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On nearby cycles and D-modules of log schemes
in characteristic p > 0

Takeshi Tsuji

ABSTRACT

Let K be a complete discrete valuation field of mixed characteristic (0, p) with a perfect
residue field k. For a semi-stable scheme over the ring of integers O of K or, more
generally, for a log smooth scheme of semi-stable type over k, we define nearby cycles as
a single D-module endowed with a monodromy 8i°g, whose cohomology should give the
log crystalline cohomology. We also explicitly describe the monodromy filtration of
the D-module with respect to the endomorphism 8;Og , and construct a weight spectral
sequence for the cohomology of the nearby cycles.

1. Introduction

Let K be a complete discrete valuation field of mixed characteristic (0, p) with a perfect residue
field k and let X be a proper smooth scheme over K. If X has semi-stable reduction, i.e. there
exists a proper regular model X flat over the ring of integers Ok of K such that the special
fiber Xy is a reduced divisor with normal crossings on X, then the p-adic nearby cycles, which
compute the p-adic étale cohomology of the generic fiber, are known to be described in terms of
the syntomic complexes originated from certain de Rham complexes ‘with log poles along Xj’.
For a prime [ different from p, we often understand the [-adic étale cohomology through a local
analysis of the [-adic nearby cycles even when X has worse reduction. Therefore, it is natural
to ask whether we have a corresponding p-adic theory which still works for X with reduction
worse than semi-stable. A natural framework in which we work on this problem would be the
category of D-modules (without log poles). However, even in the semi-stable reduction case,
p-adic theory has been studied by adding log poles and eliminating singularities, and is not
yet well understood from the viewpoint of D-modules except for the local results by Gros and
Narvaez-Macarro in [GNOO] and [Gro04]. Note that we have a complete theory of nearby cycles
for D-modules on complex analytic varieties (cf. [Kas83, Mal83, MS89, Sab87, Sai88]).

When X is semi-stable, we define, in this paper, nearby cycles as a single D-module which
should compute the log crystalline cohomology (Hyodo—Kato cohomology, cf. [Hyo91, HK94])
of Xp; more explicitly, we assume that p > 2 and there exists a closed immersion of Xy into a
smooth scheme Y over Spec(Wy ), where Wy = Wi (k), and define nearby cycles as a Dy, -

module endowed with a monodromy Oiog . We also explicitly describe the monodromy filtration
of the nearby cycles and its graded quotients, and construct a weight spectral sequence for the
cohomology of the nearby cycles (cf. [Sai88] for the case of complex analytic varieties). The main
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ON NEARBY CYCLES AND D-MODULES OF LOG SCHEMES IN CHARACTERISTIC p>0

differences from the results of Gros and Narvaez-Macarro mentioned above are that we work with
torsion coefficients, i.e. over Wy, and that the nearby cycles are defined globally. The weight
spectral sequence was already constructed by Mokrane for the log crystalline cohomology [Mok93]
(see also [Nak05]), and recently by Nakkajima for the relative log crystalline cohomology.
However, our method may have an advantage, for example, in studying functoriality of the weight
spectral sequences because we use filtrations of sheaves: D-modules, whereas their methods use
filtrations of complexes: de Rham—Witt complexes and de Rham complexes, respectively. The
author plans to study the functoriality in a subsequent paper (cf. [Sai03] for the [-adic case).
The coincidence of the cohomology of our nearby cycles with the log crystalline cohomology
is left as a question (Question 4.5.3) in this paper. After the first version of this paper was
written, Berthelot proved the coincidence by using his new theory interpreting direct images of
D-modules in terms of crystalline topos.

This paper is organized as follows. In §2, we summarize basic facts on D-modules for log
schemes which will be used in the following sections. Since we need to consider D-modules also
for a certain kind of non-smooth morphisms of log schemes, we try to give the details although
most of the arguments are found in the literature: [Ber90, Ber96, Ber00, Ber02, Mon02]. In § 3,
we define and study nearby cycles when a lifting of the log scheme X over the scheme Spec(Wy)
endowed with the log structure associated to N — Wy; 1+ 0 is given. In §4, we glue the nearby
cycles constructed in §3 and study their properties under the assumption that p > 2.

Notation. A log scheme is denoted by a single letter such as X, Y, ... and the log structures
(respectively the structure sheaves of the underlying schemes, respectively the underlying
schemes) of log schemes X, Y,... are denoted by Mx, My, ... (respectively Ox, Oy, ...,
respectively X , Y,) Fiber products of fine log schemes are always considered in the
category of fine log schemes (cf. [Kat89, (2.8)]). Unless we consider log structures, sheaves
are always considered in the Zariski topology. Let k be a perfect field of characteristic p > 0,
and let Sy (respectively Tj) be Spec(k) with the trivial log structure (respectively the log
structure associated to N — k; 1+ 0). Let N be a positive integer and let S (respectively T')
be Spec(Wx(k)) with the trivial log structure (respectively the log structure associated to
N — Wy (k); 1 —0). Let t denote the image of 1 € N in I'(T, My).

2. Preliminaries on the rings of differential operators for log schemes

Let X be a fine log scheme smooth over T. In this section, we define the rings of differential
operators Dy 7 and Dx/g, give interpretations of left Dy, p-modules and right Dy, p-modules
(B=S5,T) in terms of stratifications and costratifications, and discuss a natural right action of
Dx/p on AIQ 7 when X is purely of dimension d and satisfies certain conditions. We also define
and study tensor products, inverse images, and direct images. We have a natural homomorphism
of rings Dy /7 — Dx/s (2.1.8) and we also discuss the compatibility of the restriction of scalars
by this homomorphism with stratifications, costratifications, right actions on A%Q x/T, tensor
products, inverse images, and direct images (cf. Lemma 2.2.9, the second paragraph of §2.3,
Lemma 2.4.7, (2.5.1), and Corollary 2.6.10). See Montagnon’s thesis [Mon02] for the case B =T,
where the rings of differential operators for log smooth morphisms of fine log schemes were
studied. Note that X — .S is not log smooth so that we need to slightly generalize the construction
in [Mon02] to define Dy/s- See also [Ber90, Ber96, Ber00, Ber02], where the case without log

(0)

X/B for

structures is discussed. If we follow the notation in the above references, we should write D

Dx/p. However, since we consider only Dg?}  throughout this paper, we omit the superscript (0).
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2.1 Rings of differential operators
For an integer r, let X;El be the fiber product over B of 7 + 1 copies of X and let Px,p(r) be the

PD envelope of the diagonal immersion X — X;gl compatible with the canonical PD structure

of pWi. Let Px,/p(r) be the structure sheaf of the underlying scheme of Px,p(r) and let Jx,p(r)
be its PD ideal. We define P)@/B(T) — Px/p(r) to be the exact closed immersion defined by the

(n + 1)th divided power Jx,p (r)**1], We have a sequence of exact closed immersions:

X =Py p(r) = Py p(r) = Py p(r) == Py p(r) — PYfg(r) = - Px/p(r).

Let 7?;}/3(7“) denote the structure sheaf PX/B(T)/jX/B(r)[”+1] of P)Q/B(r) and let j}}/B(r)

denote its ideal Jx/p(r) /jX/B(r)[”“], which is endowed with the PD structure induced by
that of Jx/p(r). We omit (r) from the notation when = 1. We have natural PD morphisms
Pxr(r) — Px/g(r) and Py /T(r) — Pg, () compatible with the above sequence of exact closed
immersions.

First we give a local explicit description of Px/p. Let pp; denote the projection to the ith
component Pyx,p — X for i =1, 2.

PROPOSITION 2.1.1. Assume that we are given tq,...,tq € I'(X, Mx) such that {dlogt,} is
a basis of Qﬁ( /7 Then, since X — Px/p Is an exact nilimmersion, there exists a unique
upy € 1+ Jx/p such that up,, - pj; 1 (tv) = pp o(ty) in T'(Px/p, Mpy, ;) for 1 <v < d. The image
of ug, in Px/r is ur,y, so that we abbreviate up, to w, if there is no risk of confusion. In the
case B =S, there exists a unique u € 1 + Jx g such that u - p,(t) = p§4(t) in I'(Px/s, Mpy ).
Let i be 1 or 2, and regard Px,p as a sheaf of Ox-algebras via p*Byi. Then:

(1) the PD homomorphism of sheaves of Ox-algebras
OX<‘/15 ey Vd> —)PX/T

defined by V,, +— w, — 1 is an isomorphism;

(2) the PD homomorphism of sheaves of Ox-algebras
Ox<V, ‘/1, Ceey Vd> — Px/g

defined by V+—u — 1 and V,, — u, — 1 is an isomorphism.

Proof. (1) is a special case of [Kat89, Proposition 6.5]. We prove (2) for i =1. Consider the
following commutative diagram, whose left square is cartesian.

LN

TXST-%X XsT%X XSX

Put T(1) =T x g T. The chart Ny — Mrp induces a chart (N @ N)p(;) — Mp(;). We define T(1) to
be T'(1) Xgpec(z)Nan] SPec(Z)[N @ Z|, where Spec(Z)[P] denotes Spec(Z[P]) with the log struc-
ture associated to P < Z[P]. The morphism Spec(Z)[N & Z] — Spec(Z)[N @& N] is defined by N &
N — N & Z; (n, m) — (n + m, m). Then the morphism T'(1) — T'(1) is étale and the closed im-

mersion 7' — T'(1) factors through the exact closed immersion 7' — T'(1) induced by N & Z — N;

(n, m) — n. If we denote by v the image of (0,1) € N& Z in T'(T(1), M), then we have an

~ T(1)
isomorphism Wy [V] = T(T(1), O:F(1)> sending V' to v — 1. By the construction of PD envelopes
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in [Kat89, Proposition 5.3], we see that the PD envelope Pr/g of T'in T' x g T' is Spec(Wx (v — 1))
endowed with the log structure defined by N@®Z — Wy (v —1); (n,m) — o™ (if n=0), 0
(if n > 0). Since the morphism X — T is smooth and integral [Kat89, Corollary 4.4], the lower left
horizontal morphism is smooth and integral; especially, it is flat in the underlying schemes [Kat89,
Corollary 4.5]. Hence, the PD envelope of X in X xgT is isomorphic to X X, pra Pr/s;
where pr,1 denotes the projection to the first component Pr,g — T'. Especially, the structure sheaf
of rings of the PD envelope is Ox (v — 1). Since the morphism X xg X — X xg T is smooth,
the claim follows from [Tsu00, Proposition 1.8]. (Use the inverse images of t, by the second
projection X xg X — X and the projection X xg T — X.) Note that the image of v in Px/g
is u. O

COROLLARY 2.1.2 (cf. [Ber96, Proposition 2.1.3]).

(1) There exists a unique PD structure on the ideal of the structure sheaf of P /B XX P)Tg/ B
defining the exact closed immersion X — Py /B XX P)?l/ p such that the two projections
Py /B XX P)’}// g— Py /B P)’}// g are PD morphisms. Furthermore, the (n + n’ + 1)th divided
power of the PD ideal is 0. Here we regard the left Py /B (respectively the right P;g/ p) as
an X-scheme by the second (respectively the first) projection to X.

(2) There exists a unique PD structure on the ideal of the structure sheaf of Py, p X x P)’é’/B X x
P;;//,B defining the exact closed immersion X — P)%/B X x P)’},/B X x P)’}///B such that the
three projections

PYp Xx Py/p Xx Py — Px/p, Px/p: Px/p
are PD morphisms. Furthermore, the (n+n' +n” + 1)th divided power of the PD ideal
is 0.
Proof. We write P™ and J™ for 73;?/ g and J )"?/ g to simplify the notation.

(1) By Proposition 2.1.1, we see that p}: Ox — P" is flat for i = 1, 2. Hence, the PD structure
on J" (respectively J ”/) induces a PD structure of J" ®¢, pr (respectively P" @p, J "/).
Since P™ = pfl(OX) @ J™, the intersection of the above PD ideal is J" ®o j"/, on which the
two PD structures coincide:

Y (@) @ b™ = mlym (@) @ Ym(b) = a™ @ Y (b) for a € J" and be J".
The second claim follows from the formula

Ym(c+d) = Z Yrmy (€)Yms (d)

m=mi+ma2

for c € J" @p, P and d € P" ®p, J" .
(2) By (1) and the flatness of p}: Ox — P", we can define PD structures on

(T" @0y P* +P" @0, TV) ®0x P* and  (P" @0, P") @0y J" .
We can verify that they coincide on the intersection
(T" @0y P" + P oy TV) @0y I
in the same way as (1) and obtain the desired PD structure. O
By Corollary 2.1.2, the morphism
Pl pxx PYp— (X xpX) xx (X xpX)=X xp X xp X 25 X xp X
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induces a PD homomorphism
™ PRIE — Py ®ox PYp: (2.1.3)

Here p13 denotes the projection to the first and third components. The homomorphism (2.1.3)
is compatible with n and n/ in the obvious sense.

COROLLARY 2.1.4. The following diagram is commutative.

’
+ /+ " 5n+n sn + ’ "
Pyp Pyip ®ox Px/p
i&n n/+n// J{én,n,®id
n'+n'’ id®5”l’””

7)31(/3 Qox PX/B - 7);l(/B Qox P?(//B ®ox P%B

Proof. We see that every homomorphism in the diagram is a PD homomorphism for the PD
structures defined in Corollary 2.1.2. Furthermore, by the definition of 6™ we see that the two

PD homomorphisms 77 J/rgurn// =P /B ®Ox P;L('/ B ®oy Pg‘(/// p give commutative diagrams
’ " 2 2 2 4
P p Xx Py/p Xx Py )p—— Xip xx Xjp xx Xjp ==X p
l l lpm
+ /+ 1" 2
Py C X/

where p14 denotes the projection to the first and fourth components. By the universality of the
PD envelope of X in X/237 we see that the two left vertical morphisms coincide. O

Following [Ber96, Mon02], we define Dx,p ,, by
DX/B,n = HOIHOX (P;L(/S, OX)?

where we regard P?(/S as an Ox-module via pj. By Proposition 2.1.1, Dx/p,, is a locally free

sheaf of Ox-modules locally of finite type and the surjection 77;}// s — Py /s induces an injection
DX/S,n — Dx/Bm/ for n’ 2 n. We define DX/B by

Dx/p=1m Dx/pn-
n

For P € Dx/p and P' € Dy, if P € Dx;p, and P’ € Dx/p s, then we define the product P - P’
to be the composite:

! gron’ ide P’ P

X/B »Px/p ®ox Px/s Ox.

PX/p

By the compatibility of 6" for n and n/, this is well defined. By Corollary 2.1.4, the
multiplication defined above is associative, and we see easily that Dx,p with this product
structure becomes a sheaf of rings. The homomorphism

Ox — Dx/o C Dx/B

is a ring homomorphism.
We define the action of P € Dx,/p, on Ox to be the composite of

*

2 P

Ox
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We can verify that this defines an action of the ring Dx,/p by using the following commutative
diagram.

!
n4n/ ™" n n'
Px/B ~P% 5 ®ox Px/p

. |

Ox

Do ’

Px/B

PROPOSITION 2.1.5 (cf. [Mon02, §2.3.2, C]). Let t, and u,, (1 < v < d) be as in Proposition 2.1.1.
We put to =t and ug = u. Let vy be 0 (respectively 1) if B=S (respectively B="T). For n >0,
the elements

{ H (uy — D) | 0= (nyy, ... ng) € N0 ) i=ny + -+ ng < n}
vo<vr<d

are a basis of PY 5 as a left Ox-module (Proposition 2.1.1) and we define o ¢ Dx/pn to be
its dual basis. We denote by 0, the dual of u, — 1. This definition is consistent with respect to
the inclusion Dy ;g ,, — Dx;pn+1- We have the following formulae in Dx/p:

(1) 0,0, = 0,0, for vy < v, u < d;
(2) 0@ =TI1_,, [T} (9, — ) for n € No+1-w;

(3) Ov-f=0,(f)+ f-0, for f € Ox.
We also have the following equality for d: Ox — Qﬁ( /B

(4) d(f) = Xy Oulf) dlog(t).
Proof. Put 7, = u, — 1. Then (4) follows from the fact that d is given by
ps —pi: Ox — Ker(P)l(/B —0x) = Qﬁ(/B
and dlog(t,) =7, in 77)1(/3.
(1) and (2) For n € N¢*1=% and n = |n|, the image of

II =™ (meN"™70 jm|<n+1)
vo<vr<d
by the homomorphism §™!: P;‘Jé — ;L(/B R0y 73)1(/3 is
H (uu X Uy — 1)[my] = H ((Tu + 1) QT+ T & 1)[mu]
vo<v<d vo<v<d
= H (T,Lm"] ®1+ ml,TV[m”] T, + T,Lm"_l} ®T).
vo<v<d
For vy < v < d, the image of this element by

n dy n o(n)
P%/p ®ox Px/p —— Pi/p — Ox

isn, if m=mn, 1if m=n+e¢, and 0 otherwise. Here ¢, denotes the element of N¢+1-%0 whose
vth component is 1 and other components are 0. Hence, we have

O™, =n, o 4 glnter) — glotea) — glnd (g, —p ).

This implies that 9,0, = 0 *%) = 9,0, if v # u. We obtain (2) by induction on |n| using the
above formula.
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(3) In 73)1(/3, we have
ps(F)=pi(H)+ Y pi@()n

by (4). Hence, the images of 1, 7, and 7, (p # v) by

,P)l(/B p3(f) P)l(/B O Ox
are 0,(f), f, and 0, respectively. Hence, 0, - f =0,(f) + f - 0,. O

COROLLARY 2.1.6. Let the notation and assumptions be the same as in Proposition 2.1.5. For
either of the left O x-action or the right Ox-action on Dx/p , Dx/p,n is a free Ox-module with

a basis {Huogugd agy ’ ny € N? Zuoéz/éd LS n}

Proof. For the left action, the claim immediately follows from Proposition 2.1.5. The proposition
also implies that the two actions of Ox on Dx/p,/Dx/pn-1 coincide. Hence, the claim also
holds for the right action. a

We define the increasing filtration F\,Dx,p (n € Z) of Dx/p by F,Dx/p = Dx/pn (n = 0) and
F.Dx/p =0 (n<0). Since F;,Dx,p - F;nDx/p C FnymDx/p for n, m € Z, grf’ Dx/p becomes a
sheaf of rings. Put T'x,p = Homo (Q%QB, Ox).

COROLLARY 2.1.7. The sheaf of rings grf Dx/p is commutative and the isomorphism of
Ox-modules grf’ Dx/p = Homo, (Ker(pl*P)l(/B — Ox),0x) = Tx/p induces an isomorphism

of graded Ox-algebras: Symp Tx/p = grf’ Dx/p.
Proof. The map

FuDx/p X FnDx/p — & 4m Dx/5; (P, Q) — PQ — QP

is bilinear for the left actions of Oy since the two actions of Ox on grf Dx/p coincide, as is
mentioned in the proof of Corollary 2.1.6. Hence, by Proposition 2.1.5(1) and (2), we see that the
above map is 0 and gr!’ Dy p is commutative. The latter claim follows from Corollary 2.1.6. O

The morphism X x7 X — X xg X induces PD morphisms Py, — Px/g and Py Y Py /s
By taking the dual of the homomorphisms between the structure sheaves, we obtain a
homomorphism of sheaves of Ox-modules:

PROPOSITION 2.1.9. The homomorphism (2.1.8) is a ring homomorphism.

Proof. Tt suffices to prove the compatibility of 6™" with the homomorphisms P}L/S — ;?/T

(m=n,n’,n+n’). The morphism Py Xx P)?I/T — P g Xx P)’}I/S is a PD morphism. Hence,
the commutative diagram

X Xxp X xpX—X xgX xgX

p13l ipliﬂ

XXTX XXSX
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induces the following commutative diagram.
PYp Xx Py jp —= Py g Xx Px/g

! |

n-+n’ n+n’
Pyir Pxs U

Assume that the underlying scheme X of X is smooth over S and X = X x s T. Then the
diagonal immersion X — X x7p X is an exact closed immersion. Hence, the underlying scheme
of Py, is the PD envelope of X — X x s X endowed with the inverse image of M. This implies
that we have a canonical isomorphism of sheaves of O x-algebras:

Dy)r — Dy /g (2.1.10)
On the other hand, we have

Qs = Q}’(/s @ (Ox ®@or Qryg) and Qg = Or dlog(t).

By taking the dual of dlog(t), we obtain a canonical element 8i0g of
Homop, (Ox ®0, Q%,,/S, Ox) C Hom@X(Qﬁqs, Ox) CDxys,1-

ProroOSITION 2.1.11. Under the notation and assumptions as above, the differential
operator 8)°® is contained in the center of Dx/s and the homomorphism (2.1.8) induces an
isomorphism of sheaves of rings:

Dxr[V] = Dx/g; V > 0,%.

Proof. Since the question is étale local, we may assume that there exist ti,...,t; € (X, O%)
. . 1 . . . 1 . . . 1
such that {dt,} is a basis of Q)?/S' Since the image of d: Ox — 2y ¢ is contained in Q)"(/S’

Proposition 2.1.5(4) implies that 8)°8(f) = 0 for f € Ox. By Proposition 2.1.5(1), (2), and (3), we
see that aiog is contained in the center of Dy /5. The second claim follows from Corollary 2.1.6. O

2.2 Dx,p-modules and stratifications

For n e N, let p!' (i=1,2) denote the morphism P)?/B — X induced by the projection to the
ith component X/QB — X and let ¢} (j=1,2,3) denote the morphism P)’é/B(Q) — X induced
by the projection to the jth component X?B — X. Let g% ((i,7) = (1,2),(2,3),(1,3)) be the
morphism Pg /B (2) — P% /B induced by the morphism X ;’B — X/QB whose composite with the first
(respectively second) projection X/QB — X is the ith (respectively jth) projection X3, — X.

