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1. Introduction. In this paper it is shown how trigonometric series which 
are Cesàro-summable to zero may be used to solve differential equations. The 
explicit solution of the general ordinary linear equation with constant coeffic­
ients is found in terms of trigonometric series and special cases are dealt with. 

2. Null trigonometric series. By the Heine-Cantor and subsequent theor­
ems, if the trigonometric series 

2.1 \ ao + X) (an cos nx + bn sin nx) = ^ cn emx, 

where 2Z applied to the real form denotes summation for n from 1 to oo and 
applied to the complex form from — °o to oo, is convergent to the sum zero for 
all values of x in the closed interval ( — ir, ir), or for all values except (possibly) 
those of a uniqueness (or unicity) set, then every one of the coefficients 
am K, Cn must be zero [6, p. 103; 9, pp. 274, 291].1 

If convergence to zero is replaced by summability to zero, say by the Abel-
Poisson or the Cesàro definition, the position is different. There are series with 
non-vanishing coefficients which have the sum zero for all values of x, with or 
without exceptional values [9, p. 297]. 

A trigonometric series whose coefficients are not all zero, whose sum by a 
method (T) is zero for all values of x, or for all values with specified exceptions, 
may be called a null trigonometric series, or briefly NTS, in the field T. In what 
follows T will be Cesàro summation to some positive integral order, specified 
or unspecified. 

The simplest examples of NTS are 

2.2 J + "Zcosnx = iJ2einx, 

2.3 X) n s m nx = ~ i X inetnx, 

which are respectively summable (C, 1) to zero for x ^ 0 (mod 2T) and sum-
mable (C, 2) to zero for all values including x =0 , the summability of 2.3 
being non-uniform in the neighbourhood of x = 0. 

More generally, using D to denote d/dx, the series 

2.4 Dr \ + 2 & cos n(x - a) = \ £ (in)T ein{x~a\ 
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^ h e r e appears to be a slight error of statement in [6, p. 104, Osservazione II] . 
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where r is any non-negative integer and a any real number, is null (C, r + 1) 
for all real values of x except x = a (mod 2ir) if r is even or zero, and for all 
values without exception if r is odd. The series 2.4 has a ''singularity'' at x = a, 
where it ceases to be finitely summable if r is even and the summability is 
non-uniform if r is odd [2, p. 2], 

It may be observed that these series are the expansions of the "Dirac function" 
and its derivatives [5]. 

From the work of Verblunsky and others it follows that if the series 2.1 is 
summable (A) to zero for x ^ 0 and the condition \an\ + \bn\ = o(n) is satisfied 
then the series is a constant multiple of series 2.2. Since this condition is neces­
sary for (C, 1) summability, the same applies to (C, 1), and it follows that the 
only trigonometric series which are null (C, 1) with the single singularity at 
x == a are constant multiples of the series 2.4 with r = 0. If there are a finite 
number of singularities, say ai, a2, . . . , am, in each period, the series are linear 
combinations of series of the same type with a = #i, a2l . . • , am. 

For (C, k) summability the work of Wolf shows that the null series are 
linear combinations of series of type 2.4 where the index r has the values 
0, 1, . . . , k - 1 [7; 9, p. 302; 4, p. 92; 8, p. 355; 1]. 

If there is only one singularity a in a period and a = ir, the null (C, k) series 
must be a linear combination of series of type 2.4 with r = 0, 1, 2, . . . , k — 1, 
and a = 7T, viz. 

25 A t ( - T, T) = JtLA'T[DT-1i+ £ (-lfD^cosnx] 

= Zi4rx;(-i)"«^v~ 
r = l 

where the Af
r, Ar are arbitrary constants. This may be called the general NTS 

of order k for ( — 7r, T). 

