto N (along M) is continuous. R

We note incidentally that the existence of such a biorthogonal system is also nec-

essary for the conclusion of the theorem.

When E is a locally convex space with Hamel basis {x;: i £ B} , the corresponding
biorthogonal system {(xi,fi). i £ B} produces a natural splitting of E, determined
by whether a linear form / ; is continuous or discontinuous. Let

EQ = span{;ci: i £ C}, ED = span{zt-: i £ D}.

Then Theorem 1 has the following immediate consequence.

THEOREM 2 (SPLITTING THEOREM). Let E be a Hausdorff barrelled space and

{xi: i £ B} a Hamel basis of E. Then, with the notation above, E is the topologies!

direct sum of Ec and ED , find. Ec has its strongest locally convex topology.

From Theorem 1 we also obtain:

COROLLARY. (Saxon-Levin [8, p.92]) Let M be a closed vector subspace of count-

able codimension in a Hausdorff barrelled space E. Let N be any algebraic complement

of M in E. Then N is a topological complement of M and has its strongest locally

convex topology.

PROOF: Given any basis {j/i ,y2,...} oi N we construct inductively a biorthogonal

system satisfying the conditions of Theorem 1. At each stage, xn £ span{t/ i , . . . , y,x} ;

the span of M and the finite set {x;: i < n} is closed, and the Hahn-Banach theorem

ensures the existence of a suitable / „ . R

THEOREM 3. Let E be a Hausdorff barrelled space and suppose that everv vector
subspace of E has finite codimension in its closure. Then E has its strongest locally
convex topology.

PROOF: Choose a Hamel basis {x,-: i £ B} for E. With the notation of Theorem
2, E is the topological sum Ec @ ED , where Ec lias its strongest, locally convex
topology. Suppose that D contains a count ably infinite set. / . Let M = span{,r,-: i €
B\I} . By hypothesis, M C M + F where F = span{;»;,-: i. £ 5} for some finite subset
S of / , and so M + F = ~M + F and is closed. Let N = span{,r,: i £ I\S}. Then
by the Saxon-Levin Corollary, E = (M + F) © N and N has its strongest locally
convex topology. Hence for each i £ / \ 5 , /,• is continuous, which contradicts I C D.

Therefore D is finite and so ED is finite-dimensional; since E = Ec ® ED , E has its
strongest locally convex topology (and in fact D is empty). |
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COROLLARY 1. If E is Hausdorff and barrelled with E' ^ E* then there exists a
dense Ho -codimensional vector subspace L of E; also there exists an Ho -dimensional
vector subspace N of E* with N n E' = {0} such that L = N° .

PROOF: Since E' ^ E* the theorem shows that there exists a vector subspace M
of E with infinite codimension in M. Let K be an algebraic complement of M in E.
Then M + K is dense in E and of infinite codimension. Let I be a vector subspace
containing M + K and of codimension Ho in E.

Let {x-i: i £ 1} be a basis for an algebraic complement of L in E , and {(xi, fi): i G
/} be a biorthogonal system such that /; is zero on L for all i £ I. Let. TV =
span{/;: i £ / } . Then N C\ E1 - {0} since L is dense, and clearly L - N° . fl

We note that this Corollary shows that when E has the Mackey topology
T(E,E' + N) then E is not barrelled. (For if / is the pointwise limit of the [un-
conditional] series V fi, then / is zero on the dense vector subspace N° and so is not.

iei
in E' + N ; this is also a consequence of Theorem 4 of [7].) This provides an alternative
proof that any barrelled topology on a space E with E' ^ E* has a non-barrelled
countable enlargement [6, Theorem 3].

COROLLARY 2. If E is a locally convex Hausdorff space and its associated barrelled
topology [3] is not its strongest locally convex topology, then there exists a dense infinite-
codimensional vector subspace of E .

(For by Corollary 1, there is an infinite-codimensional vector subspace L, dense
when E has its associated barrelled topology, and therefore dense in the original topol-
ogy on E.)

When E is any locally convex Hausdorff space, not necessarily barrelled, with
E' ^ E*, then of course dense vector subspaces exist; it is easy to see that a dense
vector subspace of finite codimension n exists if and only if the codimension of E' in
E* is at least n. Some simple considerations limit the size of the codimension of a
dense vector subspace in a similar way for the infinite case.

THEOREM 4. Let E be a locally convex space with a dense K -codimensional vector
subspace, wiiere K is any infinite cardinal. Then the codimension of E' in E* is at
least 2" .

PROOF: Let L be dense in E with H-dimensional algebraic complement M. Then
the vector subspace L" of E* has dimension equal to that of M* , which is 2N . Since
L is dense, L° n E' - {0}, and so codim E' ^ 2* . R

COROLLARY 1. If E' has countable codimension in E*, then E has no dense
vector subspace of infinite codimension.

https://doi.org/10.1017/S0004972700027003 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700027003


386 W.J. Robertson, S.A. Saxon and A.P. Robertson [4]

(Therefore in this case the intersection of a sequence of dense hyperplanes, the
nullspace of a linearly independent sequence of linear forms, cannot be dense.)