/B
Let ™ denote the exact closed immersion P3 /B P;;';El;.

THEOREM 2.2.1 (cf. [Ber96, Proposition 2.3.2] and [Mon02, Proposition 2.6.1]). The category
of left Dx,p-modules is canonically equivalent to the following category.

Object: an Ox-module £ endowed with a family of isomorphisms {e,,: p§*E =, PV E nen of
Py / p-modules satistying the following properties.

(i) Ep = idg.
(ii) For everyn €N, g, =} (ep+1).
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(iii) For every n € N, the following diagram is commutative.

a%3 (en)

g —————=qy*€
qn* (E ) J{q?; (En)
13 q?*

Morphism: a morphism (€, {e,}) — (£, {€},}) is a Ox-linear homomorphism «: & — &' such
that €, o pi*(a) = p* () o &y, for every n € N.
DEFINITION 2.2.2 (cf. [Ber96, Définition 2.3.1] and [Mon02, Définition 2.6.1]). Let £ be an
Ox-module. A PD stratification on & relative to B is a family of isomorphisms {e,: p5*& =,
P E tnen of P’y p-modules satisfying the conditions (i), (ii), and (iii) in Theorem 2.2.1.
PROPOSITION 2.2.3 (cf. [Ber96, Proposition 2.3.2] and [Mon02, Proposition 2.6.1]). The
category of left Dx p-modules is canonically equivalent to the following category.

Object: an Ox-module £ endowed with a family of homomorphisms {60,: &€ — & o,
P / ptnen Ox-linear for the right Ox-module structures of the targets satisfying the following
properties.

(i) 6o =1idg.
(ii) For every n € N, the composite of 0,41 with the homomorphism
E@ox Pyip — € ®ox Py
coincides with 0,,.
(iii) For every n,n’ € N, the following diagram is commutative.

0,

n

!
£ £ Xox PSL(/B

ien-kn/ ien ®id77;1(//3
idg@smn’

€ ®oy PYIE £ ®ox Py s ®ox Py /g

Morphism: a morphism (€, {0, }nen) — (€', {0, }nen) is an Ox-linear homomorphism
a: & — & such that 0, 0= (a® idp;(/B) o 6, for every n € N.

LEMMA 2.2.4. We regard an Ox-module as a left Ox-module. For Ox-modules or Ox-
bimodules, let Homy,.(—, —) denote the sheaf of Ox-linear homomorphisms for the left O x-action
on the source and the right Ox-action on the target. We define Homy, Hom,;, and Hom,, in
the same way.

Let £, F, and G be Ox-modules, and let M and N' be O x-bimodules locally free of finite type
as left O x-modules. Note that M ®p, N is locally free of finite type as a left Ox-module. For an
Ox-bimodule L locally free of finite type as a left O x-module, let LV denote the O x-bimodules
Homy (L, Ox ). We have a natural isomorphism of Ox-bimodules (LV)" = L.

(1) There exists a canonical Ox-bilinear isomorphism:
Homy (M ®oy €, F) = Homy, (€, F @0, M)

functorial on £ and F. Here we regard the left-hand side (LHS) (respectively the right-
hand side (RHS)) as an Ox-bimodule through the actions of Ox on M ®o, € (respectively
F oy MY).
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(2) The canonical isomorphism:
(Mo N)Y 2ZMY 20, NV
given by (1) is an isomorphism of Ox-bimodules. For f € M"Y and ge NV, f ® g of the
RHS corresponds to h = f o (idy ® g) of the LHS. Furthermore,
M@0y N2 (Mo, N)V) =2 (MY @0, NV)V2(MY)Y 20y V) 2Me0, N
is the identity map.

(3) For f € Homy(N ®o, £, F) and g € Homy(M Qo F,G), let f¥ € Homy,. (€, F @0, NV)
and g¥ € Homy,(F, G ®o, M") be the homomorphisms corresponding to f and g by (1).
Then the composite of

Vi gv®1dNV
-

v (2)
EJ—JW%XN G®ox MY @0 NV =G R0 (Mo, N)Y

corresponds to the composite of
id
M@o, N ®oy € -8, Moo, F-2s¢

by (1).

(3) For f € Homy(NY ®o, &, F) and g € Homy(MY @p, F,G), let f¥ € Homy,. (€, F @0y N)
and g¥ € Homy,(F,G ®o, M) be the homomorphisms corresponding to f and g by (1).
Then the composite of

\ Vv id
£t Foo, N L8N, 650, Moo, N
corresponds to the composite of

Y @ v v idyv®F
(Mo, N) @0y EEZMY @0, NV @0 € —————

by (1).
(4) Let f: M — N be a homomorphism of Ox-bimodules and let f: NV — MV be its dual.
Then the following diagram is commutative.

Mv®oxfi>g

Homy(M @0, €, F) %Homlr(é’, F @0y MY)

To(f@ds) T(id}"@f\/)o_
Homy (N @0, €, F) %Homh(é’, F @0,y NV)

Proof. (1) The map from the LHS to the RHS is defined as follows. We identify F ®o, M"
with Homy; (M, F). Note that M is locally free of finite type as a left Ox-module by
assumption. For a local section of the LHS f: M ®p, &€ — F, we define the corresponding map
g: € — Homy (M, F) by g(e) = fe, fe(m) = f(m ®e). One can verify that f. € Homy(M, F),
g € Homy,. (€, Homy (M, F)) and the map thus obtained is a homomorphism of Ox-bimodules.
The map from the RHS to the LHS is defined as follows. For a local section of the RHS
g: &€ — Homy (M, F), we define f: M®Rp, € —F by f(m®e)={g(e)}(m). One can verify
that f is well defined and contained in the LHS. It is straightforward to see that these two maps
are the inverse of each other.

(2) The natural isomorphism

MY Koy NV = Homlr(/\/', HOmZZ(M, Ox))
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sends f ® g to ¢ defined by ¢(n)= f-g(n). Hence, the image h of f® g in Hom;(M ®@op,
N, Ox) is given by
h(m @ n) ={e(n)}(m) ={f-g(n)}(m) = f(m - g(n)) = f o (idp ® g)(m @ n).

This implies that the isomorphism is compatible with the left and right actions of Ox. For the
last claim, using the above description, one can verify that the images of m ® n € M ®p, N in

(MV ®(9X NV)\/ = Hom”(./\/lv ®0X NV, Ox)

y the two maps (the composite of the left two 1Isomorphisms and that of the right two) are the
by th h ite of the lef i hi d that of the righ h
same and given by f ® g — f(m - g(n)).

e homomorphisms fV: & — Homy (N, and ¢¥: F — Homy; (M, G) are given by
3) The h hi Ve E&E—H N,F) and ¢g¥: F —H M., G i b
{f¥Y(z)}(n) = f(n®z) and {g"(y)}(m) = g(m @ y). This implies that the homomorphism
(¢¥ @idparv) o f¥: € Homy, (N, Homy (M, G))
is given by
p:x—{n—me—gme f(n®x))]}.

On the other hand, the homomorphism £ — Homy; (M ®p, N, G) corresponding to g o (idy @
f)is given by ¢: x — {m@n— g(m® f(n ® x))}. Hence, the claim follows from the following
commutative diagram.

Homll (M ®0X N7 g) HomlT‘ (N7 Homll (M7 g))

~l ~l

g ROy Homu(/\/l Rox N, Ox) Tg(D) g Rox Homlr(./\/', Homll(./\/l, Ox))

Note that the upper horizontal map sends ¥ (x) to ¢(z) for x € £.

(3)" By (3), we are reduced to the following commutative diagram.

Homy (MY @o, NV @0y E,0G) = Homy, (€, G ®o, (MY @0, NV)Y)

%l ) %i

Homy (M @ N)Y ®o, €, G) % Homy, (€, G @0, (M@0, N)V)Y)

(2)
where the left (respectively right) vertical map is induced by a: (M @N)¥ = MY @ MY
(2)
(respectively f: (MY @ NVY)Y =2 (MY)V @ ( NV)V XM N = (MN)Y)Y). By (2), we see
that (8 is the dual of a, and the commutativity is reduced to (4).
(4) Straightforward computation. O

Proof of Proposition 2.2.3. Let € be an O x-module. By Lemma 2.2.4(1) and (4), giving a system
{0} satisfying (i) and (ii) is equivalent to giving a system of homomorphisms {7, : Dx/p, ®ox
E — E}nen linear for the left Ox-module structures of the sources such that ny =idg and the
composite of 7,41 with Dx /g, ®oyx € = Dx/pns1 ®ox € coincides with n, for every n € N.
By Lemma 2.2.4(3)" and (4), the condition (iii) is equivalent to the commutativity of the
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following diagram.

, (6n,n,)\/®id£
(Px/p ®ox Px/p)’ ®ox € ———————>Dx/B.nin’ Qox €

lnnJrn’

DX/B,n ®Ox & £

(Dx/B,n ®ox Dx/Bn') Qox €

- >
Lemma 2.2.4(2)
\LidDX/B’n ®mn,,1

Since the composite of the isomorphism Dx /g ,, ®0y Dx/Bn = (P}/B ®oy P;‘(//B)V with (677 )V
is the ring product by the description of the isomorphism in Lemma 2.2.4(2), this is equivalent to
saying that the homomorphism Dy, p ®oy £ — £ induced by {n,} makes £ a left Dx,g-module.
By the functoriality of the isomorphism in Lemma 2.2.4(1), we see that the above correspondence
gives the desired equivalence of categories. O

Proof of Theorem 2.2.1. Let € be an Ox-module, let {0,,: € — € ®o, P?(/B}neN be a family of
homomorphisms O x-linear for the right Ox-module structures of the targets, and let

(60 7€ = PRy S0y £ = 90, Phys =i Ehucr

be the family of homomorphisms of Px/p ,-modules associated to {6, }. By Proposition 2.2.3,
it suffices to prove that the conditions (i), (ii), and (iii) in the theorem are equivalent to those
in Proposition 2.2.3 and that &, is an isomorphism. The equivalence for (i) and (ii) is trivial.
Assume that the conditions (i) and (ii) are satisfied. Let p?é"/ and pgénl denote the projections

n,Mn

from PY /B XX P)’é// g to Py /B and P)@// > respectively, and let p;3 " denote the PD morphism

PY/p Xx P)’é//B — P considered after Corollary 2.1.2. For j=1,2,3, let r?’”/ denote the

X/B
composite of P)’}/B X x P)’}//B — X?B with the jth projection X?B — X. Then we have PD
morphisms
P;l/iré{n’n/}@) — P}/ xx PYp— P;7§’+1(2)

compatible with ¢f;, ¢} and p?j’",, o

;7 in the obvious sense. Hence, the condition (iii) in the
theorem is equivalent to

! !/ !
P13 (en) 0Py " (ew) = P13 " (Entn)

for every m,n’ € N. Noting that 6™ is the homomorphism induced by p?én,, we see that the
above equality is equivalent to

(0 @idy, ) o b,y = (ide @ 6™ ) 0 Oy

P
It remains to prove that &, is an isomorphism. Let 7 be the PD morphism P¥ /B P3 / 5(2)
induced by the morphism (p1, p2, p1): X/QB — X?B and let ¢ be the PD isomorphism P}}/B —
Pg /B induced by the isomorphism (p2, p1): X?B — X/QB exchanging the two components. Then

by pulling back the commutative diagram of the condition (iii) in the theorem by 7 and 7 o,
we obtain &, 0 ¢*(e5) = idyn(g) and ¢*(e,) 0 &n = idyp=(g)- O

Let a: A — B be a homomorphism of sheaves of commutative rings on a topological space.
We define functors o* and a! from the category of A-modules to that of B-modules by
(M) =B®4 M and af(M) =Hom(B, M). Let a, denote the functor from the category
of B-modules to that of A-modules obtained by regarding B-modules as A-modules via «. The
functor a* is a left adjoint of ay. The functor of is a right adjoint of a; for an A-module M
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and a B-module N, we have a canonical isomorphism
Hom4 (N, M) =2 Hompg(N, Hom4 (B, M)).

An element ¢ of the LHS and an element 1 of the RHS correspond to each other by the
following formulae: {¢(n)}(b) = ¢(bn) and ¢(n) = {1(n)}(1). By the above property, we have a
canonical isomorphism % o af 2 (5 o a)? for another homomorphism of sheaves of commutative
rings #: B — C; for an A-module M, we have a canonical isomorphism

Homp(C, Hom 4(B, M)) = Hom4(C, M).

A local section ¢ of the LHS and a local section % of the RHS correspond to each other by
the following formulae: 1 (c) = {¢(c)}(1) and {p(c)}(b) =1 (cb). For an A-module M and a
B-module N, the adjunction maps a,a?M — M and N — ala, N are explicitly given by

Homy (B, M) = M; p— (1) and N — Homu(B,N);n— {b—b-n}.

For a morphism of schemes f: U’ — U such that the underlying morphism of topological
spaces is a homeomorphism, we define a functor f% from the category of Op-modules to that of
Opr-modules by

FHM) =Hom -1 (0,,)(Our, fHM)).

Then f% is a right adjoint of the direct image functor f,. We have a canonical isomorphism
g% o fi=(f og)? for another morphism of schemes g: U” — U’ satisfying the same condition

as f.
For n € N, let

and .": Py, p — P;'/% be the same as before Theorem 2.2.1.
THEOREM 2.2.5 (cf. [Ber00, Proposition 1.1.4]). The category of right Dx,p-modules is
canonically equivalent to the following category.
Object: an Ox-module M endowed with a family of isomorphisms {&,, : p?u/\/l =, pS“M}neN
of P / p-modules satisfying the following properties.
(i) g0 = idM.
(ii) ForneN, g, = ™ (gn41).

(iii) For n € N, the following diagram is commutative.

qzlgh(an)

g M a5 M

nf

(en)
75 (en) J«qgg :
a3 M

Morphism: a morphism (M, {e,}) — (M’, {e].}) is an Ox-linear homomorphism a: M — M’

nj

such that &/, o p?*(a) = pi*(a) o &p.

DEFINITION 2.2.6 (cf. [Ber00, Définition 1.1.3]). Let M be an Ox-module. A PD costratification
on M relative to B is a family of isomorphisms {e,: p?u/\/l =, pZ}”M}neN of P} / p-modules
satisfying the conditions (i), (ii), and (iii) in Theorem 2.2.5.
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/ nyn’ N n7n’ . .
For n, ' €N, let p;;" ((¢,7) = (1,2), (2,3), (1,3)), and r;"" (j =1, 2,3) be the same as in
the proof of Theorem 2.2.1. We have

’ / ’ / ’ / / /
nn __ n n,n __ _n+n 7,1 nn __ n nn _ . n 7,1
' =DP1°P12 =P °P13 » T9 =DP2°P1g =DP1 ©9Po3 »

and

nn' _  n4n/ nn' _ nf n,n’
s =Ds ©P13 =Pz OPa3 -

PROPOSITION 2.2.7 (cf. [Ber00, Proposition 1.1.4]). The category of right Dy, p-modules is
canonically equivalent to the following category.
Object: an Ox-module M endowed with a family of homomorphisms {fi: pg*p?u./\/l —
M}hen of Ox-modules satisfying the following properties.
(i) po=idum.
(ii) The composite of pi,+1 with

n+1 d;
PR M 2 it A P Bt g

coincides with p, for every n € N.

(iii) For n,n' € N, the following diagram is commutative.

M —— py M

o

'un+n/

P M = M

Here the upper horizontal homomorphism is induced by u,, as follows. The composite of p,
with the homomorphism

n,n’ nn'f nl n,n’ nn'f nhM 5, (adj)

pl*p23* p12 pluM = pg*pIQ* p12 p2*p1uM
induces
Py bl M — M.

Taking pgi, we obtain the desired homomorphism. The left vertical homomorphism is
n,n'f

induced by the adjunction qugz/pl?) — id.

Proof. Let M be an Ox-module. The homomorphism
P2 M — i pt M

is the homomorphism

Homoy (P, P}, /5. M) — Homo, (9 PLLM)
defined by the composition with (" P"‘/Lé — Py /B Hence, giving a system {u,} satisfying
(i) and (ii) is equivalent to giving a system of homomorphisms {x,: M ®oy Dx/Bn — M}nen
linear for the right Ox-module structures of the sources such that kg = id and compatible with
respect to the injection

M ®ox DX/B»TL —M ®ox DX/B,nJrl for n € N.
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Hence, it suffices to prove that the condition (iii) is equivalent to the commutativity of the
following diagram.

””®idDX/B n'

M®oy Dx/Bn ®0x Dx/Bw M ®@oy Dx/w
\LidM®pr0d lnn/
ffn n!
M ®ox DX/B,n—I—n’ u M

The upper horizontal homomorphism of the diagram in (iii) is the homomorphism
Homoy (r1+(P% 5 ®ox Pi/p), M) — Homoy (1. Py, 5, M)
sending ¢ to ¢ defined by
¥ (b) = ({1 P/ g = Miar— p(a @ b)}).
The left vertical homomorphism is

Homoy (7‘1*(77;7’(/3 Qox P;L(I/B)v M) — Homo (p?:_n P;L(—}_g’ M)

defined by the composition with 6" . Hence, via the isomorphism

o~

M®ox Dx/pn ®0x Dx/Bw M®oy (Px/p ®ox 7D?cl/B)v

Lemma 2.2.4(2)
— Homoy (r1(Pk 5 @ox PX;p): M)
sending m® P ® Q to (P o id'p;l(/B ® Q) - m, the two diagrams in question coincide. O

Proof of Theorem 2.2.5. Let M be an Ox-module. Let {py: pz*plh(M) — M}pen be a
family of homomorphisms of Ox-modules, and let {e,: plh/\/l — py M}nEN be the family of
homomorphisms of P / p-modules associated to p,. By Proposition 2.2.7, it suffices to prove
that the conditions (i), (ii), and (iii) in the theorem are equivalent to those in Proposition 2.2.7
and that &, is an isomorphism. The equivalence for (i) is trivial. By taking the adjoints of the
condition (ii) in Proposition 2.2.7 with respect to an and then to (™, we obtain the condition
(ii) in the theorem. Now we assume that the conditions (i) and (ii) are satisfied. To simplify the
notation, we abbreviate p:-f’j"/ and 7“?’"/ to pi; and 7; in the following. By the same argument
as in the proof of Theorem 2.2.1, we see that the condition (iii) in the theorem is equivalent
to saying that we have pg3(6n/) o pum(an) = p53(€n+n/) on Pg,p Xx P)’}I/B, for every n,n’ € N. On
the other hand, the condition (iii) in Proposition 2.2.7 is equivalent to saying that the following
diagram obtained by taking 7"5 of the diagram in Proposition 2.2.7(iii) and composing with

rg./\/l — rgrg*rli/\/l is commutative.

THM 7'3192;1?1 uM

| |

Tzhapgj " n+n ‘M ; 7"3M
The composite of the right vertical homomorphism with

' p23p1 hM _’p23p2 h172>;<pl bM = T‘3p2*p1 hM
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is pg3 (€n7). The upper horizontal homomorphism of the diagram in Proposition 2.2.7(iii) is defined
to be pgi(zp) for a morphism ): p23*7”5./\/l — py “M. This implies that the upper horizontal
homomorphism of the above diagram is the composite of

dij ] '
YR Y Y LI R LY VI JY

with the homomorphism ¢. The former homomorphism is obtained by taking the adjoint of
p3, (adj) n
DB p12epl P M s pl prE M s

with respect to ro = pJ opio :p?/ o pe3, and it coincides with piQ(an) by Lemma 2.2.8 below.

Similarly, the composite of the left vertical homomorphism with the bottom horizontal one is
the adjoint of
n-+n

, ’ Py /(adj) / / Hoy !
pgjn pls*Pigp?M hM = pgjn p?Jrn hM — s M

with respect to r3 = pg”r”/ o p13, and it coincides with pqg(snﬂl/) by Lemma 2.2.8 below. Thus, we
obtain the desired equivalence for (iii). By the same argument as in the proof of Theorem 2.2.1,
we see that the conditions (i), (ii), and (iii) of the theorem imply that ¢, is an isomorphism. O

a
LEMMA 2.2.8. Let A:&BLC be morphisms of sheaves of commutative rings on a
a2

topological space. Let F and G be sheaves of A-modules and let o: ag*aifﬁ G be an A-
linear homomorphism, which induces a B-linear homomorphism : aﬁ}" —>a§g. Then the
homomorphism (%(1)): Bhai}" — ﬁuagg coincides with that induced by the composite of ¢ with

a2*(adj) : 042*5*@04?.7: - Olg*aig.
Proof. Exercise. O

The equivalence of categories in Theorems 2.2.1 and 2.2.5 for the two bases S and T is
compatible with the change of base T'— S as follows.

LEMMA 2.2.9. Let r"™ denote the natural morphism P)’}/T — P)’}/S.

(1) Let & be a left Dxg-module and let £ be the Ox-module £ regarded as a left Dx p-module
via the ring homomorphism Dx;p — Dx;s (2.1.8). Then the PD stratification of &' relative
to T' is obtained by taking r™* of the PD stratification of £ relative to S.

(2) Let M be a right Dx;s-module and let M" be the O x-module M regarded as a right Dx -
module via the ring homomorphism Dy, — Dx/g (2.1.8). Then the PD costratification
of M relative to T is obtained by taking "% of the PD costratification of M relative to S.