3. Solution of differential equations in trigonometric series. Let 

3.1 $ = 0 

be a differential equation. In what follows only ordinary equations of a suffi­
ciently simple type will be considered, so that $ represents a function of x, y, 
and the derivatives of y. In the case of a linear equation of order m with constant 
coefficients we shall have $ = F(D)y — f(x), where D = d/dx, F(D) is a poly­
nomial of degree m with constant coefficients and f(x) is a function of x. 

Our purpose is to solve 3.1 in periodic form, getting the general solution 
(complete primitive) in terms of trigonometric series and involving arbitrary 
constants. For special solutions incorporating given ''initial conditions" it may 
be observed that for a problem of periodic type such conditions may involve 
the average value of y, or the general property of continuity and periodicity, 
or other conditions which lead easily to the evaluation of the constants. An 
example of such a special solution is 3.8(b) below. 

https://doi.org/10.4153/CJM-1953-060-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1953-060-5


538 CHARLES WALMSLEY 

Consider any trigonometric series 

3.2 J a0 + ^ {an cos nx + bn sin nx) = ^2 cne
 mx 

and its rth derived series 

3.3 ^ n r [aw cos {nx + |r7r) + bn sin (nx + è^73")] = S ( ^ ) r ^ e"1*. 

Suppose 3.3, for r = m, is summable (C, &i), where k\ is a non-negative integer; 
and suppose that the summability is uniform over any closed interval — w < — co 
< x < co < 7T, interior to ( — 7r, 7r). It follows, by a theorem on convergence 
factors [2, p. 131, Theorem 76], that 3.3 is necessarily summable (C, ki — m + r) 
for r = 0, 1, . . . , ra — 1 provided ki — m + r > 0. Thus all the series 3.2, 
3.3 for r = 1, 2, . . . , m are uniformly summable (C, fei). Then, by a theorem 
on differentiation of summable series [2, p. 349, Theorem 249], if the sum of 
3.2 is a function y having derivatives Dry for r = 1, 2, . . . , m then the (C, ki) 
sums of the series 3.3 are equal to these derivatives; thus 

3.4 DTy = ^ n\an cos {nx + ^rx) + &w sin (nx + hm)] = X) (^nYcn eim\ (C,&i) 

for r = 1, 2, . . . , m. 
If now F (J?) is a differential operator of order m, of suitable type, we shall 

have 
F{D)y = F{D)^a0 + J 3 F{D){an cos nx + 6W sin nx) 

3.5 = \a\ + ^ (a'n cos nx + è're sin nx) 

= E^K^=I^^, (C,*2) , 
for some integral value of k2. This will necessarily be the case if F{D) is a 
polynomial with constant coefficients; then c'n = F{in)cni with corresponding 
values for a'n, b'n; and k2 = ki. 

If then/(x) is a function which can be expanded in ( —7r, IT) as a trigonometric 
series, summable (C, &3), say 

3.6 /(x) = i«o + ]C («» cos nx + j8n sin nx) = ^ yn emx, (C, &3), 

the differential equation 3.1 with 3> = F{D)y — f{x) will be equivalent to 

3.7 §(a'0 — a0) + S tfa'n ~~ a») c o s W:x: + Q>'n — ft,) sin nx] = 0 

or 
E (*'» - 7») *'"* = 0, (C,4), 

where & is some integer, viz. the greater of k2} fe3. 
By the Heine-Cantor theory, described in §2, the equality 3.7 could be satis­

fied for all x in ( — T, IT) with the possible exception of x = TT in the field of 
convergence (i.e. with k = 0) by and only by equating to zero the coefficients 
a'n — an, b'n — fti, or c'n — yny for all integral n. The coefficients an, bn, or cn 

might thence be deduced and so give a solution of 3.1; but the general solution 
could not usually be found in this way. 
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By the Verblunsky-Wolf theory, however, the equality 3.7 will be satisfied 
in the field (C, k) where k > 1 by equating the coefficients to the corresponding 
coefficients of the general NTS of order k with singularity at x = ir, viz. 
AJC( — T, 7r) of 2.5. The corresponding coefficient-equations are 