COROLLARY 2. If E' has codimension 2N° in E* , then E has no dense vector
subspace of codimension 2N° . Thus, with the continuum hypothesis, in tlu's case E
can have no dense vector subspace of uncountable codimension.

The theorem, with Corollary 2 of Theorem 3, gives the following result.

COROLLARY 3. If the associated barrelled topology of E is not T(E,E*), then
codim E' > 2*° .

In [0], a theorem on completeness is used to deduce that the dual of a barrelled
space is either E* or has uncountable codimension in E* [6, Theorem 2]. Here this
result follows from Theorem 3, Corollary 1 and Theorem 4, Corollary 1.

Example. The following example, mentioned by Kothe [4, Section 22.5(5)] is cited
by Eberhardt and Roelcke [1, 1.3] and also by Tsirulnikov [9, I, Note 2], who each
demonstrate some of the points we raise here. However, we make this treatment self-
contained. First, we use it to show that the condition of Corollary 2 of Theorem 3,
that, the associated barrelled topology is not T(E,E*), is not a necessary one for the
existence of an infinite-codimensional dense vector subspace of E. In fact, there may
even be a dense vector subspace of codimension equal to the dimension of E when the
associated barrelled topology is T(E,E*).

(a). .Let / be an index set of uncountable cardinality K, and let E = <j>(I), the
algebraic direct sum of N copies of the real numbers. Then E* = w(I) = R1. In E*,
consider the vector subspace consisting of those functions with at most a countable
number of non-zero coordinates. This is <r(E*,E)-dense in E* ; call it E'. For every
countable subset J of / , and for every absolutely convex absorbent subset V of <f>(J),
let U = V -f- <f>{I\J) , and give E the topology with all such sets U as a base of
neighbourhoods of the origin.

(b). If / is a linear form continuous for this topology, then / is bounded on some U ;
hence / has zero coordinates in the corresponding I\J and so / 6 E'. Conversely, if
/ G E', there is a corresponding countable set J; let U — {x: |/(w)| ^ 1} • Then U is
of the form V +<f>(I\J) as above, and / is bounded on U. Hence E' is the dual of E
with this topology.

(c). Now in E, take the Hamel basis {e;: i £ /} of coordinate vectors and the corre-
sponding biorthogonal linear forms / ; . Since each /; has only one non-zero coordinate,
fi G E' and so ft is continuous in the associated barrelled topology. Hence, by Theorem
2 applied to that topology, with the notation there, E = Ec and E has its strongest,
locally convex topology.
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(d) . Write / = | J { / 7 : 7 G F} where the / 7 are disjoint, each has cardinality N and

F has cardinality N. Let /i7(x) = J2{fi(x): * € I-y} • Since the restriction of /i7 to

<f>(I-,) has an uncountable number of non-zero coordinates, it has no extension to E

which belongs to E'; hence the restriction of /i7 to <£(/7) is not continuous. Thus

/i-1(0)n</>(/7) is a dense hyperplane in 0 ( J 7 ) . Let M = f l C s H 0 ) : 7 e T} . Then

/i7
1(0)n</>(/7) C M and so <£(/7) C M for all 7 ; hence M is dense, and codim M = H

(one dimension from each </>(/7); in fact we may choose any 1(7) from each / 7 and

then span{e{: 7 £ T} is an algebraic complement of M ) .

It is attractive to conjecture that a locally convex space E, with the property that

every Ho -dimensional vector subspace is isomorphic to <j> (that is, has its strongest lo-

cally convex topology) and has a topological complement,.must have topology T(E, E*).

This example dispels that hope, even when the topology of E is fine enough for the

associated barrelled topology to be T[E,E*) , as we now show.

(e) . Let J C / be countable. Then clearly <j>(J) is isomorphic to <f>, from the con-

struction in (a) of the topology of E, and E — 4>{J) ffi <f>(I\J) (algebraically and

topologically). Suppose that N is any Ko -dimensional vector subspace of E. Then

each element in a basis for N is linearly dependent on only a finite number of coordinate

vectors; so there is some countable J such that N C 4>{J). Let M be an algebraic

complement of N in <j>{ J). Since <f>(J) has its strongest locally convex topology, M is

also a topological complement. Hence E — (N © M) © 4>(I\J) = N © (M © <j>(I\J)).

(f). On the other hand, we may ask whether the conjecture is correct for barrelled

spaces. However, in [1], Eberhardt and Roelcke define the class of GM-spaces, those

E for which the closed graph theorem holds for any linear mapping of E into any

metrisable locally convex space. Such spaces are therefore barrelled. In [1], it is shown

that every Ho-dimensional vector subspace of a GM-space is isomorphic to <f> a n d has a

topological complement (1-5), and that GM-spaces exist which do not have the strongest

locally convex topology (3.5). In fact, Theorem 7 of [6] shows that, for a subclass of

GM-spaces, there even exist dense vector subspaces of codimension 2N° .
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