Proof. Straightforward. O

2.3 The right Dx/p-module Q‘)l(/T

For a noetherian scheme Y, let D(Y") denote the derived category of the category of Oy-modules
and let DF(Y) denote the full subcategory of D(Y') consisting of complexes bounded below
with coherent cohomology. Then, for a morphism of noetherian schemes g: Y — Z which is of
finite type, we have a functor ¢': D} (Z) — DF(Y)) with the trace map Tr,: Rg.g' — 1 [Har66).
If ¢ is finite, then the functor ¢' is canonically isomorphic to the functor g*RHomop, (9:Oy, —),
where g denotes the morphism of ringed spaces (Y, Oy) — (Z, g.Oy ). Especially, if the underlying
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morphism of topological spaces of g is a homeomorphism and ¢ is flat, then, for a coherent
sheaf £ of Oz-modules M, we have a canonical isomorphism ¢*M 22 ¢'M in DF(Y). If g is
smooth and Q%,/Z has constant rank d, then the functor ¢' is canonically isomorphic to the
functor Lg*(—) ®H@Y le,/Z[d].

Assume that Mx is saturated, the morphism f: X — T is universally saturated (see [Tsu99,
Definition 2.17] for example), Qﬁ( T has constant rank d, and f is of finite type. We define the

ideal Iy of My as in [Tsu99, §2]. Then we have a canonical isomorphism f'(Or) 21,04 /T[d]
by [Tsu99, Theorem 2.21(ii)]. The underlying morphisms of schemes of the composite of f with
the two projections pi': Py /B X (i=1,2) coincide. Hence, we have a canonical isomorphism
p?h(Ingl(/T) %pgh(lfﬂgl(/T) satisfying the conditions (i), (ii), and (iii) in Theorem 2.2.5. Hence,
Ingl(/T is canonically regarded as a right Dx, p-module. By Lemma 2.2.9(2), we see that
the action of Dx/r on Ifﬁg(/T coincides with that induced by the action of Dx/g on Ifﬁg(/s
through the homomorphism (2.1.8).

First assume that the underlying scheme X of X is smooth over S and X = X x sT.
Then the morphism X xg¢ X — X xg¢ X induces PD morphisms Pg /s ™ P;% /s Here we define

P}é /s in the same way as P)@/S using the PD envelope of the diagonal immersion X —

X Xg X. By taking the dual of the homomorphisms between the structure sheaves, we obtain a
homomorphism of sheaves of Ox-modules:
By a similar argument as in the proof of Proposition 2.1.9, we obtain the following proposition.

PROPOSITION 2.3.2. The homomorphism (2.3.1) is a ring homomorphism.

The composite of (2.3.1) with (2.1.8) coincides with the isomorphism (2.1.10).

LEMMA 2.3.3. Let 9)°® be as before Proposition 2.1.11. Then the image of 8,°* under the
homomorphism (2.3.1) is 0.

Proof. This immediately follows from the definition of Z?iog and the isomorphisms P}(/Sg

Ox @ Qﬁ(/s and 77}(/8 20x P Q}(/S, where the LHS’s are regarded as Ox-modules via pj. O

Since X = X x g T, we have a canonical isomorphism Qi — Q?(/T and Iy = Mx.

/S
ProprosITION 2.3.4. If we identify Qi?/s with le(/T by the above isomorphism, then

the natural action of Dx/g on le(/T coincides with the action of Dx/g on Q;le( s through the

/
homomorphism (2.3.1).

Proof. We have a commutative diagram of fine log schemes.
s —= % s

p?upg p?upél

X X

Hence, the isomorphism p?ngl( T ~ pgbﬁgf /7 on Py /s is obtained by applying the functor 7r7b1 to
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nb(d nb d n
the isomorphism pj QX/S QX/S on PX/S Hence, by Lemma 2.2.8,

d ~ bod d
Q%1 ®ox Dx/s = ol Vxr — U
coincides with the composite
d ph, (adj) d d
pZ*Wanhp?mx/S — Dk 1*QX/S =%

The first homomorphism coincides with the homomorphism
d d
QX/S DX/S_>Q)°(/S R0y D)?/S
induced by (2.3.1). O

We again consider a smooth and universally saturated morphism f: X — T of fine and
saturated log schemes such that Qﬁ( T has constant rank d and f is of finite type. Assume that
Iy = Mx. We give an explicit local description of the action of Dx,p. Since the action of Dx/p
coincides with the action of Dy /7 via the homomorphism (2.1.8), it suffices to consider the case
B = S. Assume that we are given ¢y, ..., tq € I'(X, M) as in the beginning of Proposition 2.1.1.
We define 0, € Dx/s (0 <v < d) as in Proposition 2.1.5.

PRrROPOSITION 2.3.5. Let the notation and assumptions be as above. Then, for 0 <v < d and
x € Ox, we have

(xdlogty ANdlogta A---ANdlogty)0, =—0,(z)dlogty ANdlogta A--- Adlogty.
Especially, the action of Jy on le( /T is 0.

Proof. Put w=dlogti A---ANdlogty. By Proposition 2 1.5(3), it suffices to prove that w - 9, =
0. Let X’ be the open subscheme {x € X]MTS/O s — Mxz/Ox ;} of X endowed with the
inverse image of My. Then X is dense in X [Tsu99, Lemma 2.18 and its proof] and the morphism
X' — S is smooth [Kat89, Proposition 3.8]. Let j denote the morphism X’ — X, and let Xy, X{),
and jo denote the reductions mod p of X, X’  and j, respectively. Since k[P] is Cohen—Macaulay
for a finitely generated, saturated and integral monoid P [Hoc72], Xy is Cohen-Macaulay by
O . . d . d .
[Kat89, Theoremo 3.5]. Hence, X is reduced and the homomorphism €5 T —>]0*QX6 T 18
injective. Since X — S is flat [Kat89, Corollaries 4.4, 4.5], this implies that Qg( T j*Qg(, T
is also injective. Hence, we may replace X with X’ and assume that Mx = f*(Mp). We may
also assume that X is connected. Then we have I'(X, Mx) =t x I'(X, O% Y)and t, (1<v<d)
is written in the form ¢"wu, for some n, € N and u, € T'(X, O% <) We have dlogt, =dlogu,
in QX/T If we define D, € DX/S (1 <v <d) to be the differential operators corresponding to
the dual basis of duy, ..., dug € QX/S,

and wu, D,. By Proposition 2.3.4 and [Ber00, Théoréme 1.2.3|, we obtain w - 9y = 0 and

then the images of Jy and 9, (1 <v <d) in D)o(/s are 0

w-@,,:(dlogul/\'--/\dlogud)-uVD,,:—Dy( H ul,1>(du1 A~ ANdug) =0
1<p<d,pty

for 1 <v<d. O

2.4 Tensor products of Dx,g-modules

PROPOSITION 2.4.1 (cf. [Ber96, Corollaire 2.3.3], [Ber00, Proposition 1.1.7] and [Mon02, Coro-
llaire 2.6.1(i)]). Let €& and F be left Dx g-modules and let M and N be right Dx;p-modules.
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Then £ ®p, F and Homoe, (M, N) have natural left Dy, p-module structures and M ®oy €
has a natural right Dxp-module structure.

Let a: A — B be a homomorphism of sheaves of commutative rings on a topological space,
and let F and G be sheaves of A-modules. The composite of

o (0P F @5 a*(G)) = . F ®40 digd | ®a4G
induces a homomorphism
o (F) @p a*(G) — of(F @4 G), (2.4.2)

and the composite of
Homu(F, G) — Hom (w0 F, G) —— a,Homp(alF, afG)
induces a homomorphism
o (Homy(F, G)) — Homp(a*F, aG). (2.4.3)
LEMMA 2.4.4. Let o, F, and G be as above.

(1) If B is locally free of finite type as a sheaf of A-modules, then the homomorphisms (2.4.2)
and (2.4.3) are isomorphisms.

(2) Let 3: B — C be another homomorphism of sheaves of commutative rings and put vy = (3 o «.
Then the homomorphism (2.4.2) for v: *(F) ®c v*(G) — Y*(F ®4 G) coincides with the
following composite of the homomorphisms (2.4.2) for o and

B: B af(F) @ B 0’ (G) — FH(af(F) @5 a*(G) — Fo'(F @ 9).
The same holds for (2.4.3).
Proof. (1) The homomorphism (2.4.2) is given by
HomA(B, F) ®@p a*(G) — Homu(B, F ®4G); ¢®a(z)—1,1%(b)=p(b) @z
The RHS of (2.4.3) is canonically isomorphic to Hom4(Hom4(B, F),G), and the homo-
morphism (2.4.3) is given by
Homu(F, G) ©a B — Homa(Homu(B, F),G); ¢ @b, (k) = @(k(D)).
By taking a basis of B over A locally, we see that these are isomorphisms.

(2) For (2.4.2), by using Home(—, #%(~)) = Homp(B(—), ~) and then Homp(—, af(~)) =
Hom (. (=), ~), we are reduced to the commutativity of the following diagram.

’Y*(’Yhf ®c 7" (9)) = a*ﬂ*(ﬁhah}— ®c B*a*G)

1%

\
%T . (Bl F ®p a*G)
= —
YYIF @4 G == (3.3 F) @4 G _ a(dfF ®@pa*G)
\ /
\ el F 4G
o

F®aG
Similarly, for (2.4.3), by using
Homge (87(—), ~) = Homp(—, B(~))
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and then
Homp(a*(—), ~) = Homg(—, ax(~)),

we are reduced to the commutativity of the following diagram.

Hom 4 (F,G)
\
/ Homa(a@®F,G)
/ \_
Hom 4 (77" F, G) == Homa (a3 3% F,G) _ o Homg (o F, afG)
K /
ET ~ a*HomB(ﬂ*ﬂhahfa ahg)

/

Yo Home (VI F, 48G) = a, S Home (B ol F, B2alG)

Proof of Proposition 2.4.1. By Theorem 2.2.1 (respectively Theorem 2.2.5), there exist
isomorphisms pi*€ —— p*E and pi*F —— p*F (respectively p?uM — pgh/\/l and p?hj\f -
pgh./\/' ) satisfying the conditions (i), (ii), and (iii) in Theorem 2.2.1 (respectively Theorem 2.2.5).
By Lemma 2.4.4(1), these isomorphisms induce isomorphisms
pg* (5 Qox f) gp?* (8 Qox f)? pg*Hom@X <M7 N) gpTlH”HOHIOX (M, N)
and
PPM ®oy €)= pyi(M ®oy ).
Using Lemma 2.4.4, we can verify that the first and the second (respectively the third)

isomorphisms satisfy the conditions (i), (ii), and (iii) in Theorem 2.2.1 (respectively
Theorem 2.2.5). O

PROPOSITION 2.4.5 (cf. [Ber96, Corollaire 2.3.3], [Ber00, Proposition 1.1.7] and [Mon02,
Corollaire 2.6.1(i)]). Let £ and F be left Dx p-modules, and let M and N be right Dx,p-
modules. Let ti,...,tq be as in Proposition 2.1.1 and let 0, € Dx;p (vo <v <d) be as in
Proposition 2.1.5. Then the actions of 8, on the left Dx,g-modules £ ®o F, Homo (M, N)
and the right Dy, p-modules M ®p € are described as follows:
Ohe®@f)=(0e) f+e® (0.f), ecf&, felF,
(Bvp)(m) = p(md,) — p(m)d,, ¢ € Homp, (M, N),me M,
(m®e)d,=(md,) ®e—m® (dye), meM,eecf.

Proof. For a left Dx/p-module G, the associated 77)1( / p-linear isomorphism

py'G="Px/p ®ox ¢ — G @ox Px/p=11"0

is given by 1@x—2®1+ >, 0,(r) ® (u, —1). Its inverse coincides with the pull-back by
the isomorphism inv: P)l( /B =, )1( /B induced by the isomorphism X xp X =X x B X
exchanging the two components (cf. the proof of Theorem 2.2.1). Since the pull-back of u,
is u;'=(14wu, —1)"1=1—(u, — 1), we see that the inverse is given by r®1—1®z —
>, (uy — 1) ® 0y (x). Put D’X/B | = Homop, (pQ*P)l(/B, Ox). Let 1, 0, € D’X/B | denote the dual
basis of the basis 1, u;! —1=—(u, — 1) of pz*P)l(/B. Then, for a right Dx/g-module L, the
associated isomorphism

ph1£ =L Qoy DX/BJ — D/X/B,l Qoy L= pgﬁ
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is given by y®1—1®y and y ® 9, — 1 ® (yd,) — 9], @ y. Its inverse coincides with the pull-
back by the isomorphism inv above, which is given by 1® y+—y® 1 and 9, @ y — (y9,) ® 1 —
Yy R 0y

Now the image of p5(m ® n) by the isomorphism

PM O N) = pi (M) @py | BiN)
is

<1®m+2(uy— 1)®aym> ® <1®n+2(uy— 1>®ayn>,
whose image in pj(M @ N) is

pim@n) + Y (u, — Dpi((d,m) @ n+m @ (9,m)).

v

This implies the first equality. The image of p3(¢) by the isomorphism
p3(Homo (M, N)) = Hompy  (pM, piN)

is given by
k= P2 Py — N ar p(k(a))}
(cf. the proof of Lemma 2.4.4). Its image under the isomorphism

Homp)l(/B (pg/\/t, pg/\/) — Homp;(/B (pi./\/l, pi/\f)
is given by

M ®@ox Dx/p1 — DS{/BJ ®ox M — D/X/B,l ®ox N — N ®oy Dx/p,

m® 1 —1l®m —1® @(m) —p(m)®1
m® 0y, —1® (mdy) = 1@ ¢p(moy) = (p(mdy) — p(m)dy) ® 1
—9,@m — 9, ® p(m) + p(m) ® 9,

This coincides with the image of

p@ 14> 0@ (uy — 1) € Homoy (M, N) ®0y Py /p,

where ¢, (m) = p(md,) — ¢(m)d,. Thus, we obtain the second equality. The image of
m®e®d, € Moy € oy Dx/p1 =DM 20y &)

in
1 *
(Dy/p1 ®ox €) @py (P2 Px/p @0y €) = PsM Sp1  p3E
is
(1®@md, — 8, @m) ® <1®e—2(uu—1)®8ue>,
I

whose image in D’X/B 1 ®oxy M ®py € is given by 1 ® (md, ® e —m ® dye) — 0, ® m & e. This
implies the third equality. O

PROPOSITION 2.4.6. Assume that there exists a right Dx,g-module L such that L is invertible
as an Ox-module. Then the functor from the category of left Dy p-modules to the category of
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right Dx/p-modules defined by £ — L ®o, € is an equivalence of categories. A quasi-inverse is
given by M — L7 @0, M= Homp, (L, M).

Proof. It suffices to prove that the natural isomorphisms £7! ®oyx L®oy E2E and L ®oy
L7 ®0, M= M are compatible with the actions of Dy/p- By a straightforward computation,
one can verify that the composites of the following sequences of homomorphisms are the identity
maps for ¢ =1 and 2, which implies the desired compatibility:

PIE = DL L @pn i Elpn = (1L, (L By E)lpn = PIIL L @0y Elox =PI7E,
DM = PI(L @0y (£, Mloy) = piPL @pn pI*[L, Moy =P L @pn [ L, pj*Mpn — pj*M.

Here P™ denotes P?(/B, and [—, ~] 4 denotes Hom4(—, ~) for A= Ox, P". O

If Mx is saturated, f: X — T is universally saturated, f is of finite type, Iy = Mx, and Qﬁ(/T
has a constant rank d, then one can apply Proposition 2.4.6 above to £ = Qg( /T

LEMMA 2.4.7. Let £ and F (respectively M and N') be left (respectively right) Dxg-modules.
Let & and F' (respectively M’ and N') be £ and F (respectively M and N') regarded as left
(respectively right) Dy p-modules via Dx;p — Dx/g (2.1.8). Then the natural isomorphisms
E®oy F=E ®oy F', Homp, (M, N)=Homp, (M, N'), and M®o, EZM ®0, & are
compatible with the actions of Dy g and Dxr via (2.1.8).

Proof. This follows from the proof of Proposition 2.4.1, Lemmas 2.2.9 and 2.4.4, and the
functoriality of (2.4.2) and (2.4.3) with respect to F and G. O

2.5 Inverse images

Let X’ be another fine log scheme smooth over T' and let g: X’ — X be a morphism over T.
Then g induces PD morphisms Py, 5 (r) — P% /B (r) (r,n € N) compatible with the projections.
By pulling back stratifications by the above PD morphisms for » =1 (cf. Theorem 2.2.1), we
see that, for a left Dy, p-module F, the inverse image 973(‘7:) = Ox’ ®g-1(0y) g Y(F) as an
Ox-module is canonically regarded as a left Dx/ p-module. Thus, we obtain a functor gj,
from the category Dx,p-Mod of left Dy p-modules to the category Dy ,p-Mod of left Dy, p-
modules. For another morphism h: X” — X’ of smooth fine log schemes over T', we have a natural
isomorphism of functors (g o h)“; p=hjpogjp By Lemma 2.2.9(1), the following diagram is
commutative up to canonical isomorphisms.

Dx/s—MOd L) DX/T—MOCI
gjsi g’/“Ti (2.5.1)
Dx1/s-Mod > Dy /r-Mod

Here the horizontal arrows are the functors induced by the ring homomorphisms (2.1.8) for X
and X'.

The functor g’/k g is determined by the reduction mod p of g up to canonical isomorphisms as
follows.

PROPOSITION 2.5.2 (cf. [Ber00, Proposition 2.1.5]). Assume that p > 2. Let X and X' be as
above. Then, for two morphisms g, g : X' — X over T which coincide modulo p, there exists a
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canonical isomorphism c;g, /B g;’jg =, g;‘ p of functors from Dx,p-Mod to Dx/,p-Mod. This
isomorphism satisfies the following properties.

(1) For three morphisms g, ¢', ¢": X' — X which coincide modulo p, we have

* * _ *
C9.9'/B° Cq.9"/B = Cq,9" /B

(2) For two morphisms g,q': X' — X over T which coincide modulo p and a morphism
h: X — X" over T, the following diagram is commutative.

(hog/)’;B &;) (hog);B
l hog,hog’ /B l
/% = * *
g/BOh/B e g/Boh/B
g/B

(3) For two morphisms ¢,q': X' — X over T which coincide modulo p and a morphism
h: X" — X" over T, the following diagram is commutative.

(90 WY} —— s (g0 1)

goh g’oh/B

* VES * *
@30@3457544>@B°%B
/B""g,9'/B

Proof. By the assumption thatp > 2, the canonical PD structure of the ideal pOx is nilpotent.
Hence, the morphism (g,¢'): X’ — X xp X factors through a unique PD morphism p: X' —
Py /B for a sufficiently large n. Hence, for any left Dy, g-module &, pulling back the

associated 1som0rph1sm en: Py*E — pP*E (Theorem 2.2.1) by p, we obtain an isomorphism
g7g//B(8). g/B(E) - g/B(E) as Ox-modules, which is obviously independent of the choice of
n and is functorial on €. The property (iii) in Theorem 2.2.1 implies the property (1). The
property (3) is obvious and the property (2) follows from the fact that the functor i}, is defined
by pulling back PD stratifications by the PD morphism Py /B (o /B induced by h. It remains

to prove that the isomorphism cgg /B (&) is Dy sp-linear. For each n, there exists an n’ > n for
which we have a commutative diagram for i =1,2 and j =1, 2.

PQ//BL>P§;B(3) P;}/B
X, 4 P)?/B Py X

Here the morphism g; (respectively p;) is the PD morphism induced by the projection to the ith
component X/B = X/B X B X/ — X/B (respectively X/B = X/B X B X/B P x xp X), and
the morphism p is induced by (g, ¢') x (9,9): X xp X — X/B X B X/B We obtain the desired
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compatibility by pulling back by p the diagram

GP2E == DP3ps€ —— P3pi€ == qip3€
p3 (5)
%iq;‘(s) %iqi‘(f)
P& ==Ppirs€ — = Pin€ ==ar
which is proven to be commutative by using the property (iii) in Theorem 2.2.1. O

The isomorphisms c;g, /s and c;g, /7 are compatible with (2.5.1) as follows.

LEMMA 2.5.3. Assume that p>2 and let X, X', g, and ¢ be the same as in the beginning of
Proposition 2.5.2. Let rx and rxs be as in the diagram (2.5.1). Then the following diagram
of functors is commutative.

rx’ o 9/5 ——Tx'0 9/5

TX’ocg,g//s
gl(zm) gl(zm)
or —> or
g/T X o - g/T X
9.9'/T°

Proof. This immediately follows from the construction of cZ o/B in Proposition 2.5.2 and
Lemma 2.2.9(1). O

2.6 Direct images

Throughout this subsection, let f: X — T denote a smooth and universally saturated morphism
of fine and saturated log schemes such that f is of finite type, 0} X)T has constant rank d, and

It = Mx (cf. §2.3). Similarly for f': X’ =T, d and f": X" - T, d".
Let g be a morphism X’ — X over T'. We define the direct image functor

g—‘,—/B: _D_(DX//B—MOCI) — D_(Dx/B—MOd)

and study its properties. We also prove that the direct image functors g, g and g, are
compatible with the restriction of scalars by the homomorphisms (2.1.8) for X and X’
(Corollary 2.6.10). Put wx := Q?(/T and wx := Q%,/T. We define Dy x//p to be g;‘B(DX/B ®ox
w;(l) ®0,, wx’, which is a (g_l(DX/B), Dx//p)-bimodule (Proposition 2.4.1). Here 973 denotes
the inverse image with respect to the left action of Dx,p on Dx/p ®oy w)_(l induced by the
right action of Dx,p on Dx/p. The left action of Dx,p on Dx,p, which commutes with its right
action, induces the left action of g_l(DX/ B) on Dx_ x//p. We define the direct image functor

g+/B by

9+/B(K) :==Rg.(Dx_x1/B ®%X,/B K).
Note that any complex of (gfl(DX/ B)> Dx+/p)-bimodules bounded above has a resolution by
(g_l(DX/B), Dx//p)-bimodules flat over both g_l(DX/B) and Dx/p, since Dy, and Dy /p are
flat over Wiy

Assume that the morphism g is smooth. For a left Dx//g-module £, let dg: &€ — € ®o,, Q&,/X
be the composite of

g_>5®(9x, PX’/B —E®OX/ (pl OX’ @QX’/B) &E@ox, QX’/B —>E®OX, QX’/X
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Then we have dg(ae) = e ® da + a dg(e) for a € Oxs and e € £, and obtain the de Rham complex
£ ®0y, Q% x whose differential maps are defined by dle@w)=ds(e) N\w+e® dlw for e € &£
and w € Q% /X (cf. Proposition 2.1.5(1)). Note that we have a canonical isomorphism

Q;Z(T/(Aix = g_l(w)}l) ®g*1((9x) wx'.