a'o - ao = A'u a!n - an = ( - l ) V i ~nA'z + ...± n2sA'2s+1), 

Vn ~ &n = (-l)n(-nA'2 + n*A\ - . . . ± n'-'A'u); 

c'n -7n= ( - l ) V i + n A2 + . . . + n*-1 Ak); 

where s, t are the greatest integers for which 2s — 1 < k, 2t < k. These equations 
will, in suitable cases, determine the constants a'n, bf

ni or c'n, and thence an, bn, or 
cn. The required solution will then be found. If the solution, when found, is 
such that its derived series of order m is Cesàro-summable, uniformly in 
— T < — c o < x < c o < 7 r , the process is justified and the solution will be the 
true solution. 

To elucidate the process, consider the equations: 

3.8 (a) (£>2 + g2) y = 0, (b) (Z)2 + q*) y = J cot Jx, 

where q is real but not integral, finding for (b), besides the general solution, the 
special solution with initial conditions: 

(i) y is continuous (including x = ir) and periodic 2ir. 
(ii) The mean value of y over a period is y0. 
Using the real form, let y = |a 0 + J^(an cos nx + bn sin nx). The equation 

(a) then gives 

q h &o + ]C (° ~~ n ) (an cos TZX + 5W sin nx) = 0. 

If we equated the coefficients to zero, treating this series as a convergent 
trigonometric series, we should obtain only the useless particular solution 
y = 0. So equate the coefficients instead to those of a suitable NTS. Taking the 
NTS A* (-7T, TT) of 2.5 with k = 2, viz. 

Ai[h+ E (-If cos nx]+A2^2 (-lfnsmnx, 

the coefficient equations are 

ç2 |a 0 = ^ b (<?2 - rc2) a„ = i 4 i ( - l ) " , (q2 - n2) bn = i l 2 »( - l )» . 

The solution of (a) is therefore 

A I 1 , v^ ( ~" 1Y cos nx , . ^ ( — 1 )n n sin nx 

This is convergent for all x, but non-uniformly so2 in the neighbourhood of 
x = 7T unless ^12 = 0. To prove the validity of the process in this case it suffices 

2The choice of A with k equal to the order of the equation is governed by the fact that 
any greater value of k would lead only to a solution Cesàro-equivalent to the one found. 
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to observe tha t the second derived series of the series found for y is uniformly 
summable (C, 2) in ( — IT < — co < x < w < 7r) in vir tue of the equalities 

E ( — l)n ( — n ) sin nx x^ , . xW . 2 x^ ( — l)nn sin wx 
2- 2 = 2-/ ( - 1 ) nsmnx — q 2^ —2 2 . 

I t is easy to verify the solution otherwise by finding the corresponding Fourier 
series for the usual form of solution in terms of cos qx, sin qx. 

T o solve (b) we have \ cot \x = X sin nx, (C, 1) (this being the Cauchy 
principal-value Fourier series of \ cot \x) and we have only to subtract the 
coefficient 1 of sin nx in this series from bn in the above coefficient-equations. 
T h e resulting general solution of (b) is 

y = Ai 
1 , v* ( —l) w cos nx \ , A \^ ( — l)nnsm nx ^ sin nx 

\__Zq q — n J ^ _ ^ *-* ,7 _ *, q — n~ ~~* q — n 

This is convergent for all x, bu t non-uniformly about x = x. In this case, in 
consequence of the point of non-uniform summabil i ty of X s m nx a n d infinite 
discontinuity of \ cot \x a t x = 0, the second derived series is non-uniformly 
summable about x = 0 as well as x = 71-; bu t the justification applies to the two 
open intervals ( — ir, 0), (0, TT) separately. 