PROPOSITION 2.6.1. Assume that g is smooth. Then the de Rham complex Q;(,/X ®o,, Dx//B
of Dx+/p regarded as a left Dy g-module gives a resolution

Q% /x ®oy Dx1/p)ld —d] — Dx_x1/p
of Dx_x1/p as a right Dx/g-module. Here the right D/ p-linear homomorphism

g: leé,i/%( ®(’)X/ DX’/B — DX<—X’/B = g_l(DX/B) ®g_1(OX) Qié,i/ﬁlx

is defined by w® 1+—1® w for w € leé,_/flx.

Proof. Let C® denote the de Rham complex. Note that the differential maps of C® are right
Dy p-linear because the right and left actions of Dx//p on Dx/,p commute. Since the question
is étale local on X and X', we may assume that there exist t1,...,t; € (X, Mx) and
tas1, - - - tar € D(X', Mxs) such that {dlogt,; 1 < v <d} is a basis of le(/T and {dlogt,;d+ 1
<v < d'}is a basis of QdX/f/a)l(. We define 0, € Dx/p (1o < v < d) (respectively 0, € Dx//p (1o <
v <d')) as in Proposition 2.1.5 using t1, ..., tq (respectively ¢*(t1),...,g"(ta), tas1,- - -, tar)-
Let & € Tx/p = Hom@X(Qﬁ(/B, Ox) (respectively &, € T/ := Homo (Q}(,/B, Ox)) be the
corresponding sections. Then the differential maps of C® are given by d?(w ® P) =dw ® P +
Zd+1<u<d, dlogt, N\w® 0,P for we Q?{//X and P €Dxp. For d+1<v< d’, the direct
image of &, in g*(Tx/p) is 0. Hence, by using Propositions 2.3.5 and 2.4.5, we see that the
composite of ¢ with d¥ 41 is 0. We can define the increasing filtration F,,C® of the complex C* by
putting F,C? = Q%(’/X @0y Dx1/Bntq—(r—a)- 1ts graded quotient is QS(,/X R0, Symz)X,TX//B
with differential maps w ® x — Zdﬂgugd' dlogt, ANw ® € x. Hence, grl’ C* is isomorphic to the
Koszul complex of Symz)X,TX/ /B With respect to the regular sequence &), ..., &},. Put

FoDxo x5 =9 "(Dx/pn ®0x wx') ®g-1(0x) WX’
Then, by Propositions 2.3.5 and 2.4.5, we see that the homomorphism e is compatible
with the filtrations, grf Dx._x//B %Symbxlg*(TX/B) R0, Q‘)l(f/c_lx, and grl’e is induced by
the homomorphism Symz)X,TX//B — Symox/g*(TX/B) associated to g.: Tx//p — 9" (Tx/B)-
Hence, gr e: gry C*[d’ — d] — gry.(Dx.x//p) is a resolution. By induction on n, we see that
F.e: F,C°ld — d] — F,Dx_x /B 18 also a resolution. By taking the inductive limit with respect
to n, we obtain the proposition. O

COROLLARY 2.6.2. Assume that g is smooth. Then, for a left Dx/ g-module £, we have a
canonical isomorphism

00 /5(8) 2 R.(E B0y, Wy )d —
in D_(Ox-MOd).

The direct image functors are compatible with compositions as follows. Let h: X" — X’
be another morphism over 7. Using Propositions 2.3.5 and 2.4.5, we see that the natural
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isomorphism
W (Dx_x1/B) Bh-1(Dys, ) DX x/B = h g7 (Dx/5 ®ox wx') ®g-1(0x) WX)
Oh-1(Dyr, ) I (DxryB @0y, Wxt) On-1(04) WX
=119 (D ®0x wy') @n-1g-1(0x) WX
~ Dy x5 (2.6.3)
is (g o h)"Y(Dx,p), Dxr,p)-bilinear.

LEMMA 2.6.4. Under the notation and assumptions as above, the homomorphism in the derived
category of sheaves of ((g o h)_l(DX/B), Dxn p)-bimodules:

h"'(Dx—x//B) ®%*1(DX//B) Dx:xn/p — Dxxm/B;
induced by the isomorphism (2.6.3), is an isomorphism.

Proof. Tt suffices to prove that H? of the LHS is 0 for g # 0. Let K*® be a flat resolution of Dx._ x//p
as a right Dy g-module. Then the LHS of the homomorphism in the lemma is isomorphic to

hH(K®) Bh-1(Dy1, ) Pxrxn/p = hHK®) @p-1(04,) (M (W) ©p-1(04,) wx)

— h ' (Dx—xB) ®p-1(0,,) (W (wy)) Oh-1(0,,) wx7)-

For the second isomorphisms, note that K7 and Dx_ x/,p are flat as right Ox/-modules. O

PRrOPOSITION 2.6.5. Under the notation and assumptions as before Lemma 2.6.4, we have a
canonical isomorphism g, /gohy = (goh)y/p.

Proof. Since Dx_x//p is quasi-coherent as a right Oxs,-module and Dy/p is a quasi-coherent
Ox-algebra, there exists a free resolution of Dx._ x//p as a right Dx/,p-module Zariski locally
on X'. Since X" is noetherian, this implies that we have an isomorphism

Dx. x//B ®H13X,/B Rhi(Dxrx/B ®H5X///B €)

SN Rh*(hfl(DXHX//B) ®%_1(Dx’/3) Dx:xn/B ®HﬁX,,/B €)

for £ € D™ (Dxn/p-Mod). By taking Rg., and using Lemma 2.6.4, we obtain the desired
isomorphism. O

PROPOSITION 2.6.6. For three morphisms g: X' — X, h: X" — X', and i: X" — X" over T,
the following diagram is commutative.

9e/pohsypoisp ——(goh)ipoiyp

~l l~

gr/po(hoi)ip —= > (goho i)4/B
Proof. Fxercise. O

By using Proposition 2.5.2, we see that the direct image functor g, p is determined by the
reduction mod p of g up to canonical isomorphisms as follows.
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PROPOSITION 2.6.7 (cf. [Ber00, 3.4.1(b), 3.4.3]). Assume that p > 2. For any two morphisms
g,9 : X' — X over T which coincide modulo p, there exists a canonical isomorphism
C9.9',+/B" gzr/B =9+/B

of functors from D~ (Dx+/p-Mod) to D~ (Dx,;p-Mod). This isomorphism satisfies the following
properties.

(1) For three morphisms g, ¢, ¢": X' — X over T which coincide modulo p, we have

€9.9'.+/B ° Cq'.g" +/B = Cq.9" +/B-
or two morphisms g,q': X' — X over T which coincide modulo p and a morphism
2) For t hi X' —-X T which coincid dul d hi
h: X — X" over T, the following diagram is commutative.

oY

hog - ho
( g )JF/B Chog,hog’ ,+/B ( g)+/B
Proposition 2.6.5\LN NlProposition 2.6.5
/ ~
h+/B°g+/B h+/B °d+/B

hy/Bocg g +/B

(3) For two morphisms ¢,¢': X' — X over T which coincide modulo p and a morphism
h: X" — X" over T, the following diagram is commutative.
! = h
(g ° h)+/B Cgoh,g’oh,+/3 (g ° )+/B
Proposition 2.6.5\L% %lPropOSition 2.6.5

/ >~
Y S
+/B / cgyg/’Jr/Boh_HB / /

Proof. By Proposition 2.5.2, we have an isomorphism
C;g//B(DX/B ®OX w;(l) X ide, : DXLX//B g DXLX’/B

as right Dy g-modules, which we denote by ¢, , p/p. By the functoriality of c;g, /B it is also

compatible with the left action of g=!(Dx /B) = g YDx / p) and induces the desired isomorphism

Cg.q'+/B- The property (1) follows from Proposition 2.5.2(1). The property (2) is reduced to

showing that the following diagram is commutative.

/—1 =
97 Dxrxs8) Sy 10/ Py ot s —o0— Dxn '8 sm

id®cg,g’,‘D/B\LN chog,hog’,D/Bl'\‘
-1 = D
g (DX”HX/B) ®971(DX/B) DX(iX//BW) X hog X/B

which is verified by using Proposition 2.5.2(2). One can prove the property (3) similarly by using
Proposition 2.5.2(3). O

Finally, we will show that the direct image functors for B =T and B = .S are compatible. By
definition, we have a natural homomorphism Dx._ x//7 — Dx_x/s induced by (2.1.8). Since
the right action of Dx/r on wy is induced by that of Dx /g via (2.1.8), the commutativity
of (2.5.1) and Lemma 2.4.7 imply that the above homomorphism is compatible with the right
actions of Dy — Dxr/g and the left actions of g_l(DX/T) — g_l(DX/S). Hence, it induces a
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homomorphism of (¢~ (Dx /1) Dx1/g)-bimodules:
DX<—X’/T ®DX’/T DX’/S —>DX<—X’/S- (268)
PROPOSITION 2.6.9. The homomorphism (2.6.8) is an isomorphism.

COROLLARY 2.6.10. The following diagram is commutative up to canonical isomorphisms.

D™ (Dxr/s-Mod) —X> D~ (Dx,/-Mod)

9+/sl 9+/T\L

D~ (Dx/s-Mod) —*~ D~ (Dx/r-Mod)
Here the horizontal arrows are the functors induced by (2.1.8) for X and X'.

Proof. By Proposition 2.6.9, the following diagram is commutative up to a canonical
isomorphism.

DX//S—MOd DX//T—MOd

DX‘*X//S®,DX//S\L lDXHX//T@DX,/T
“1(Dx,5)-Mod —— g~ (Dx/7)-Mod
g X/S o g X/T o
Furthermore, the two horizontal functors are exact and preserve flat modules because Dy,

(respectively Dy/g) is flat as a left Dy//p (respectively Dx/r)-module. Hence, for K&
D~ (Dx:/s-Mod), we have

L ~ L
Dxx//s @by, K= Dxxr @py . K

in D_(g_l(DX/T)). By taking Rg,, we obtain the desired commutative diagram. )

The isomorphisms in Proposition 2.6.5 are compatible with the diagram in Corollary 2.6.10
as follows.

LEMMA 2.6.11. Under the notation and assumptions as before Lemma 2.6.4, the following
diagram of functors is commutative.

Corollary 2.6.10 Corollary 2.6.10

TX 09+/Soh+/s = 9+/TOTXx’ Oh+/s = 9+/T°h+/TO7”X”
Ei Proposition 2.6.5 %\L Proposition 2.6.5
Corollary 2.6.10
TXO(goh)-i-/S ~ (goh)+/TorX//

Here rx denotes the functor D~ (Dx/s-Mod) — D~ (Dx/p-Mod) induced by (2.1.8), and rx:
and rxn are defined similarly using X’ and X" instead of X.

Proof. This follows from the following commutative diagram.

_ 2.6.3
h'(Dx—x1/s) Bh=1(Dys /) Pxrex/5 ( = ) Dx._xn/s
(2.6‘8)T (2.6.8)T O
_1 (2.6.3
W= (Dx—x'/1) ©n-1(Dy/ 1) Pxr—x/r ~ Dy xmr

1579

https://doi.org/10.1112/50010437X10004768 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X10004768

T. TsuJ

The isomorphisms ¢y o | /g and ¢, o /7 in Proposition 2.6.7 are compatible with the diagram
in Corollary 2.6.10 as follows.

LEMMA 2.6.12. Assume that p>2 and let X, X', g, and ¢’ be the same as in the beginning
of Proposition 2.6.7. Let rx and rx: be as in Corollary 2.6.10. Then the following diagram of
functors is commutative.

R

/
X © rx O
r g+/5 TXCy o /5 X ©9+/s

= l Corollary 2.6.10 = l Corollary 2.6.10

~

/ o~
o I S o Ty
g+/T T Cq,9' +/TOT X/ g+/T X

Proof. We are reduced to the following commutative diagram, which follows from Lemma 2.5.3.

XL xS e Dysxs
/ = .D
x L xyr Cog/ /T X & x/T

Here ¢y o p/p is the isomorphism defined in the proof of Proposition 2.6.7. O

In the rest of §2.6, we prove Proposition 2.6.9. Since the question is étale local on X , We may
assume that there exist #1, ..., %4 as in Proposition 2.1.1. Choose such ¢, and define 8, € Dx/r
(1<v <d) and 9 € Dy g as in Proposition 2.1.5.

LEMMA 2.6.13. Forn € N, we have ) . Dx;70) =), 9 Dxr in Dx/s.

r<n

Proof. Let Z,, (respectively Z]) denote the LHS (respectively RHS). We prove that Z,, =Z], by
induction on n. The claim is trivial for n =0. Let n be a positive integer and assume that
Zn—1=1)_;. It suffices to prove that Dx 0y C Z;, and 93 Dx 7 C I,. Since I, (respectively T},)
are stable under the left (respectively right) action of Dx/p and 9,00 = 0od, (1 <v < d), the
claim is reduced to zdj = [z, 80]68_1 + 80x63_1 = —80(:1:)63_1 + 801386‘_1 €Ip_1+00Lp-1=
I + OIl,_, C I/, (vespectively Ofx = Oy [y, x| + O 120y = O ' 0o(x) + Oy twdo € I!,_| +
I;]_lao =Tn1+Z,10y C In) for x € Ox. O

Put
I,=> Dxrdy =Y _ Dx/r.

r<n r<n

Note that these are stable under both the left and right actions of Dx,r. Put Z_; =0.

LEMMA 2.6.14. For n € N, the homomorphism Z,, — T,,1+1; P — P3Jy induces an isomorphism
Zn/Zn-1 =, Zn+1/Zy,. Furthermore, it is Ox-linear for the right Ox-action.

Proof. The homomorphism Dx/p — Zp,; P — P9j" induces an isomorphism

Dx/r — Zm/Im—1 for meN.

This implies the first claim. The second claim follows from Pdyx — Px0y = Pdy(x) € Z,, for
PeZ, and z € Ox. O
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Since Dx/s =L ® (3,~, 9Dx/r), we see that the homomorphism ¢*(Z, ®o, wy ) @0,
wx — Dx._xr/g is injective. Let J,, denote the LHS of the above homomorphism.

Since the question is étale local also on )o(’, we assume that there exist ¢}, ..., t,, e (X', Mx/)
such that {dlog(t),)}1<u<a is a basis of Q}(,/T. Choose such ¢, and define 0, € Dx//7 and
Jp € Dx//g in the same way as in Proposition 2.1.5.

LEMMA 2.6.15.

(1) For n € N, we have Jy, - 0) C Tn+1-

(2) For neN, the homomorphism J, — Jnt1; P'— P'- 0] induces an isomorphism

j’n/j’n—l i jn—‘,—l/jn-

Proof. Put
9" (dlog(t,)) = Z Aup leg(t;L)

O<p<d
n Qﬁ('/s for 1 <v <d. For P €1, and local bases w € wx, w' € wx, we have
(" (Pow ) o)h=g"(Pow™) e W) —{9h¢(Pow )} ew

by Proposition 2.4.5. The first term of the RHS is contained in J,. For the second term, by
Proposition 2.4.5 again, we have

O(g" (Pow ™) =g"@(PRw ™)+ Y aw- g (@, (Pew))
1<v<d
g ((Pbo— Pdp) ®w ™) + > ayo-g*(P(b, — d,) @w™),
1<v<d

where b, € Ox (0 < v < d) is defined by wd, = b,w. Since P(b, — 9,) € Z,, for 1 <v < d, Pby € Z,,
and Py € Z,, 41, the above computation implies that 7, -9y C Jp41 and the homomorphism
TIn ) Tn-1 — Tn+1/Tn in question coincides with the isomorphism

9 (Zn/In-1 @0y wx) R0y, wxr — 9" (Zn+1/In ®ox Wx) B0, WX/

induced by the isomorphism in Lemma 2.6.14. O

Proof of Proposition 2.6.9. By Lemma 2.6.15, the homomorphism Jy — 7,/ Tn+1; P/ — P - 0f"
is an isomorphism for n € N. This implies, by induction on n, that the homomorphism

P Ko T (@) D 2(0)"
0<r<n 0<r<n

is an isomorphism for n € N. By taking the inductive limit with respect to n, we obtain an
isomorphism

B Dxxyr — Dxexysi (P)— > Plog.

reN reN

Since Dy /g is a free left Dy, p-module whose basis is given by {9j }-en, this implies that (2.6.8)
is an isomorphism. O
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3. Nearby cycles: local case

Let X be a fine log scheme smooth over T such that X is of finite type over S and Qﬁ( /T

has constant rank d. Throughout this section, we assume that, étale local on X , there exist
t1, ..., tgr1 €T(X, Mx) and an integer ¢, 1 <c¢<d+ 1, such that t.---t44q is the image of
te (T, Mr), t1,...,t.—1 is invertible,

d+1 . n Nd+1
NX —>Mx, (nl,...,nd+1)»—>t11~-td+1

is a chart, and the morphism

X — Spec(Wy st - -, sa41]/(se -+ Sa41))
defined by the W-homomorphism

Wnlst, ..., sa+1]/(sc - sav1) = T'(X, Ox)

sending s; to t; is étale. By replacing t441 with t441(¢1 - - - tc_l)_l if ¢ > 2, we always consider
t1,...,tq as above with ¢=1 in the following. The assumption implies that Mx is saturated,
the structure morphism f: X — T is universally saturated, and Iy = Mx (cf. §2.3).

We also assume that we are given a morphism a: X — Y of fine log schemes over T' such
that the underlying morphism of schemes &: X —Y is a closed immersion, Y is smooth over S,
the log structure My is the inverse image of My, and Q%, /T has constant rank e.

3.1 Definition of nearby cycles: local case

DEFINITION 3.1.1. For a left Dy g-module & such that the underlying Ox-module is locally
free of finite type, we call the direct image a/5(£) € D™ (Dy/s-Mod) of £ under « (cf. §2.6)
the nearby cycles of € realized on'Y .

Note that, by Proposition 2.1.11 and (2.1.10), a left Dy / g-module endowed with an
endomorphism Giog is interpreted as a left Dy /g-module. If we regard the nearby cycles a/5(&)
as an object of D~ (DQ/S—Mod) = D™ (Dy/r-Mod) by forgetting the action of 8i0g, then it is
canonically isomorphic to a /T(S’ ) by Corollary 2.6.10. Here £ denotes £ with the action of
Dxr via (2.1.8).

By Theorem 3.1.2 below, o, /5(E) (respectively ay 7(E")) may be regarded as a Dy g-module

(respectively Dy 5= Dy r-module). In §§ 3.4 and 3.5, we will also apply Theorem 3.1.2 for B =T'
to the intersections of ‘smooth components of X’ endowed with the inverse images of My.

Asin §2,let B be SorT.

THEOREM 3.1.2. Let £ be a left Dy p-module & such that the underlying Ox-module is locally
free of finite type. Then:

1) the natural homomorphism o.(Dy. x/g ®p,,, €) «— a,,/g(€) is an isomorphism; i.e. we
/ X/B +/
have H%(ay /(E)) =0 for ¢ #0;
2) the object a ,5(E) of D(Dy,9-Mod) is perfect (cf. [11I71, Définition 4.7 and Exemple 4.8]).
+/ /

We need some lemmas. For a left Dy, pg-module F, we can construct a de Rham complex
F ®ox QB(/B in the same way as before Proposition 2.6.1. Applying this to Dx,p regarded as
a left Dx/p-module, we obtain a complex % /5 ®0x Dx/p, whose differential maps are right
Dy, p-linear because the right and left actions of Dx,p on Dx,p mutually commute.
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Let & be as in Theorem 3.1.2. Since Dx,p is a (Dx,p, Dx/p)-bimodule, we may
regard Dy,p ®oy £ as a (DX/B,DX/B)—bimodule by Proposition 2.4.1. Let Tx,p denote
Homo (Qﬁ(/B, Ox). Then, by applying HomDX/B,T(_7DX/B ®oy €) to the complex of right
Dx/p-modules Q% /B Q0x Dx/p and using isomorphisms

HOTHDX/B,r(Qg(/B ®ox Dx/B: Dx/B ®oy €) = (Dx/p R0y ) ®ox NTx/p

of left Dy, p-modules, we obtain a complex of left Dy, p-modules:

..—>DX/B®OX8®(’)X AzTX/BHDX/B(X)OXg@OX TX/BHDX/BQ@OXS_)OH )

Here Homp, denotes Hom with respect to right Dy, p-actions.

LEMMA 3.1.3. Put C"1=Dx/p ®oy € ®oyx N1Tx/p for ¢ €N and let C* denote the complex
constructed above.

(1) Suppose that there exist ti, ..., tq41 € I'(X, Mx) as in the beginning of § 3 and define the
differential operators 9, € Dx/p (vo < v <d) using to=t,ty,...,tq as in Proposition 2.1.5.
Let &, denote the image of 0, in Dx/p;/Dx/po=Tx/p- Then, for g€ N, q¢>0, the
differential map d;?: C™1 — C~%"! is given by the formula

q

dy(z @ &, /\"'/\qu):Z(—Ur_ll"aw@fm/\"'/\g;r/\"'/\glfq
r=1

fOr$€DX/B®@X(€aﬂdV0<V1<V2<"‘<Vq<d.

(2) The morphism C° = Dy p ®ox € —E: P®er P- e defines a resolution C* — & of the left
Dy p-module £ by locally free left Dx;p-modules of finite type.

Proof. (1) The connection Dy, g — Q%(/B ®ox Dx/p induced by the left Dx/p-action on Dy/p
maps P to Zg: dlog(t,) ® 0, P. Hence, the differential map

Yo

Q%g ®ox Dx/p = Q)5 ®ox Dx/B

maps
(dlogty, N---ANdlogt,, ,)®1
to
d
> (dlogt, Adlogty, A---Adlogty, )@,
V=1

for vg < p1 < -+ < prg—1 < d. This immediately implies the formula in (1).

(2) The question is étale local on X and we may assume that there exist 1,...,%441 €
I'(X, Mx) as in the beginning of §3. Let 9, and &, be as in (1). We put C' =& and
C?=0 for ¢>1, and define d’: C® — C'! to be the morphism P ® e+ P-e. By using the
formula (P ® €)0, = PO, ® e — P ® d,e for P € Dx/p and e € £ (Proposition 2.4.5), we see that
d’ od=!' =0. Now it remains to show that the complex C*® is acyclic. We define an increasing
filtration F, (n € Z) of C* by F,.C™?=Dx/p g Q0x € ®0x NTx/p for ¢ €N and F,C* =€ (if
n>0), 0 (if n <0). Here we put Dx,p,, =0 for m < 0. Note that F';C* = 0. Using the above
explicit description of the right action of 9, on Dx/p ®o, £, one can verify that this filtration
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is compatible with the differential maps and its graded quotients are as follows:

gr’ €79 = (Symd, Tx/p ®ox £) ®oy NTx/p, g C'=E,

q
ngd—q(y®£V1 AE,) :Z Tlgw‘y®§u1/\"'/\£ur/\"'/\£vq’
r=1
and grl”d® is the homomorphism induced by the projection Symg Tx/p — Sym%x Tx/p=

Ox. Hence, the non-positive degree part of gr’”C® is isomorphic to the Koszul complex
of the Symg, Tx/p-module Sym¢, Tx/p ®oy € with respect to the sequence &y, ...,&q €
Symg, T'x/p, which is a regular sequence on the module. Thus, we see that grf’ C* is acyclic,
and that F},C*® is also acyclic by induction on n. Taking the inductive limit with respect to n, we
obtain the desired acyclicity. O

Let Ty, p denote Homo,, (Q%//B, Oy) and let a.: Tx/p — Ox ®0, Ty,p denote the the dual
of the morphism a*: Ox ®p, Q%,/B — Qﬁ(/B induced by a.

LEMMA 3.1.4. Let the notation and assumptions be the same as in Lemma 3.1.3(1). Then the
sequence (&), @i (Epg+1)s - - - » @x(&q) in the sheaf of commutative rings Symg,  (Ox ®o, Ty/B)
is a regular sequence.

Proof. Let o': X —Y’' be another morphism of fine log schemes over T satisfying
the same conditions as «. We first prove that the lemma holds for Y if and only
if it holds for Y’. By considering o’: X —Y x7Y’ induced by a and o, we are
reduced to the case where there exists a smooth morphism h: Y/ —Y such that a=
hod'. Since the question is Zariski local, we may assume that there exist wi,...,w. €
I'(Y, Oy) (respectively weq1, ..., we € (Y, Oy)) such that dw, (1 < p < e) (respectively dw,
(e+1<pu<e)) is a basis of Q%,/T (respectively Q%,,/Y). By subtracting a lifting of o/*(w,,)
in I'(Y, Oy) from w,, we may assume that o/*(w,) =0 for e+ 1< p<e. When B=S5, let
M0, M5 - - - Ne € Tyyg (respectively g, 0y, . .., 1. € Tyrs) be the dual basis of dlogt, dwy, ...,
dw, € Q%,/S (respectively dlogt, dh*(w1), ..., dh*(we), dwes1, . .., dwey € Q%,,/s) When B=T,

let 01, ..., ne € Typ (respectively ny, ..., 0. € Tys,p) be the dual basis of dws, . . ., dwe € Qy/T
(respectively dh*(w1), ..., dh*(we), dwet1, . . ., dwe € Q%/,/T). Then, for 1y <v < d, we have
Z ayy @1y and al (€)= Z a,m@nu
vospu<e vo<su<e

Here a,, € I'(X, Ox) for p > 1 is given by a,, = 0,(a*(wy)). When B =S5, ago =1 and a,0 =0
for v > 1. This implies the desired claim.

Since the question is Zariski local on X, we may assume that there exists an étale lifting
Z — Spec(Wy[s1, . . ., 5441]) of the étale morphism X — Spec(Wysy, . . ., sar1]/(s1- - - Sas1))
defined by ti,...,t341 € (X, Mx). Choose such a Z, and let Z be Z with the inverse
image of Mp. Then the natural morphism (: X — Z satisfies the conditions on «. We prove
the lemma for 3. Let 0,,,...,0411 € Tz/p be the dual basis of dlogt,dsi,...,dsqs1 € le/s

(respectively dsi, . ..,dsqi1 € QIZ/T) when B =S (respectively B =T'). Then we have §,(§,) =
by @0, —tgi1 @ 6d+1 for 1 <v<d. When B =S, we have 5.(&) = tg+1 ® 0441 + 1 ® 6. Hence,
it suffices to prove that the sequence

51+ 841, 51V1 — Sa+1Vas1s - - -, 8aVa — Sa1 Va1
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is a regular sequence in Wy[s1, ..., Sq+1, V1, - - -, Vay1]. Put fo := s, V), — s441Vgqq for 1 <v < d.
Since f, and sy, ...sq+1 are homogeneous of positive degrees, it is equivalent to saying that
the sequence fi..., fatr1, 1+ Say1 is regular [Mat80, (15.B) Theorem 27 and Remark].
Since the Wy homomorphism

WNIUL, ..., Uga] = Wh[st, ooy Sav1, Vi, - Vg

defined by U, +— s,V, is flat, the last claim follows from the regularity of the sequence
Ui = Uit - Us = Uqgqr1, Ur - - - Ugqr in WU, - .., Ugga]. o

We assume that there exist ¢1, ..., t5+1 € I'(X, Mx) as in the beginning of §3 and define 9,
and &, as in Lemma 3.1.3(1). We also assume that Y is affine and there exist zy, ...,z €
I'(Y, Oy) such that {dlog(z,) = z;ldzu} is a basis of Q%,/T. We define the differential operator
3}: €Dy/p (vo<p<e) using t, 21,..., 2 as in Proposition 2.1.5. Let ‘fl}; denote the image
of 6}: in Ty, g = Dy,p,1/Dy/B,0- The image of d log(z,) ® 1 (1 < p < e) under the homomorphism
a*: Q%,/B ®oy Ox — Q%(/B is >, <v<a Ov log(a™(z,)) dlogt,, where 9, log(f)= f710,(f) for
f€O%. When B =S5, we have o*(dlog t) = dlog t. Hence, the images of ¢, (1 <v <d) under
the homomorphism a..: Tyx/p — Ty  ®o, Ox are 3 i, 535 ® 0, log(a*(z,)). When B =S,
we have

(b)) =& ®1+ Y & ®@dylog(a*(z))-

lspu<e
For vp <v <d and 1 < p <e, choose a,, € I'(Y, Oy) such that o*(a,,) = 0, log(a*(z,)). Put
dlogt:=dlogti N---Adlogty€wx, dlogz:=dlogz A---Adlogz. € wy,
and P, := ZK“@ 8}; ~ayy, € Dyyp for 1<v<d. When B=S, put Fy:= (93/ + ZK#@ 82[ .
agy € DY/S-
LEMMA 3.1.5. Under the notation and assumptions as above, the action of 0, € Dx,p (vo <
v <d) on Dy_x/p= (Dy/B R0y w;l) ®o, wx Is given by the following formula:
(P®(dlogz)™")®dlogt) -9, = (PP, ® (dlogz)~') @dlogt, P €Dyp.
Proof. We have the following equalities in a*(Dy,p ®0, wgl) R0y WX:

2 (P® (dlogz) ") ®@dlogt) -0, = —8,a"(P® (dlog 2) ') @ dlog t
— —a*(Qu(P @ (dlog2)™")) ® dlogt
=a*(P-P,®(dlogz) ') ®dlogt,
where @, := Zlguge a,,#ajf €Dy/p (1<v<d) and, when B= 5, Qo := of + Zlguge a0u3§ €
Dy/s. The first equality follows from (d log)d, =0 (Proposition 2.3.5) and the third formula

in Proposition 2.4.5. The third equality follows from (dlog z)d) =0 and the second formula in
Proposition 2.4.5. O

Proof of Theorem 3.1.2. (1) Let C* be the complex as in Lemma 3.1.3. Then what we want
to prove is H*q(DyHX/B Dy, 5 C*) =0 for ¢ > 1. Since the question is étale local on }O/, we
may assume that the assumption before Lemma 3.1.5 is satisfied. Then the isomorphisms
Ox Zwy;a—adlogt and Oy 2wy : b bdlog z induce isomorphisms of left Dy p-modules:

Dy x/B @Dy, C =Dy _x/BR0x € ®ox NTx/p =Dy ®0y, € @0y NTx/p-
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By Lemma 3.1.5, the differential maps are explicitly described as

Dy/p ®0y € ®ox NTx;p — Dy B ®0y € @0y N Ty
q
PRe®&, A A&y — Y (1) N P-P, @e—P@0,e) @&, A+ Ny A+ Ay,
r=1

Similarly as the proof of Lemma 3.1.3(2), we can define an increasing filtration F,, (n € Z) of the
complex by putting

Fn(Dy g ®0y € ®ox N'Tx ) =Dy /B n—q @0y € ®ox NTx/p  for g € N.
Its graded quotient is Symg, o*(Ty/p) ®oy € ®oy N1Tx,p with the differential maps

Symp, o (Ty ) ®ox € ®ox NTx/p — Symz)x “(Ty) ®ox € ®ox A Tx/p
TR®e®E NNy, HZ ax(€,) T @e@Ey A Ny Ao A&y,

which is isomorphic to the Koszul complex of the locally free Symg, a*(Ty,g)-module of finite
type Sym¢, o*(Ty/p) ®oy € with respect to the sequence (&), - ., ax(§q). Hence, from
Lemma 3.1.4, we obtain H™%(Dy._x/p Dy C*) =0 for ¢ >0 in the same way as the last
argument of the proof of Lemma 3.1.3(2).

(2) It suffices to prove that

Dy_x/B ®Dy,p e (DY/B R0y W;l) ®oy Wwx ®oy € Qo /\qTX/B

is perfect as an object of D(Dy,p-Mod) (cf. [I1171, Proposition 4.10]). Since wx ®oy € @0y
N1Tx/p is alocally free O x-module of finite type and Dy, p ®o, w{,l is flat as a right Oy-module,

it suffices to prove that Ox is perfect as an object of D(Oy-Mod). Since X — S'is flat and locally
a complete intersection and Y — Sis smooth, the closed immersion &: X—>Yis regular. Hence,
the Koszul complex associated to a regular system of generators of the ideal defining ¢, which
exists Zariski locally, gives a resolution of Ox of finite length by locally free Oy-modules of finite
type. O

We define the increasing filtration F,Dy_ x/p (n € Z) of Dy_x/p by
FTLDY<—X/B =at (DY/B,TL ®OY (.L)}_/l) ®OX wx-.
We have

o "Dy pm)  FuDy—x/B C FnsmDy—x/5-
For a left Dx,/p-module £ such that the underlying Ox-module is locally free of finite type, we
define the increasing filtration F,ay/g(&) of ay /p(€) to be the image of a. (F,, Dy _x/B ®ox &)
We have

Dy Fm(ay B(E)) C Fatm(ay/B(E)).
Hence, grf(aHB(E)) is a graded gr, Dy, p = Symg, Ty, p-module.
We have an isomorphism

gry Dy x/p = a*(Symd, Ty p Qoy wy') @0y wx-

Hence, by definition, we have a natural epimorphism of Sym¢, Ty, p-modules:

(0 (Symb, Ty ®oy wyh) ®oy wx Boy €) — gt (o 5(E)). (3.1.6)
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PROPOSITION 3.1.7. Under the notation and assumptions as above, the homomorphism (3.1.6)
induces an isomorphism

(" (Symd, Tyyp ®oy wy') ®ox wX) Osyme, Ty, €) — 8re (04/5(E))-
Here we regard o*(Symg,, Ty g ®0, w;l) ®ox wx (respectively £) as a Symg, Tx/p-module
via the homomorphism o.: Sym¢, Tx/p — o*(Symp,, Ty p) (respectively the projection

Proof. The question is étale local on Y. Let C* be the complex defined in Lemma 3.1.3 and define
the filtration F), of the complex Cy. := Dy x/p @Dy, C* as in the proof of Theorem 3.1.2(1). The

vanishing of H~!(grZ Cy.) shown in the proof of Theorem 3.1.2(1) implies that H°(F,,_1C})) —
HO(F,,Cy) is injective. Hence,

HO(F,CY) — lim HO(FCY) = HO(CH) = a5 (€)

is injective. Since Fy,(ary/p(€)) is the image of F,,CY., this implies that
HOFLCY) — Falos(€)) and HO(ary €F) — (a5 (€).

From the explicit description of the differential map of gr’” Cy. in the proof of Theorem 3.1.2(1),
we obtain the desired isomorphism. O

Ezample 3.1.8. Let X be a scheme Spec(Wi|t1, ta, ..., tat1]/(t1ta - - - tgs+1)) endowed with the
fine log structure associated to

Nd—H — WN[tl, t2, ey td—i—l}/(tth ce td+1); (nl, no, ..., nd+1) — t?ltgm tee t{rdliﬁl
and define a smooth morphism of fine log schemes X — T'by N — N1l n i (n,n,...,n). Let Y
be Spec(Wx([s1, s2, . . ., Sq+1]) endowed with the inverse image of M7 and define a T-morphism

a: X —=Ybys—t (1<i<d+1). Then X and « satisfy the condition in the beginning of § 3.
Let dlog(t) (respectively ds) denote the basis dlogt; Adlogta A--- Adlogty (respectively

dsy Ndsg N+ Ndsgrq) of wx = Q%(/T (respectively wy = Qgi;/r%) Let &o,&1,---,8a€Tx)s
(respectively ftY’lOg, &, ... & €Ty/s) be the dual basis of dlogt,dlogty, ..., dlogtq€
Qﬁ(/s (respectively dlogt,dsy,...,dsq41 € Q%//S) and let 0y, 01, ...,0q € Dx/g (respectively
aty’k’g OV, 83;1 € Dy/s) denote the corresponding elements. Note that 0p,...,04€
Dyr (respectively 8 ,...,8)., € Dy;r) and a8 coincides with 9}°® considered in

Proposition 2.1.11.
We have an isomorphism

d
DX/S/ZDX/S@- i)@)(; P—P- 1,
1=0

d
DX/T/ZDX/Taiiox;PHP'l-
i=1

Hence, we have

d d
ays0x = DY<—X/S/ Z Dy. x50, ayrOx = ,DY<—X/T/ Z Dy _x/10;-
=0 =1
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Since the images of &, &; (1 <4 < d) under the homomorphism a.: Ty s — Ty s ®o, Ox are

Yl
£ @1+ 540180 ®1, 88 @1 —sqp18h ® 1,

the isomorphism of left Dy, p-modules
Dy /5 ®0y Ox =Dy x/5="Dy/p @0, wy' @0y, wx; PR 1—P® (ds)”' ®dlogt

induces isomorphisms (cf. Lemma 3.1.5)

d
a/sOx = DY/S/ <DY/531 < Sap1 + Dyys(0° + 03 15as1) + D Dy;s(0) si — 35+18d+1)>,
=1
d

Ot+/TOX = DY/T/ <DY/T31 cee 8441+ Z Dy/T((?iYSi — 85+18d+1)> .

=1

The natural isomorphism a ;70x = ay/sOx as Dy p-modules (Corollary 2.6.10) corresponds
to the morphism induced by the canonical morphism Dy, — Dy/g (cf. (2.1.8)).

The description of a; ,7Ox above is of the same form as the case of complex analytic varieties.

The description of a ;5Ox implies that the action of ﬁiog on the class [P] of P € Dyp =Dy, /s
is given by

8i0g([P]) = —[PO} 1san] (= —[P8] si],1<i<d).

3.2 Another local explicit description of Dx /s

In this subsection, we assume that there exist ¢1,...,t411 € I'(X, Mx) as in the beginning of
§3. Define 0, (0 < v < d) as in Proposition 2.1.5.

Since dlog(t) = > 1<, <qq1 d10g(ta), the set
{dlog(t,) [1<v<d+1}

is a basis of QL Let

X/
€ € Tx)s = Homo, (5, Ox) (1<v<d+1)

be its dual basis, and let dy, € Dx/s,1 be the composite of

— roj &
Pxys1=pi (Ox) & Qg ——— Qg = Ox.
From the equality dlog(t) =3 1, 4,1 dlog(t,), we obtain

{51/:8y+80 (1<v<d) {30:5d+1

- (3.2.1)
8y =0y — Ogr1 (1<v<d).

D1 = o,
Hence, Proposition 2.1.5 and Corollary 2.1.6 imply the following analogues for dy.
PropPOSITION 3.2.2. Let the notation and assumptions be as above.
(1) We have 5,,@‘ = 5#5,, forl<v,u<d+1.

(2) We have 0, -z = 8,(z) +z - 8, for z € Ox.
(3) Ford: Ox — Q}(/S and x € Ox, we have d(z) =) 1,1 dy(x) dlog(t,).
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4) For either of the left Ox-action or the right Ox-action on Dx/s,, Dx/s, is a free
/S, /S,
Ox-module with a basis

(1

1<v<d+1

nen, ¥ nygn}.

1<w<d+1
We can also derive the following analogues from Propositions 2.3.5 and 2.4.5.
ProrosiTiON 3.2.3. Under the notation and assumptions as above, we have
(xdlogt; ANdlogta A--- /\dlogtd)gy = —5V(x) dlogty ANdlogty A--- ANdlogty
forxeOx and1<v<d+1.

PROPOSITION 3.2.4. Under the notation and assumptions as above, Proposition 2.4.5 still holds
for B=S and 0, (1<v<d+1).

3.3 Weight filtration
We define the increasing filtration P,wx (n € Z) of wy = Q4% 7 by

Pywx ::{w/\wl/\---/\wd_n|wEQ}/T,w1,...,wd_neﬁk_/s} (0<n<d)
and P_jwx =0. For a local coordinate 1, ...,tq11 € ['(X, Mx) as in the beginning of §3, we
have
Puwx = Z t;-wx (3.3.1)
JC{1,2,....d+1}
|J|=d—n

for ~1<n<d Heret;=[],c;t,if J#0 and ty = 1.

Since Dy g is locally free for the right action of Oy, the natural homomorphism

Dy ;s ®oy w;l ®oy Powx — Dy _x/s

is injective. We define Q,Dy_x/s to be its image. Using (3.3.1) and the formula ¢, -3, =
(5,, — 6yp) - tu, where 9, =1 and d,, =0 for v# pu, we see that Q,Dy_x/s (n€Z) is an
increasing filtration of Dy x/g by (Dy,g, Dx/s)-subbimodules.

Let £ be a left Dy g-module such that the underlying Ox-module is locally free of
finite type, and let F denote its nearby cycles realized on Y: ay,4(&) =Dy _x/s ODy E
(cf. Theorem 3.1.2(1)). We define the increasing filtration Q,F (n € Z) of F by left Dy/g-
submodules to be the image of Q,Dy_x/g Dy E. We have Q_1F =0 and QuF =F. We
define the increasing filtration F;,F (n € Z) of F = a/5(€) as before Proposition 3.1.7 and the
increasing filtration Q,, grf’ F of grf’ F by graded Symg,,, Ty s-submodules to be the image of

(o (Symd, Ty/s ®oy wy') ®ox Pawx) @symg, Tys €)-
DEFINITION 3.3.2. We say that £ has trivial monodromy if the composite
proj

o _
£ == E@oy Pxs = E®oy (7 (Ox) © Ny g) = € ©ox Vs

factors through the image of £ ®p Qi( /5" Here 6; denotes the homomorphism associated to the

left Dx/g-action on € (Proposition 2.2.3).
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Let 8,}0g € Dy/s be the differential operator obtained by applying to Y/S the construction
before Proposition 2.1.11 and let dog be the corresponding section of Ty/g.

PROPOSITION 3.3.3. Assume that £ has trivial monodromy.

(1) We have 0;°%(QnF) C Qu_1F for n € Z. Especially, (0;°%)*1(F) =0.
(2) We have {iog -Qnert FcQuo1 gt F for n € Z. Especially, ( iog)d“ grf F=0.

Proof. Since the question is étale local on 50/, we may assume that there exist t1,...,%441 as in
the beginning of § 3, Y is affine, and there exist z1, .. . , z. € I'(Y, O5) as before Lemma 3.1.5. We

define 0,, & (1<v<d+1) as in §3.2 and 8}:, 55 (0<p<e) as before Lemma 3.1.5
for B=S. Note that o = 9)°¢ and é(}]/ =%, Using a*(dlogt) =dlogt, +---+dlogtgsi,
we obtain a.(&)=1® & + > 1<puce Ov log(a®(z,)) @ 55. Choose a,, € I'(Y, Oy) such that
0y log(a*(z,)) = a*(ayy) for 1<v<d+1 and 1< p<e, and put P, =8y + D 1<p<e oY - .
Let dlogt and dlog z be as before Lemma 3.1.5 and put w;/, := (dlogz)™'® dlogt e w;l Roy
wx to simplify the notation.