T o find the required special solution, condition (i) shows tha t A2 = 0 because 
the sum of the series ^( — l)nn (q2 — n2)~l sin nx is discontinuous a t x = ir 
like X ( —l)w ^ _ 1 sin nx, and (ii) shows thatAi/2q2 = ^0. T h e special solution is 
therefore 

sin nx \ -, , \-^ 2a2 cos Tzx 
y = ^0 1 + 2 - , ~~2 2~ 

L g - « . 
+ £ 2 2 

q — n 
This is absolutely and uniformly convergent for all x. 

In 3.8 if q is replaced by a positive integer N (or zero) the solution fails owing 
to the zero denominator q2 — n2 for n — N. Supposing TV > 0, the equation 
(a) then has the simple solution y = A1 cos Nx + A 2 sin Nx, which is the 
complementary function for (b). T o find a particular integral for (b) the 
procedure is to solve 
3.9 (D2 + N2)y = \ cot \x 

in a trigonometric series suitable for ( — w, ir). As above, replace \ cot \x by the 
series X sin nx, subst i tute y — \a§ + X (an cos nx + bn sin nx) and equate 
the difference of the two sides to the N T S A2( — IT, ir). T h u s 

N2 \a§ + ^ (N2 — n2) (an cos nx + bn sin nx) — ^ sin wx 

= 4 i f ë + 2 (-l)ncoswc] +-42E (-l)^sin^x. 

Equating coefficients gives 

0 X % = ( - l f i i , 0 X ^ = 1 + (~ l f iV^2, 
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and, for n ^ N, 

(N2-n2)an = ( - l ) M i , (N2 - n2) bn = 1 + (-l)n n A2, 

including N2 a0 = A\. Hence A\ — 0 and aN = A\ (an arbitrary constant); 
A2 = (-1)N+1/N and bN = 4 ' 2 (an arbitrary constant); a0 = A^N2 = 0; and, 
for n y£ N, 

_ X n l ) ^ L i _ n , 1 - (-l)nnA2 N- (~l)n+Nn 
an " N2~- n2 ~ U' bn " iV2 - rc2 " iV(iV2 - n2) ' 

The complete solution of 3.9 is therefore 

At AT I At • AT I V ^ / - ^ ( 1 ) W . 

v = i i cos iVx + 4̂ 2 sin Nx + >, —TTTT^ 2̂ — sin nx, 
iv (iv - w J 

where £ ' denotes summation with n = N omitted. It may be observed that in 
such a case the complementary function is obtained incidentally in the process 
of finding the particular integral. 

The case N = 0 is left to the reader; the solution is 

. . . v^ (— 1Y sin nx v^ sin nx 
n n 

4. Linear equation with constant coefficients. Applied to the general linear 
ordinary differential equation with constant coefficients the method of §3, 
using the NTS Am( — w, ir), yields the following theorem. 

THEOREM. Let 

(i) F(D) be a polynomial of degree m in D with constant coefficients; 
(ii) f(x) = ^ 7n e

t e , (C, k), where k is a non-negative integer, uniformly 
over ( — 7T, 7r), with the possible exclusion of the neighbourhoods of a finite number 
of exceptional points. 

Then the general solution of the ordinary differential equation 

4.1 F(D)y=f(x) 

is representable in ( — TT, IT) by a trigonometric series 

4.2 y = Y,cne
tnx 

which is convergent if k < m and summable (C, k — m) if k > m, uniformly as 
in (ii). 

The coefficients cnfor which F (in) 9^ 0 are given by 

4.3 cn = [ 7 » + (-l)n^Arn
r-l\/F(in). 

The coefficients cN, if any, for which F(iN) = 0 are arbitrary constants and, for 
every such N, 

m 

4.4 Y^+c-irz^ir-^o. 
The constants A r, with the cN, form a set of m arbitrary constants. 
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Proof. First, by expanding 1/F(in) in powers of l/n and appealing to the 
theorem on convergence factors referred to in §3 [2, p. 131, Theorem 76], it is 
seen from 4.2, 4.3 that the series for y is convergent if k < m and summable 
(C, k — m) if k > m, uniformly as required. 