(1) By using Propositions 3.2.3 and 3.2.4, we see that the action of d, on Dy x/s is given

by the formulae (P®w§/§)5,, —P.-P, ®wy/z, P €Dysg (cf. Lemma 3.1.5). By (3.3.1), QnF
(-1 <n <d) coincides with the sum of the images of the submodules Dy . x/g ®oy t;€ of
Dy._x/s ®ox € for JC{1,2,...,d+ 1} such that [J|[=d—n. For 0<n<d, JC{1,2,...,
d+1} such that |J|=d—n, P€Dyg, and ve{l,...,d+1}\J, we have the following
equalities in F:

OB (P ®wy, @tse) = POY @uwy, @1 e
= P(ﬁy — Z 8561,”) ®w§/§®§Je
1Ispu<e
= — Z P@Bf ® wy/p ® 0, log(a™(zu)) - tje+ P @wy, ® 5V(§Je).
1gpu<e

Since d: Ox — Qk/s (respectively d: &€ — € ®p, Qﬁ(/s) factors through the image of
Q}(/S (respectively 5~®ox Q}(/S) and Q}(/S is generated by dty, . .., dtgi1, we have 9,(Ox) C
t,Ox (respectively 9,(€) C t,€). Hence, 8i°g(P ®wy, ®tye) is contained in the image of
Dy._x ®oy t; - t,€. Note that 9, -t; =t - .

(2) By (3.3.1), Q,, grl’ € (=1 < n < d) is the sum of the images of Symg,, Ty /s @0y w;l R0y
wx ®oy, t;€ for J C{1,2,...,d+ 1} such that [J|=d —n.For0<n<d, JC{1,2,...,d+ 1}
such that |J| =d — n, x € Sym{, Ty/g,and v € {1, ..., d + 1}\J, we have the following equalities
in grf” 7 by Proposition 3.1.7:

0= (&) (@ @wy,)) ®tje=(§r@wy) Ote+ Y. (Erz®@wy,)® 0, loga™(z)) - Lye.

1<pu<e
Hence, 51,(0)() C t,Ox implies that fiog(:c ® wy/, ®tye) is contained in the image of

Symg, Ty/s ®oy w;l ®oy Wx oy ty - tE. O
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We define the Dy /g-submodules W, F (—d <n <d) of F by
WaF= 3 (0)'QF. (3.3.4)

b—2a=n
0<a<b<d

We have Wy F =QqF =F. We put W,F=0 for n<—-d—1 and W,F=F for n >d+ 1.
Similarly, we define the graded Symg, Ty /g-submodules W, grl’ F (—d <n <d) of grl’ F by

Wogrth F= Y (&) Qal 7. (3.3.5)
Ol
We have Wy grf F=Qqarl F =gl F. Weput W,, grtf F=0forn< —d—1land W,, gtf F=F

forn>d+ 1.
LEMMA 3.3.6. Assume that £ has trivial monodromy.
(1) We have W,,_1F C W F and 8)°%(W,, F) C Wy_oF for n € Z.
(2) We have W,,_1 grtf F c W, grl’ fand§log( Wo etk 7Y c W, o grl’ F forn € Z.
Proof. (1) For the first claim, we may assume that —d + 1 <n < d. Let a and b be integers such
that b—2a=n—1land 0<a<b<d. If a>1, we have
b—1)—2(a—1)=n, 0<a—-1<b-1<d

and

(01°8)*QuF C (9)%)" ' Qpor F C W F

by Proposition 3.3.3(1). If a =0, we have 0 < b+ 1=n<d and QpF C Qp1F C W, F. Hence,
Wp_1F C W, F. For the second claim, we may assume that —d<n <d. Let a and b be
integers such that b —2a=n and 0<a<b<d. If a+1<b, then 0<a+1<b<d, n—2=
b—2(a+1)(>—d), and

OB ((0°8)°QuF) = (9)8) FLQuF C WioF.

If a =b, then 8i°g(( log) QpF) =0 by Proposition 3.3.3(1). Hence, 8i°g(Wn.7:) C WyaF.

(2) Just replace 8t °¢ F, and Proposition 3.3.3(1) with flog, grl” 7, and Proposition 3.3.3(2)
respectively in the proof of (1) above. O

3.4 The graded quotient of the weight filtration

Let Xox (A€ A) be the irreducible components of X X g Sg. We choose and fix a total order
of the finite set A. We assume that X ) are smooth over Sy for all A € A. We define the sheaf of
ideals 7 of Mx to be the inverse image of 0 under the morphism Mx — Ox — Ox,,.

LEMMA 3.4.1. Let U — X be an étale morphism and assume that there exist t1,...,tq+1 €
I'(U, Mx) satisfying the conditions in the beginning of §3 for (U, Mx|y) such that Uy =
Xo X g U is defined by the ideal t1Oy,, where Uy =U xg So. Then Iy|y =t1 - Mx|v.

Proof. The inclusion t;-Mx|y CZy is trivial. Let =z be an element of TI'(U,Z)).
Choose an étale covering {U, — U} of U such that a|y, is written in the form
e tZﬁl“ua, Ny €N, uq € T(Uy, OF ). Put Uy o := Ua X Up - Since Uqp,x is étale over

Spec(k[s1, ..., Sa+1)/(s1 - Sa+1,51)) = Spec(k[sa, ..., S4+1]), we have mi, >0 (respectively
t1 €T (Ua, Op; ) if Uao,x # 0 (vespectively U, 0.x = 0). Hence, aly, € t1 - T'(Ua, Mx). O
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By Lemma 3.4.1, Z) - Ox is a coherent ideal of Ox and the closed subscheme X, of X
defined by 7, -Ox is a smooth lifting of X, over S. For a non-empty subset I of A,
we define X 1 (respectively X7) to be the fiber product of X \ (respectively X)) (A € I) over Xy

(respectively X) endowed with the inverse image of My, (respectively Mr). By Lemma 3.4.1,
we see that X7/T is a smooth lifting of X ;/Tp. Let ¢; denote the closed immersion X; — X.

We define the increasing filtration P,Q%5L (n e Z) of Q4L by

X/S X/S
We have PdHley/}q = fo;/}q and poszg% —0.

PROPOSITION 3.4.2. We have the following canonical isomorphism of Ox-modules for an integer
1<n<d+1:

d+l1-n = P d+1
@ Q)?I/S — gr, QX/S'
ICA,|Il=n

For a non-empty finite subset I of A, we define X}Og to be X; endowed with the inverse image
of the log structure M x. Since the ideal of Ox defining the closed subscheme X; of X is locally

generated by elements of Mx, we have an isomorphism Q%{ /s ®oy Ox, = Qi{ s Especially,
I

Q;{}Og/s is a locally free O x,-module of rank d 4 1. We define Qi{}og/s to be Aqu{}og/s' We define

PoQ% g to be the Ox-submodule of Q¢ generated by wi A~ -+ Awy (w; € Q}?/S)'

LEMMA 3.4.3. Let I be a non-empty subset of A of cardinality <d+ 1 and put r = dim X;

(=d+1—|I|). The homomorphism €7, s QTXIOg/S is injective, and the homomorphism
I I
Q}"{/S — Q;(}Og/s induces an epimorphism POQS(/S — Q}(I/S.
Proof. The question is étale local on X and we may assume that there exist ¢1,...,%441 €
I'(X, Mx) as in the beginning of §3, and X; is defined by the ideal of Ox generated by the
images of t,41,...,tq+1. Then {dlogt, A---Adlogt,, |1<v; <---<v, <d+ 1} is a basis of
Q;{log /s and dt; A - - - Adt, is a basis of Q;( /5" Hence, the first claim follows from the fact that
I I

ti - - t, is not a zero divisor on Ox,. Note that )0(1 is étale over

Spec(Wn[s1, -+, Sar1]/(S1++ * Sds1s Sr41s- - -5 Sd+1))-
. . 1 1 1 . .
The second claim follows from the fact that the composite of €2 %5 Q5 /s QX}Og /s coincides
with the composite of QL =~ — QL Q! O

X/s X;/8 X[ 8/8°

For a non-empty subset I ={i(1),i(2),...,i(n)}, i(1) <i(2) <---<i(n) of A such that
n < d+ 1, we can verify that an Ox-linear homomorphism

P25 — ey Q% (3.4.4)

is well defined by the correspondence w — dlog t;1) A -+ - A dlogtip,) A w, where £, is a local
section of My such that Z;,,) = t;(n) Mx.

Proof of Proposition 3.4.2. We prove that the homomorphism (3.4.4) factors through

the epimorphism POQ“?/}{" — Q‘)ia;r}g" in Lemma 3.4.3 and induces the isomorphism in the
I
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proposition. Since the question is étale local on X , we may assume that there exist t1,...,t441 €
I'(X, Mx) as in the beginning of §3, A={1,...,d+ 1}, and Z) =t\Mx for A€ A. For a
subset J = {j(1),j(2),...,7(m)},j(1) <j(2) <---<j(m)of A, we define dlogt; :=dlogt;q) A
dlogtjo) A~ Ndlogtiomy, Ly :=1tjntje) - tjm) and J:= A\J. The Ox-module Ponf;lS_" is
the direct sum of the submodules t;.Ox dlogt . for J C A such that |J| =n, whose images in

d+1-n P (d+1 _ : d41-n _
Q)“(,/S and gr;, QX/S are 0 unless J = I. Since Q)»(I/S =17;.0x, dlogtjc, the kernel of
d —
t;eOx dlogtye — QXJ;}S"
is Y cr tit;cOx dlogtje, whose image in gr? leé/ls is 0. Note that we have an étale morphism
X — Spec(Wn[s1, - .., Sdq41]/(s1 - - - sap1)) defined by t,. Thus, we obtain the first claim. We
have

PnQs = > tOxdlogty, for0<m<d+1.
ICA,|I|=m
Hence, for the second claim, it is enough to show that the kernel of the epimorphism

dorcAl|=n treOx
@ OX Z t[/cO ) (CL[)[I—> Ztlca[
ICA|T|=n rear|=n—1t Ox -

i8 @ e, 1j=n(2ies tiOx)- This is obvious when n = d + 1. When n < d, this follows from the fact
that the kernel of Ox — OX/(chA,T¢I,|T|=n t7.0x);a trea is ), c; t;Ox, which is verified
being reduced to the case X = Spec(Wix[t1,. .., tar1]/(t1 -+ tasr1)). O

Let & be a crystal of Oy /S—modules locally free of finite type on the nilpotent crystalline

site (X / S)Nerys- Since the PD thickenings X — PY /S(r) and the projections among them are
objects and morphisms of the site (X/S)Nerys, the inverse image of & to (X/S)Nerys defines
a left Dx/g-action on its evaluation &x on id: X — X via the equivalence of categories in
Theorem 2.2.1. The homomorphism & — &x ®o Qﬁ( /s considered in Definition 3.3.2 is nothing
but the connection associated to the crystal. Let D be the PD envelope of X — }O/, and let &p be
the evaluation of & on X — D. Then the above connection of & is the pull-back of the connection
Ep — Ep Roy Q%//S associated to the crystal &'. This implies that the left Dx/g-module &x has

trivial monodromy (Definition 3.3.2). Similarly, the inverse image of & to (X7/T)Nerys defines a
left Dy, /r-action on its evaluation &y, = 17(Ex) on id: X — X7.

Let aj denote the exact closed immersion X; — Y over T induced by the composite of
X; 25 X %5y, We define the left Dy,s = Dyr [8i°g]—module F to be a/g(&x) and the left

Dy p-module Fy to be ary r(Ex;) (cf. Theorem 3.1.2(1)). Since X; and Y are smooth over S,
we may regard &y, and Fr as a D;(I/S—module and a Df//s—module respectively by (2.1.10). Then
Fr is canonically isomorphic to the direct image &4 (&x,) by Proposition 2.3.4 and the proofs
of Proposition 2.4.1, [Ber96, Corollaire 2.3.3], and [Ber00, Proposition 1.1.7]. We define the
increasing filtration F,,F (respectively F,Fr) of F (respectively F7) as before Proposition 3.1.7.
Let W, F and W,, grf” F be the filtrations defined in §3.3. In the rest of § 3.4, we will prove the
following theorem.

THEOREM 3.4.5.

(1) There exists a canonical homomorphism of Dy p-modules ky: Fj — gr F for each non-

w
-1
empty subset I C A of cardinality <d+ 1, and they induce the following isomorphism
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for —d <n <d:

@ P 71— Fi@avs — D@0 (s1(21)).

—2a=n ICA a,b,l
0<a<b<d \T|=b+1

(2) There exists a canonical homomorphism of graded Symg, Ty p-modules 7y : grl Fr —
glr‘VIV|_1 grl’ F for each non-empty subset I C A of cardinality <d + 1, and they induce the
following isomorphism for —d <n < d:

~ 1
B P ol.Fm— el ol Finass— D) (71(xr).

b—2a=n ICA a,b,

0<a<b<d |I|=b+1

COROLLARY 3.4.6. For 0<n<d, the homomorphism (8/°%)": gtV F—agW F is an
isomorphism.

Proof. We have a bijective map from
{(a,d) eN?|b—2a=n,0<a<b<d} to {(a,b)eN?|b—2a=-n,0<a<b<d}
defined by (a, b) — (a + n, b). Hence, the claim follows from Theorem 3.4.5(1). O
Let I be a non-empty subset of A such that |[I|<d+1. Put n=|I|—1. We have

an isomorphism wy — Q% X/ S, w—w Adlogt, which induces an isomorphism P,wxy —

mHQX/S' Here & denotes a lifting of w to QX/S Hence, the homomorphism Dy,r —

Dyys (cf. Proposition 2.1.9), the isomorphism QL =0l and the isomorphism in

X1/8 X1/
Proposition 3.4.2 induce a homomorphism of (Dy 7, Ox)-bimodules Dy x, /7 — grg Dy _x/s-
By taking ®o, &x and composing with the natural homomorphisms

gt Dy x/s ®ox Ex — gty F — gt F,
we obtain a homomorphism of left Dy /p-modules:
Dy x,/1 0y, Ex; — g1y F. (3.4.7)
Similarly, we have a homomorphism of (Symg, Ty, Ox )-bimodules:
SymZ’)yTY/T X0y w;l Koy Wx; — SymZ’)yTY/S Koy w;l Koy ngILD wx-
By taking ®o, &x and composing with the natural homomorphisms
SymbyTy/S R0y w;l R0y grf wx ®oy Ex — grg grf7 F — grnW grf F,
we obtain a homomorphism of graded Symg, Ty p-modules:
SymbyTY/T X0y w;1 Koy Wx; ®(9x1 (gan - grzv grf F. (348)
LEMMA 3.4.9.

(1) The homomorphism (3.4.7) factors through the natural epimorphism Dy _ x, /1 ®oy, Ex; —
F1 and defines a homomorphism of left Dy jp-modules F; — gtV F.
(2) The homomorphism (3.4.8) factors through the natural epimorphism

SymbYTY/T @0y w;1 Qoy Wx; ®OXI éaXI - grf Fr

and defines a homomorphism of graded Symg, , Ty jp-modules gl Fr — gV ol F.
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We define the homomorphism r; (respectively 77) in Theorem 3.4.5(1) (respectively (2)) to
be the homomorphism constructed in Lemma 3.4.9(1) (respectively (2)) above.

Proof. Since the question is étale local on 13', we may assume that Y is affine and there exist
t1,...,tq+1 as in the beginning of §3, z1,..., z. as before Lemma 3.1.5, and A={1,2,...,
d+ 1} We define 3 € Dyys, fu €Ty/s (0<p<e), dlogz, and dlogt as before Lemma 3.1.5

for B=S, and dy EDX/S and §, € Tx/g (1<v<d+1) asin §3.2. For a subset J of A, we
define dlogt;, t;, and J¢ as in the proof of Proposition 3.4.2. We define the basis dt;. of wx, to
be dt;qy A+ Adtjg_py, where 1 <j(1) <---<j(d—n)<d+Tland I°={j(r)|1<r<d—n}.
We regard Ty 7 (respectively Dy,r) as an Oy-submodule (respectively a sheaf of subrings) of
Ty,s (respectively Dy,g) by the canonical injective homomorphism Ty — Ty, g (respectively
Dyr — Dy/s). Then we have 8}; € Dy, and 55 €Tyr for 1< p<e. Let 0 ¢ Tx,r (veI)
be the dual basis of dt, € Qﬁ([/T (v €I and let D! e Dx,/r (v €1°) be the corresponding
differential operators.
(1) It is enough to prove that, for P € Dyp, e € &, and v € I°, the images of the two

elements

21 := (P ® (dlog 2)~" @ dire) D, © j(e)
and

12 = (P® (dlog 2)} @ dt1.) ® DI(1j(e))
of Dy x, /T ®oy, 6x, under the homomorphism (3.4.7) coincide. For 1 < < e, put

&*(dzy)= > byudt,, by €Ox.
1<v<d+1

Then we have 8,(a*(z,)) =t,b,, for 1<v<d+1 and D!(a(z,)) = i(by,) for ve I We
define aw (respectlvely ayy) to be a hftlng of tyby, (respectively b,,) to I‘(Y Oy) multiplied
by z, ", and define = Dy/s (respectively = Dyr) to be oY + Zl<u<e ayy (respectively
Zléu@ 8# ayy). Then the right action of d, € Dx/s (1<v<d+1) (respectlvely Dl e Dx,/r
(v €1°) on Dy_x/g (respectively Dy _x, /7) is given by (Q ® (dlog z)_ ® dlog t)g =Q-
P, @ (dlogz) " ®dlogt (respectively (P ® (dlog g) ®dt;.)DI =P - B, ® (dlog z)~' @ dt;.)
(cf. Lemma 3.1.5). Note that we have dt;.-D. =0 by Proposition 2.3.4 and [Ber00,
Théoreme 1.2.3]. Choose a lifting ep € &p of e and let Zl<v<d+1 ey dt, be the image of

ep by ép — ép Qo Q%//S — Ex ROy Q}(/S. Then we have 0,(e) =t,e, for 1 <v<d+1 and

DL(uvi(e)) =13(e,) for v e I¢. Hence, the images of the elements x1 and zo in grlV F are
represented by the elements e;(P- P, ® (dlogz) ' ®t;cdlogt) ® e and e;(P® (dlogz) ! ®
tie dlogt) ® e, of Q,F. Here ey € {£1} is defined by e;dlogty =dlogt; Adlogte in QS@;
The latter element coincides with

er(P® (dlogz)™! ® tre\(ry dlogl) @ dy(e) = er(P @ (dlog2)~' ® tlc\{y} dlogt)d, ® e
—¢er(P-P,®(dlogz)”" ® tre\ gy dlogl) @ e.

For the second equality, note that 5,,(110\{1,}) =0. Now, using o*(a,,) = t,a*(a,,), we see that
the difference of the two elements of @), F is

e1POY ® (dlogz2)™' ® tre\py dlogt®e = 8(1)Og(51P ® (dlogz) ' ® Ly dlogt®e),
which is contained in 8(1)Og(Qn+1.7: ) C Wy F.
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(2) By Proposition 3.1.7 for B =T, it is enough to prove that, for a non-empty subset I of A,
x € Sym¢, Tyr, e € Ex, and v € I, the image of the element (z ® (dlogz)™' ® dtre)0L @ vi(e)
under the homomorphism (3.4.8) is 0. Let b,, and €7 be as in the proof of (1). Then we have

(x ® (dlog g)_l ® dtlc)ﬁl{ = Z xf}j ® (dlog g)_l ® a}‘(zu)_lﬁ(bw) dite

l<pu<e

and the image in question is represented by the element

€1 Z xf}j ® (dlog g)_l ® a*(zu)_lbwé[c dlogt®eec Q, gl F.

1<pu<e
Since
(&) =108 + > ta*(2) by @& € Ox ®oy Ty/s,
Isp<e
Proposition 3.1.7 for B = S implies that the above element coincides with —e;z&} ® (dlog2)™' ®
t(ruguy)e dlog t ® e, which is contained in f}toanH gl Fcw,_i ot F. O

Proof of Theorem 3.4.5(2). Since the question is étale local on X , we may assume that there
exist t1, ..., tqy1 as in the beginning of §3 and A ={1,2,...,d+ 1}. Let = Tx,s be the dual
basis of dlogt, € Qﬁ(/s as in §3.2. For a subset I of A, we define dlogt;, t;, and I¢ as in the
proof of Proposition 3.4.2 and, for a non-empty I, we define dt;. € wx, and 67 € Tx,r (veI°)
as in the proof of Lemma 3.4.9. We may also assume that there exist wy, ..., w. € T'(Y, Oy)
such that dw, (1 < p <e) is a basis of Q%,/T. We define 19, 71, . . ., e € Ty/s to be the dual basis
of dlogt, dws, ..., dwe. By trivializing wy, wx, and wyx, by their bases dwi A - - - A dw,, dlogt,
and dt;., we obtain the following isomorphisms from Proposition 3.1.7:

grf F = OX[”O) my .-y ﬁe]/(a*(gu), 1 < v < d+ ]-) ®OX éaXa
gl Fr=0x,[m, el /(an(0)), v € I°) @0y, Ex;.
We have
Qnorl F= Z Llcgrf}“ for 0 < n <d,
ICA,|I|=n+1
W, grl F = Z (n0)* - Qperl F for —d<n<d,
b—2a=n,0<a<b<d

and the homomorphism grf” F; — grl‘/}/‘_1 grl’ 7 in Lemma 3.4.9(2) sends ¢i(f)®t5(e) to
erf ®@tree for f € Ox[n,...,ne] and e € &x. Here ¢; is defined as in the proof of Lemma 3.4.9.
Hence, we may assume that & = Oy /s

Let o/ : X — Y be another morphism of fine log schemes over T satisfying the same conditions
as a. We first prove that the claim holds for a if and only if it holds for o’. As in the proof
of Lemma 3.1.4, we are reduced to the case where there exists a smooth morphism h: Y’ —Y
such that a=hod and wet1, ..., we € (Y, Oyr) such that dw, (e +1< <€) is a basis
of Q%/,/Y and (o/)*(wy) =0 (e +1<pu<e). Let ng,my, ..., nl € Tyrys be the dual basis of the
basis d log t, dh*(w1), . .., dh*(we), dwet1, . . ., dwer of Q%,,/S. Then we have

04*(51/) = Z Aup @ Nys aik(gV) = Z aVM®77,iL

O<pu<e O<p<e
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and

T
ar« (0 E aw®nu, o, (0)) E al,u®77#
1<pu<e 1<u<e

for the same a,, € Ox and a{,“ € Ox,. Hence, we have the following isomorphisms compatible
with the homomorphisms constructed in Lemma 3.4.9(2) in the obvious sense:

grl F @0y Ox[hy1s-- - nu] — gre F,
grf‘ f] ®OXI OX][néJ,-lv ey 77:3’] ;grf f}

Here F' = O/_HSOX and F| = O/I-i-/TOXI' This implies the desired claim.
Since the question is étale local on X, we may assume that

X =Spec(Wnlt1, - - ., tas1]/(t1 - - - tag1))-

Let Y be Spec(Wylti1,...,tq]) endowed with the inverse image of Mp. We will prove the
isomorphism for the natural morphism of fine log schemes a: X — Y. Let 0o, 01, ..., 0441 € Ty;5
be the dual basis of the basis dlogt, dty, ..., dtg41 of Qy/s Since

a*(g,,)zt,,®9y+l®906(9x ®oy Tyys for 1<v<d+1
and
aI*(H )=1®0, € Ox, ®o, Ty, forvel",

we have isomorphisms

DY, grl F) =2 Wylt, ... tar1, 00,01, - .. 0as1]/(t1 - - - tag1, 1101 + 0o, . . ., tay10a41 + o),

L(Y, gl Fr) & Wilts, ... tas1, 01, - -, Oag]/ (b, v € 1,6, v € I9)

= Wylt,,ve I b,,vell.

The homomorphism in question has a lifting

&y @ Wlty, v €1%,0,,v € I) — T(Y, Wy grl F); (fapr) = D faprtrebl

b—2a=n CA
0<a<b<d \I| b+1

for —d < n < d, and the sum of them gives an isomorphism by Lemma 3.4.10 below. On the other
hand, T'(Y, gr!¥ grf’ F) is generated by £;.0% for b —2a=n,0<a<b<d, [ CA,and [I|=b+1

as a Wylt1, ..., tas1, 01, - .., 04r1]-module since 0y - gr)V grl” F =0 by Lemma 3.3.6(2). Hence,
the homomorphism in question is surjective. Combining with the above isomorphism, we see
that it is an isomorphism by induction on n. O

LEMMA 3.4.10. The following set is a basis of
Wnlti, ... tag1, 00, - - o Oqga]/(t1 -+ - tq, 00 + 1,0, 1 <v <d+1)
as a Wy-module:

{03 e [T o T 00

vele vel

Ogaébéd,IC{l,...,d—Fl},]I|:b+1,nV€Nfor1<V<d—|—l}.

Proof. For each 1 <v<d+1,
Wxlbo, tv, 0,]/ (6o + t,0,) = Wity 0,]
is a free W,,[fp]-module with a basis {¢]!0]" | n, m € N, nm = 0}. Hence,
Wltt, - - tast, 00s - - - Bas1]/ (B0 + t,0,, 1 <v <d+1)
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is a free W-module with a basis

{egt,c 1T &+ I e

vele vel

aEN,IC{l,...,d+1},nV€Nfor1<V<d+1}.

For a, I, and n, as above, we have
ty - -tq- 00t H e H o = (— \11|6a+\11|t H gt H g1,
vele vel vele vel
where I} ={v € I | n, # 0}. Conversely, if a > |I|, then we have
oatre [T to TT 0 = (—0)er - -tq- 05" T e T 02
vele  vel vele  vel

Hence, 0§t;c [T, cre o [1,ep 00 for a < |I] give a basis of the quotient by the ideal generated by
b1 tdyr- u

For n € Z, we define the filtration F,.(W,F) (r€Z) of W,F to be F,FNW,F and the
filtration F,.(gr}V F) of grlV F to be the image of F,(W,F). The graded quotients grf (W,,F)
and grf'(gr’V F) are graded gr, Dy/s = Symp,,, Ty/s-modules and we have a short exact sequence
of graded Symg, Ty, s-modules:

0 — grl (W, 1 F) — ertf (W, F) — gl (gt} F) — 0. (3.4.11)

On the other hand, grf (W, F) is naturally regarded as a graded Symg,, Ty s-submodule of
gl F.

By the construction of k7 in Lemma 3.4.9, we see that x; is compatible with the ﬁltrations F,

and induces a homomorphism of Symg, Ty p-modules gl ke gl Fr— gl gr| -1 F. On

the other hand, the homomorphism gr!V F — gr,VL[i o F defined by the multiplication by 8i°g
sends F, to F,;1 and induces a homomorphism grf (grlV F) — gr?’ +1(gr}ff_2 F). Hence, to prove
Theorem 3.4.5(1), it suffices to show that the following homomorphism is an isomorphism for

—d<n<d:
B D wl.Fr—alen) Fi@apr— Y (075 el kilyn).  (34.12)
b—2a=n ICA a,b, I

0<a<b<d |I|=b+1
LEMMA 3.4.13. Let n be an integer.
(1) As Symg, Ty g-submodules of grl’ F, W, (grf’ F) is contained in grl (W, F).
(2) For I C A such that |I| < d+ 1, the following two diagrams are commutative.

gry K oloe
grl Fy LR, (el F) grl_ (g F) ——grl (g} y F)
. T T
é.log
gty (grs F) grl (grl ) F) =gl o (erl F)

Here the three vertical maps are induced by the exact sequence (3.4.11) and (1) above.

Proof. The questions are étale local on Y and we keep the notation and assumptions in the proof
of Lemma 3.4.9.

(1) By definition, the Sym¢, Ty, g-module W, grl’ F is generated by ( 10g) ® (dlogz)~! ®
tredlogt®efor0<a<d,ICA,ande € & suchthat a <|I| —1and|I| — 1 —2a =n. They are
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the images of the sections (9,°%)* ® (dlog z) ™! ® tc dlogt @ e of Fy(W,F) in grf F and hence
contained in grf (W, F).

(2) Every homomorphism in the left-hand diagram is Sym, Ty p-linear. Hence, its
commutativity can be verified by looking at the images of the sections 1® (dlogz)™!®
dtre @ t5(e), e € Ex of grl’ F;. The commutativity of the right-hand diagram is reduced to
the coincidence of the homomorphism grfl1 WoF — grf W, _»F induced by 8i°g with the

NRT . log
multiplication by &, . O

LEMMA 3.4.14. For —d < n < d, the homomorphism in Theorem 3.4.5(1) is an epimorphism.

Proof. The question is étale local on Y and we keep the notation and assumptions as in the
proof of Lemma 3.4.9. Then the Dy g-module W, F is generated by (aiog)a@@ (dlog2) ' ®
tredlogt®e for 0<a<d, I CA, and e € & such that a <|I| —1 and |I| — 1 — 2a = n. Since
8}/0g - WnF C W, _oF, their images in gr!V F generate gr!V F regarded as a Dy /p-module. Hence,
the claim follows from the fact that the image of the section 1 ® (dlog z) ™' ® dt;c ® t}(e) of Fy
by the Dy /r-linear homomorphism (01°8)k is £1(0°%)* ® (dlog 2) ' @ ;e dlogt @ e. O

Proof of Theorem 3.4.5(1). By Lemma 3.4.13 and Theorem 3.4.5(2), it suffices to prove that
the injective homomorphism W, (grf’ F) < grl’(W,,F) is an isomorphism for n € Z. The claim is
obvious for n < —d — 1; both sides are 0. For —d < n < d, suppose that the claim is true for n — 1.
Then the homomorphism gr¥ (grl” F) — grl’(gr’?V F) is injective. Hence, by Theorem 3.4.5(2) and
Lemma 3.4.13(2), the homomorphism (3.4.12) is injective. Combining with Lemma 3.4.14, we see
that the homomorphism (3.4.12) is an isomorphism. It implies that gr)” (grf’ F) — grl' (g} F)
is an isomorphism. Hence, W, (grl F) = grf (W, F). O
Remark 3.4.15. By applying Proposition 3.4.16 below to Fg, a,log, QpFz, and W, F,, for x € X
and using Corollary 3.4.6, we obtain
Q. F =Ker(d'8)™1 (0 < r<d).

PROPOSITION 3.4.16. Let d be a positive integer. Let M be a module, let N': M — M be
a nilpotent endomorphism of M, and let QyM (b€ Z) be an increasing filtration of M by
submodules such that Q_1M =0, QuM = M, and N'(Qp,M) C Qp_1 M. We define the submodules
WM (—d <n<d) by

WoM= Y NYQyM).

b—2a=n
0<a<b<d

We put WM =0 forn<—-d—1and W,M =M forn>d+ 1.

(1) We have Wy,_1M C W, M and N (W, M) C W,,_oM for n € Z.

(2) Assume that, for 0<r<d, N": W,M — W_,.M induces an isomorphism gr’V M =,
gt M. Then we have Ker N™+1 = Q.M for 0 < r < d.

Proof. (1) The same as in Lemma 3.3.6.

(2) Note that @M C Ker N" ! since N"T1(Q, M) C Q_1 M = 0. The claim is true for r = d
since QgM = M. Let r be an integer such that 0 <7 <d—1 and assume that Ker NTH2 =
Qr41M. Let x be an element of M such that N"*!(z)=0. By assumption, = € Q, 1M C
W,41M. Since N™*! induces an isomorphism grm1 M= glrlivq_1 M, we have x € W, M. By
the definition of W, M, x is written in the form z =y + N (z), where y € Q.M and z € M.
Since N"*1(y) =0 by the remark in the beginning of the proof, we have N"T1(N(z))=0.
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This implies that z € Ker N"+2 = Q,.41 M by assumption and N(z) € N(Q,4+1M) C Q, M. Hence,
r=y+N(z) € Q.M. O

3.5 Independence on Y
Let o/: X — Y’ be another morphism of fine log schemes over T satisfying the same conditions
as « and let g: Y/ —Y be a morphism over T such that goa’ =a. Let &, &x, &x,, ar, F,
and Fr be as before Theorem 3.4.5. We define o;: X; — Y, ', and F} in the same way as ay,
F, and Fr using o instead of a. Then, by Proposition 2.6.5, we have

94/sF =2F,  gprFr=Fr. (3.5.1)

We obtain ‘H'(gy/sF') =0 and H'(g4,7F;) =0 for i#0. We regard g, sF (respectively
9y/7F 1) as aleft Dy s-module (respectively Dy p-module) in the following. Since F " is supported
on X, the above vanishing implies that

91+/8F = 9(Dyy11s @Dy, F)s 91/7F1 = 9(Dy vy @Dy)) 10 F1)- (3.5.2)
Suppose that we have o”: X —Y” and ¢’: Y — Y such that o/ = ¢’ o o’ and define " and F}
using . Then, by Proposition 2.6.6, the isomorphism (g o g’), ,sF"” = F coincides with the
composite of

(909)1/sF" = 9159 s F") 2 g s F =2 F,
and similarly for Fy, F}, and F}.
The isomorphisms (3.5.1) are compatible with the weight filtrations and the isomorphisms in
Theorem 3.4.5(1) as follows.
ProposITION 3.5.3. Let the notation and assumptions be as above.

(1) The homomorphism g+/5f’ — 9+/S]:/ induced by the Dy g-linear homomorphism
0)°8: F' — F' coincides with the action of 9)°® € Dy/s on g4 /sF".

(2) Forn € Z, we have H'(g, /s(gryy F')) =0 and H' (g4 ;sWnF') =0 for i #0.

(3) For n € Z, the image of g, ;sWnF' (regarded as a left Dy g-submodule of g, ;g F') under
94 /5F =, F coincides with W, F.

(4) For a non-empty set I C A of cardinality <d + 1, the following diagram is commutative in
the category of Dy ;p-modules.

9+/7 (k1)

w = w
g+/Tf} ‘g+/T(gr|I‘_1 ]:/) Corollary 2.6.10 g+/5(gr\1|—l f,)

- ig

Fr l grm_ F

Here the right vertical isomorphism is induced by (2) and (3).

Proof. (1) By (3.5.2), it suffices to prove that O9]°°P=Pd for P e Dy.yrs. By
Proposition 2.3.4, the actions of ééog on wy and wys are 0. Since g.: Tyr/g — Ty/g sends ﬁiog
to Giog, this together with Propositions 2.4.5 and 2.1.11 implies the desired claim.

(2) By Theorem 3.4.5(1) and Corollary 2.6.10, H(g 7F;) = 0 implies that

H'(g4s(gry F')) =0 fori#0.
Since W_4_1F' =0, we obtain Hi(ng/SWn]:’) =0 by induction on n.
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(3) By (1) and the definition of the weight filtration, it suffices to prove that the image of
Hg1/5QnF') — g1y F = F

coincides with (), F. Note that, for any surjective homomorphism F; — F3 of Dy g-modules
supported in X, the homomorphism H°(g,,s71) — H°(g45F2) is surjective. By the definition
of Q,F', the image in question coincides with the image of

9«(Dy —y1/s @Dy, 0(QuDyrx/5 @Dy )5 Ex)) — giysF = F.

Note that g, is exact for sheaves supported in X. Hence, the claim follows from the fact that
the natural homomorphism

O‘,_I(D%—Y’/S> ®a’_1(Dy//S) QnDyr—x;s — a/_l(D%—Y’/S) ®a’—1(Dy//s) Dyrx/s

—— Dy
(2.6.3) YX/$

is injective and its image is Dy _x/s-

(4) Put n=1I| — 1. The composite of the epimorphism

H (g1 /(a1 (Dyrx, )7 ®oy, 6x;))) — 94+/7F]
with
9ir(k1): 940 Fr — g+/T(gr¢VLV Fyzal F

is the same as the composite of

HO(ng/T(a/I*(DY“—XI/T ®OXI gXI))) - HO(ng/T(a;(grg DYU—X/S' Qox éaX)))

— H(g4/5(al(grf Dyrx/s oy €x))) — HO(g1s(ery F)) — o1y F — gry) F.

On the other hand, the composite of the epimorphism as.(Dy_x, 7 R0y, Ex,) — Fr
with k7: F; — gr}fy F is the same as the composite of

ar+(Dy —x,; /1 ®0x, €x;) — a.(gr¥ Dy x/s ®oy Ex) — gt F — g1, F.

Hence, the claim follows from the following two commutative diagrams.

-1 —
Oé/I (DYHY//T) ®a/171('DY//T) DY/%XI/T — o 1(’Dygy//s) ®O‘/71(DY’/S) grg DY’HX/S

ul(Q.G.B) lu

Dy _x,;/T gri? Dy _x/s

HO(94/5(0(Qn Dy x/5 R0y X)) —= H(91/5(QnF"))

% |

a*(QnDYHX/S ®OX @ﬁX) an

Here the right vertical isomorphism of the first diagram and the left vertical isomorphism of the
second diagram are induced by the canonical isomorphism

o Dy_yis) Qu-1(p,, 1s) @nDyr—x/s — @nDyx/s

mentioned in the proof of (3). O
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4. Nearby cycles: global case

Let X be a fine and saturated log scheme smooth over Ty such that X is separated of finite type
over Sy and Qﬁ(o T has constant rank d. Throughout this section, we assume that X, satisfies
the condition on X for the case N =1 in the beginning of § 3. We also assume that we are given a
morph1sm a: Xo — Y of fine log schemes over T such that the underlying morphism of schemes
&o: Xo— Y is a closed immersion, Y is smooth and separated of finite type over S, the log
structure My is the inverse image of My, and QY /T has constant rank e. We assume that p > 2.
In this section, we will define and study nearby cycles of a crystal £ of O %o/ g-modules locally

free of finite type on ()O(O/S)Ncrys.

4.1 Preliminaries
Let X and X' denote fine and saturated log schemes over T' satisfying the same conditions as

in the beginning of §2.6. Assume that we are given an isomorphism g: X’ =X overT. Let B
be S or T.

For a left Dy, p-module &, the natural isomorphism g~ (€) = Iy (&) is compatible with
the left actions of g_l(DX/B) = Dx//p. Since the natural isomorphism g Y wy) =, wyxr s
compatible with the right actions of ¢g=!(Dx /B) = Dx1/p, we see that the natural isomorphism

9 (€ ®oy wx) — g/p(E) ®o,, wxr
is compatible with the right actions of g_l(DX/B) =Dx /B

For a right Dx/g-module M, by applying the above argument to the left Dx,p-module

Homo,, (wx, M) and using Proposition 2.4.6, we see that the natural isomorphisms

g7 (M) — g™ (Homoy (wx, M) @0, wx) — gjp(Homoy (wx, M)) @0, wxr (4.1.1)

are compatible with the right actions of g_l(DX/B) ~Dxp.
We have isomorphisms

g wx) 2 ¢ (wx) 2 g' f1(0s)[~d] = () (Os)[~d] = wx (4.1.2)

(see §2.3). Here f (respectively f') denotes the structure morphism X — T (respectively X' — T')
and d = rankoXQ X7 . By [Har66, Remark after Corollary 8.3 in ch. III] and an argument similar
to the proof of Proposition 2.3.5, we see that the composite of the above isomorphisms is explicitly
given by

P (wx) ZHom,1(04)(Oxr, g Hwx)) — wxr; @ g (e(1). (4.1.3)
Using this isomorphism and Lemma 2.4.4(1), we see that the last term of (4.1.1) is canonically
isomorphic to g#(M) as follows:

g*(Homo (wx, M)) ®o,, wx = Homo,, (¢*(wx), g*(M)) R0, WX
~ Homo,, (wx/, g*(M)) ®o,, wx-
= g (M). (4.1.4)
Here we used Lemma 2.4.4(1) for the first isomorphism.

LEMMA 4.1.5. For a right Dy, g-module M, the homomorphism

g7HM) = ¢F(M) = Homy1(0)(Ox1, g1 (M)
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obtained by composing (4.1.1) with (4.1.4) sends m € g=1(M) to ¢y, : Oxr — g~ (M) defined
by om(a) = (¢g*)"*(a) - m. Here g* denotes the isomorphism g~ 1(Ox) — Ox.

Proof. Straightforward computation using the explicit description of the homomorphism (2.4.3)
in the proof of Lemma 2.4.4(1). O

If we apply (4.1.1) to Dx,p, we obtain an isomorphism
9 (Dx/B) — Dx—x//B (4.1.6)
compatible with the left actions of g~'(Dy/p) and the right actions of ¢~!(Dx,p) = Dx//p.

Hence, for a left Dy, p-module &, by taking the tensor product of the isomorphism g & =, 97 5€
with (4.1.6) over g’l(DX/B) = Dx//p and applying g, we obtain a Dy, p-linear isomorphism

£ — 94 /89)p(E)- (4.1.7)

LEMMA 4.1.8. For a left Dx/g-module &, the following diagram is commutative.

4.1.7 *
rx(€) ( = ) rx(9+/5975(E))
(4.1.7)l2 Corollary 2.6.10i§
* £ (2.5.1) * £
94795 j77x () ———— 94 /17x9} /5(€)

Here rx and rx/ denote the functors in (2.5.1).

Proof. This follows from the following commutative diagram.

B (4.1.6)
9 (Dx/s) ~ Dx—x1/s
(2.1.8)T (2.6.8)T (N
(4.1.6)

9 (Dx/r) = Dxxyr
We will need the following compatibility of c;,g, /B and ¢y, 4 p defined in Propositions 2.5.2
and 2.6.7 for two isomorphisms g, ¢': X’ — X.

PROPOSITION 4.1.9. For any two isomorphisms g, g’ : X' =5 X over T which coincide
modulo p, the following diagram is commutative.

=~ / /%
£ T 9. 895(€)
(4.1.7) | = %lcg,g/,ﬂB(g’/}(S))
g+/3973(5) = 9+/397§9(5)

g+/Boc;’g//B(5)

This proposition is obtained by applying the following more general proposition to M =Dx/p
and taking g..

PROPOSITION 4.1.10. Let g,¢": X' =5 X be two isomorphisms over T which coincide
modulo p. Then, for a right Dx,p-module M and a left Dx,g-module &, the following diagram
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is commutative.

g ' Mep, , E) = (95 (Homo, (wx, M)) ®oy, wx') @Dy, p, 975(E)

-

~

gil(./\/( ®DX/B 5) — (g?B(Homox (va M)) ®OX/ wX/) ®DX’/B g;‘B(E)
Here the lower horizontal homomorphism is defined by taking the tensor product of (4.1.1) and
g &) — g’/"B(E) over g~ (Dx/p) = Dx+/p, and similarly for the upper one. The right vertical
one is defined by applying c;’g,/B (Proposition 2.5.2) to the left Dx,g-modules Homo, (wx, M)
and .