Secondly, from 4.2, 4.3, 4.4, we have formally 
m 

F{D)y = £ ' yn einx + £ A ^ ' ( - 1 ) " tT1 einx + £ cN F(iN) eiNx 

r=l N 

[~ m ""] m 

= l 7 , e t e - I yN+ (-lf^ArN'-1 \etNx + £ A^ {-\)nnT-Vnx 

= / (* ) , 

where Y,N denotes summation over all integral values of N for which F(iN) = 0, 
]T' denotes summation over all other integral values of n and the summability 
is (C, k) or (C, m) according as k > m or not. 

Finally the justification of these formal equalities follows by observing that 
F(D) is a linear combination of powers DT~l with r = l , 2 , . . . , r a + l and 
that the conditions of the theorem on differentiation of summable series referred 
to in §3 [2, p. 349, Theorem 249) are satisfied in the closed intervals excluding the 
exceptional neighbourhoods. Therefore the various derived series are approp­
riately summable to the corresponding derivatives of y; and their combination, 
which is summable to / (x) , is summable to F(D)y. The theorem is established. 

It may be observed that no knowledge of the factors of F(D) is needed beyond 
that of whether or not D — iN is a factor (i.e., F(iN) = 0) for integral N. 
If the coefficients of F(D) are given algebraically, the existence and values of 
the integers N may or may not be determinable, but no difficulty can arise -
with numerical coefficients. 

It may also be noted that the class of functions/(x) which are representable 
as Cesàro sums of trigonometric series as required in the theorem includes in 
particular (a) functions which may have in ( — 7r, T) a finite number of discon­
tinuities (or of "discontinuities in the mean" in the Cesàro sense [3]) and (b) 
functions which, regarded as analytic functions,3 are meromorphic in a region 
including ( — 7r, T). 

It is observed by the referee that the complementary function of 4.1 can be 
found independently by finding the Fourier series for the C.F. in the usual form 
involving the unknown linear factors of F(D) and combining the resulting series. 

Examples of equation of this type (besides those of §3) are 

(a) (D* + D* + 1) y = \ cot ±x, (b) (D* + 1){D* + D + 1) y = x~\ 

whose solutions are 

3Such functions can be reduced to the special function i cot %x and its derivatives. 
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(a) i4i[ | + ] L ( — 1)W{ (1 "~ n2) cos wx — nz sin nx}/A 

+ 4̂ 2S ( — l)w{w4 cos nx + (^ — ^3) sin wx} /A 
+ 4̂ 3S ( — l)w{ (^2 — ^4) cos nx — nb sin nx}/A 

— J^{nd cos nx + (1 — n2) sin nx}/ A, 

with A = (1 — ?z2)2 + n6; 

(b) S ' 2 Si(W){ (nz — w) cos wx + sin UX}/TR 

+ ^4i cosx + Ai sin x + Az\\ + Z7 0{cos wx — (w3 — w) sin nx}] 

+A^' 6{(n4 — n2) cos nx+n sin TZX}+^45X/ 0{^2 cos nx—(nh — nz) sin wx} 

+^62Z / #{ (n6 — nA) cos Tzx+w3 sin nx} +A-JYL' 6{nA cos nx— (n7 — nb) sin nx}, 

with r 1 - (-l)nR = ( - l ) w ( l - n2){l + (n - n3)2}, ,4» + A, + A7 = 0, 
A± + A& = 2 Si 7r/7r; where Y, and ]T' denote summation for n from 1 to oo 
and from 2 to °o respectively, and Si(x) denotes 

Jo t 

5. Concluding remarks. Although the principles of the method, as described 
in §3, are not restricted to ordinary linear equations with constant coefficients, 
the algebraic difficulties involved in an attempt to apply it even to linear 
equations with non-constant coefficients would seem forbidding. Extension to 
partial equations in two or more variables, using such null series as 

J^ exp(imx + iny) 

might be more hopeful. 
I am indebted to the referee for useful criticism. 
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