In the rest of this subsection, we will prove Proposition 4.1.10. To prove it, we give another
description of the right vertical isomorphism via (4.1.4). Let g, ¢’ be as in Proposition 4.1.10. Since
the canonical PD structure on pOx is nilpotent by the assumption that p > 2, the morphism
(9,9"): X' = X xp X induces a PD morphism h: X' — Py p for a sufficiently large n. Hence,
for a right Dy,p-module M, we have an isomorphism

(M) = Bip}* (M) T hEp}H(M) 22 (M), (4.1.11)
En
Here
ent P (M) == (M)
is the isomorphism associated to the right action of Dy ,p on M by Theorem 2.2.5. For the right
Dy, p-module wy, the definition of the right action in §2.3 implies that the above isomorphism
coincides with the composite of

~ ~

g (wx) — wxr — ¢ (wx)
obtained from (4.1.2) and (4.1.3).

PROPOSITION 4.1.12. Let g, g’ be the same as in Proposition 4.1.10. Then, for a right Dx,p-
module M, the following diagram is commutative.

g;}(HomoX (wx, M)) ®o,, wx: i)g;‘B(HomoX (wx, M)) ®o,, wx
(4.1.4)% gl(4.1.4)
g (M) g(M)

TR

(4.1.11)

Here the upper horizontal isomorphism is defined by applying cZ o/B (Proposition 2.5.2) to
Homp, (wx, M).

Proof. By the proof of Proposition 2.4.1, the left action of Dy,p on Homo (wx, M) corresponds
to the system of isomorphisms defined in the following way:

(2

4.3)
Py (Homp, (wx, M)) =

Hompy (py" (wx), Py’ (M)
(2.4.3)

> Hompr, (pi*(wx), Py (M)) = pl* (Homoy (wx, M)).

X/B
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Let h be as before (4.1.11). Then, by taking h* and using Lemma 2.4.4(2) for (2.4.3), we see that
, g//B(Hom@X (wx, M)) is the composite of

(2.4.3)
g,* (HOIIIOX (wX7 M)) = HOIHOX, (glh (WX)7 g/h(M))

(2.4.3)
= Homo,, (¢*(wx), g'(M)) = g*(Homoy (wx, M)),

where the second isomorphism is induced by (4.1.11) for wyx and M. By the remark after (4.1.11),
we see that the diagram in the proposition is commutative. O

Proof of Proposition 4.1.10. Let h be as before (4.1.11) and let 6,: £ = & ®o, P}/B be the
homomorphism corresponding to the left action of Dx,p on £ (Proposition 2.2.3). Then, for

e € £, the image of g~ !(e) under the composite of

g7HE) — g)5(E)

~ ~

= *(E) — g7
e

is the image of h=1(6,(e)) by
W pE () “— g7 (€) — g E,
which is g~ (P - e), where P denotes the section P;I(/B LN Ox: <9T* Ox of Dx/p - On the other

hand, by the construction of the isomorphism (4.1.11) and Lemma 4.1.5, we see that the image
of g~t(m) (m € M) under the composite of

S E = M) g
g7 (M) o M) M) g M)

is the image of the section g~ 1({b+ (¢g*) "' o h*(b) - m}) of g~} (Homp, (p?*P}/B, M)) by

o7

g™ (Homoy (. PR 5. M)

h=1(en) g,_l(HOIIl(')X (pg*P;(/B7M)) —)g/_l(M)a
where the second map is the evaluation at 1. The latter image is ¢'~!(m - P) for P € Dx/pn as
above. By Proposition 4.1.12, we see that the diagram of the proposition is commutative. O

4.2 Affine case

Let ag: Xg — Y be as in the beginning of §4 and assume that the underlying scheme of X is
affine in this subsection. We consider both T" and S as a base and apply the result for T to the
intersections of smooth components of Xg (cf. (4.2.5)).

Let B denote S or T'as in § 2, and let & be a crystal of Ox, /g-modules locally free of finite type
on the nilpotent crystalline site (Xo/B)Nerys. By assumption, there exists a smooth lifting X — T
of X¢ — Tp, which is unique up to (non-canonical) isomorphisms [Kat89, Proposition 3.14(1)].
By the uniqueness and the assumption on Xy, we see that X /T satisfies the conditions in the
beginning of § 3. For such an X, the PD thickenings Xo — P¢ /B (r) and the projections among
them are objects and morphisms of the site (Xo/B)Nerys- Hence, the evaluation ¥x of ¢ on
Xo — X is regarded as a left Dy p-module by Theorem 2.2.1. For an X as above, there exists
also a morphism a: X — Y whose composite with Xg — X is ag [Kat89, Corollary 3.11]. The
underlying morphism of schemes of such an « is always a closed immersion. By Theorem 3.1.2(1),
we have Hi(aHB(gX)) = 0for i # 0. Weregard oy p(¥x) as aleft Dy, g-module in the following.
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Now suppose that we are given two such pairs (X, ) and (X',a/). If we choose

an isomorphism ¢: X’ =X over T inducing the identity on Xj, then we have the following
isomorphisms:

4/ BYX %’ e 5] BYX — i 50

~ ~

— (aou)y/pYx:

oy pYx. (4.2.1)

Proposition 2.6.5 Proposition 2.6.7

PROPOSITION 4.2.2.
(1) The composite of the isomorphism (4.2.1) is independent of the choice of the isomorphism ¢.
Let ¢(x1 a1y, (x,a)/B denote the composite.
(2) If X = X', the isomorphism c(x o) (x,a)/B coincides with ¢y o 1/ in Proposition 2.6.7.
(3) For three pairs (X, a), (X', '), and (X", ), we have

C(X”,a”),(X,oz)/B = C(X”,o//),(X/,o/)/B (@] c(X’,o/),(X,a)/B'

(4) Let & be a crystal of Ox, s-modules locally free of finite type on (Xo/S)Nerys and let &'
denote the inverse image of 4 on (Xo/T )Nerys- Let rx denote the functor Dx/s-Mod —
Dx/r-Mod induced by (2.1.8), and define rx: and ry similarly. Then the following diagram
is commutative.

Corollary 2.6.10

ry o ayys(Yx) ~ ayrorx(9x) = a7 (Gx)
TYoc(X’,u’),(X,u)/Sl: :\LC(X/,D/),(X,Q)/T
C 11 2.6.10
Fy o a;/s(gX,) oro a;y ai&-/T o 'r'X/(gX/) —g> a;/T(g)'(,)

Proof. (1) Let /: X' = X be another isomorphism. The claim follows from the following
commutative diagram.

OC+/BgX _— 04+/BL+/BL7BgX R 04+/BL+/BgX’ _— (ao L)+/ng/

Ca’, a0, +/B
o a+/B<CL,L/,+/B) = Caor,a0u /B | = >
o o o

/ 1% = ’ = / = /
ay sty gt pYx ———— ay Yy pYx ——— (a0t )+/ngzmoz+/3%x/

The left-hand square is (respectively the middle square and the right-hand triangle are)

commutative by Proposition 4.1.9 (respectively Proposition 2.6.7).
(2) We are reduced to the fact that the composite of

o

Dy _x/B Dy x/p @Dy, D Dy_x/B

id ——
Dy x/p®(4.1.6) X < X/B (2.6.3)
is the identity map, which is verified by a straightforward computation.
(3) Choose isomorphisms ¢: X’ =3 X and //: X" = X'. By using Propositions 2.6.7
and 2.6.6, we are reduced to showing that the composite of the isomorphisms
Gy — L+/BL’/‘BE¢X — L_,_/BLQ_/BL//*BL;BgX

coincides with the isomorphism

Gx — (10t) /5o )T p9x 2oyl pfpt) Y.
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This follows from the following commutative diagram

D = D ,
X/B (1.16) X—X'/B
(4.1.6)J{% gibxhx//3®(4.16)
DX<—X”/B = DX<—X’/B ®DX’/B DXQ_XII/B

(2.6.3)
which is verified by a direct computation. Here we regard sheaves on X, = (respectively X7/ )

as sheaves on Xz, via ¢ (respectively ¢ o (/).
(4) The claim follows from Lemmas 2.6.11, 2.6.12, and 4.1.8. O

DEFINITION 4.2.3. Let B be S or T', and let ¢ be a crystal of Ox,,p-modules locally free of
finite type on (Xo/B)Ncrys- We define the left Dy g-module o 1 /5(¥) to be o, p(¥x), which
is independent of the choice of (X, &) up to canonical isomorphisms by Proposition 4.2.2. When
B =15, we call ag/5(¥) the nearby cycles of 4 realized on Y.

For a crystal 4 of Ox,/s-modules locally free of finite type on (Xo/S)Nerys, o 4/5(9)
regarded as a left Dy p-module via (2.1.8) is canonically isomorphic to ag 4 7(4’) by
Proposition 4.2.2(4), where ¢’ denotes the inverse image of ¢4 on (Xo/T )Nerys-

Let & be a crystal of O %o/ g-modules locally free of finite type on ()2'0 /S)Nerys and let ¢ be
the inverse image of & on (Xo/S)Nerys- Then ¥x has trivial monodromy (Definition 3.3.2) and
we may apply the construction in §3.3 and obtain the weight filtration W), (o /5(9x)) (n € Z)
of a /5(9x ). See before Theorem 3.4.5.

PROPOSITION 4.2.4. For & and ¢ as above, the isomorphism

C(x" ) (Xa)/S ¢ oy ys(Fx) — oy yg(Fxr)
induces an isomorphism between the weight filtrations:
Wala5(9x)) == Walaly5(@xr)) (1€ 7).
Proof. Since ¢(x7 a1),(x,a)/s 18 an isomorphism of Dy g-modules, it suffices to prove that
C(X',a'),(X,a)/s induces an isomorphism between the filtrations Q, (cf. §3.3). Choose an

isomorphism 1: X/ —— X. By Proposition 4.2.2, we may assume that o/ =aor or X = X',
In the first (respectively the second) case, the claim follows from the fact that the composite of

o)

1~ 1(Dy o x/5)®(4.1.6)

v (Dy—x/s) T (Dyx/5) @-1(Dy5) Pxex/s

1%

— Dy x
(2.6.3) Yex'/s

(respectively the isomorphism D = ' x/s used in the construction of ay /g = a’+ / )

Yy & X/ Dy o’
is a filtered isomorphism for the filtrations Q. O

By Proposition 4.2.4, the nearby cycles ag 1 /5(¥) of & realized on Y are canonically endowed
with the weight filtration Wy, (g 1/5(¥)) (n € Z).

In the following, we assume that all irreducible components of )oi'o are smooth over Sy and
define X » (A€ A) and Xo 7, X7, and ay: X7 —Y (I CA) as in §3.4. Let o, denote the exact

closed immersion Xo; — Y over T induced by 20(0,1 — )0(0 20, V. Let %, denote the inverse
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image of & on (Xo,1/T)Nerys and let 97 x,; denote the Dy, r-module obtained by evaluating %7
on Xo;— X;. By applying Proposition 4.2.2 to B=T, (X0, o), and ¥, we obtain an
isomorphism

(X0 (Xpan)) T 14 yT(G1x,) — o (Y1 xr) (4.2.5)
for two pairs (X, a) and (X', o), which satisfies the cocycle condition as in Proposition 4.2.2(3).

PROPOSITION 4.2.6. For two pairs (X, «), (X', o') and a non-empty subset I of A of cardinality
<d + 1, the following diagram is commutative.

arr(Grx,) —= g (ay/s(9x))
C(X},a’l),(XI,aI)/Tl% ElC(X’,a’),(X,a)/S
K
o) 4l xy) el (o, o(%x0))

Proof. Since the two vertical isomorphisms satisfy the cocycle condition, it suffices to prove the

claim when X = X’ or o/ = a o for an isomorphism ¢: X’ —— X of liftings of Xy. In the case
X = X/, the claim is reduced to the commutativity of the diagram

o Q
Dy o X;)7 81 P

~l +|

D
I
Yy £ X;/T

Yy &£ X/S

Q
&1 Py o X/
where the left (respectively right) vertical isomorphism is the isomorphism (respectively is

. . . ~ . . ~ /

induced by the isomorphism D = DY o X/S) used in the construction of ay /7 =« T4/T
(respectively a /g = o/+ / g)- Let X be X with the inverse image of Mz. Then the morphisms o
and aj factor through the same morphism a: X — Y, and the upper horizontal homomorphism

of the above diagram is written as follows:

Yy £X/8

a (DY/T Koy w}_/l) ®ox wx; — A’ (DY/S ®oy w;’l) Box grﬁ|*1 wx-

Here we take o* with respect to the action of Oy through w{,l. Hence, the commutativity
follows from (2.5.1) and Lemma 2.4.7 applied to M = Dy 5 and N =wy.Inthecase o =ao,
induces an isomorphism ¢7: X } =X 1 and we have 0/1 = ay o 7. The right vertical isomorphism
is induced by

id®*: (Dyss ®oy wy') ®oy wx — (Dy/s oy wy') ®oy wx',

and the left one is induced by the isomorphism obtained by replacing Dy /s, wx, wx, and ¢ with
Dy, wx;, wx, and ¢7. Hence, the claim follows from the compatibility of the homomorphisms

P : * *
wa) = 8r|7j_1 WX O with ¢7 and ¢*. O

Let &x,/s (respectively &y, r) denote the inverse image & (respectively ¥7) of & on
(Xo/S)Nerys (respectively (Xo.7/T)Nerys). Then, by Proposition 4.2.6, we have a canonical
morphism of Dy pr-modules:

k1 o1 4 /7(Exy 1) — 88|11 (0,1/5(8x,5)) (4.2.7)

for each non-empty subset I of A of cardinality <d + 1.
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4.3 General case

Let ag: Xg — Y be as in the beginning of §4. Let B be S or T, and let ¢4 be a crystal of
Ox,/p-modules locally free of finite type on (Xo/B)Nerys- Let V' be an open log subscheme
of Y (i.e. an open subscheme of Y endowed with the inverse image of My ) such that the
underlying scheme of Uy := Xy xy V is affine. Choose a smooth lifting U of Uy over T, and
a morphism ay: U —V over T whose composite with Uy — U is ag|y,. Let V/ be an open
log subscheme of V' such that the underlying scheme of U} := Xy xy V' is affine, and put
U'=U xy V'and ayr = ay|y:. Then we have a natural isomorphism (ay g% )lv: = ayry g%
of Dy, p-modules, where ¢ denotes the Dy, p-module obtained by evaluating ¢ on Uy — U and
similarly for % (cf. the beginning of §4.2). If we are given another pair (U, ag), then the above

isomorphisms for (U, ay) and ([7 , ;) are compatible with the isomorphisms W) (Tag)/B and

U ) (T 1)/ B (cf. Proposition 4.2.2), since the isomorphisms in Propositions 2.6.5 and 2.6.7

and the isomorphism (4.1.7) are compatible with the restrictions to Zariski open subschemes.
Hence, we have a canonical isomorphism of Dy, g-modules

vy s (w8 GvorB)) v — vyt (S s).

Here %, /5 denotes the inverse image of 4 on (Uy/B)Nerys, @, = @olv,, and similarly for gUé /B>
ayy. See also Definition 4.2.3. For an open log subscheme V" of V' such that the underlying
scheme of U/ := Xy xy V" is affine, we have

pleJ/ = pVII7V/ O pvl7v|vn,

LEMMA 4.3.1. Let the notation and assumptions be as above. There exists a left Dy, g-module F

with an isomorphism of Dy g-modules py : F|y =, AUy, +/B (gUO/B) for each open log subscheme
V of Y with affine Uy = Xg Xy V such that the following diagram is commutative for every two
open log subschemes V' C 'V of Y with affine inverse images U}, and Uy on Xj.

Flv — (avy,+/8(Guy B)) v

pvlve
\ o~ Pv’,vl’z

Py
! oy +/8(Gus/B)

Furthermore, (F,{py}) is unique up to unique isomorphisms.

Proof. Put Fy := ay, 4+,8(%,/p) for simplicity. For two open log subschemes V', V' of Y with
affine inverse images on X, define the isomorphism py 1 to be the composite

-1 ) ~ o~
Pyrvi v © pvove v Fulvave — Fvave «— Fyrlvavr.

Then py- y satisfies the cocycle condition for three V, V', and V", and there exists a unique F

with py: Fly =, JFv compatible with the isomorphism py- y,. Since the compatibility with py- i/
for every V', V' is equivalent to that for every V', V' satisfying V' C V, this implies the claim. O
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DEFINITION 4.3.2. Let the notation and assumptions be as above. We define the left Dy,p-
module ag 4 /p(¥) to be F considered in Lemma 4.3.1. When B =S, we call ag_/s(¥) the
nearby cycles of 4 realized on'Y'.

Let & be a crystal of Oy, g-modules locally free of finite type on (Xo/S)Nerys and let &'
denote the inverse image of ¢ on (Xo/T )Ncrys- Then we have a canonical isomorphism as Dy/T—

modules

ao,+/5(9) = a0,+/T(g/) (4.3.3)
such that the following diagram is commutative for every open log subscheme of Y with affine
UO = Xg Xy V.

ag,1/5(@)v —Z= avy 415Gy 5)

gl gl

ag /7@ 2 v 47 Gy r)
Here the right vertical isomorphism is the one mentioned after Definition 4.2.3.

Let & be a crystal of Oy /s~modules locally free of finite type on (X /S)Nerys, and let & be
the inverse image of & on (Xo/S)Nerys- Then the isomorphism py- 1 is a filtered isomorphism
with respect to the weight filtrations. Hence, the weight filtration on oy, 4/5(%,/s) glues and
gives the weight filtration W, (g 4/5(¢)) (n € Z) on the nearby cycles aq 4 /5(¥) of ¢ realized
onY.

As in the beginning of § 3.4, let X (A € A) be the irreducible components of Xy and assume
that X ) is smooth over Sy for every A € A. We choose and fix a total order of the finite set A.
For a non-empty subset I of A, we define Xy 1 to be the fiber product of Xy (A € I) over X0
endowed with the inverse image of Mr, and g to be the T-morphism X ; — Y induced by
Xos — Xo 227

For two open log subschemes V/ C V' with affine Uy := Xy xy V and Uj := Xy xy V', the
following diagram is commutative.

Krlyr
(v, 1,4+/7(EUy 1 7)) IV (4%2‘./7) (gl"m,l(oéUo,Jr/s(éan/s)))\V/

Pv’,vl% Pv’,vl%’

ayy 147y /1) ( :2]'7) gri o (avy +/5(Euyss))

Here U1 = Xo1 Xy V, ayy,r = ao1lu,,, and &y, /7 (respectively &y, 5) denotes the inverse
image of & on (Up 1/T )Nerys (respectively (Uy/S)Nerys). Similarly for Ué’ 7> ete.

Let &x,/s (respectively &, /) denote the inverse image of & on (Xo/S)Narys (respectively
(X0,1/T)Nerys)- Then we can glue £ and obtain a canonical morphism of ’Dy/T—modules:

k1 ao,14/7(Exg ) — 011 (04/5(Exo/5))- (4.3.4)

From Theorem 3.4.5 and Corollary 3.4.6, we obtain the isomorphisms

B P aorsr(Exgyr) gV (ag +/5(Ex0/5)); (T1)ap1 Z “(k1(zr))

b—2a=n ICA a,b,l
0<a<b<d |I|=b+1

(4.3.5)
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for —d < n < d and the isomorphisms

(9,8 gry) (o,4/5(Ex4/5)) = g (ao.4/5(Exy/8)) (4.3.6)
for 0 <n<d.

4.4 Independence on Y

Let ap: Xo — Y be as in the beginning of §4. Let af,: Xo — Y’ be another morphism satisfying
the same conditions as ag and let g: Y’ — Y be a morphism over T such that g o o, = ap.

We first assume that X is affine. Let B be S or T, and let ¢4 be a crystal of Ox,/p-
modules locally free of finite type on (Xo/B)Nerys- Let X — T' be a smooth lifting of Xg over T
and let @’: X —Y’ be a morphism over T such that the composite with Xo — X is af. Put
a=goda' Let ¥x be the Dy, p-module associated to ¢ as in the beginning of §4.2. Then,
by Proposition 2.6.5, we have a canonical isomorphism g, BO/Jr / gYx = ay p¥x. For another
pair (X,d’) and & =god’, we see that the above isomorphisms for (X, /) and (X, &) are
compatible with the isomorphisms ¢ v .\ 515 a0d ¢ x ) (%58 (cf. Proposition 4.2.2) by
Propositions 2.6.6 and 2.6.7(2). Hence, we have a canonical isomorphism of Dy p-modules:

By Lemma 2.6.11, we see that the following diagram is commutative for a crystal ¢ of Ox,/s-
modules locally free of finite type on (Xo/S)Nerys-

TY9+/5046,+/5(54) Lemm;Q'G'm 9+/T7“Y'046,+/s(g) = 9+/T0467+/T(54/)
~l(4.4.1) ~J{(4.4.1)
7"y0é07+/s(g) = O‘O,+/T<g,)
(4.4.2)

where ry and 7y are defined as in (2.5.1) and ¢’ denotes the inverse image of 4 on (Xo/T)Nerys-

Suppose that we have af: X —Y” and ¢: Y — Y’ such that o, =¢ oqf. Then, by
Proposition 2.6.6, we see that the isomorphism

(909) /8% /Y = 01 /BY

coincides with
(go 9/)+/3046/,+/Bg = 9+/B(gﬁr/3043,+/3g) = 9+/3046,+/Bg > agy/BY-

In the following, we consider a general Xy and do not assume that X is affine. Let VCV
be two open log subschemes of Y such that the underlying schemes of Up:= Xy xy V' and
Up = Xo Xy V are affine. Put V' =V xy Y/ and V' =V xy Y. Then, since the isomorphism in
Proposition 2.6.5 is compatible with the restrictions to Zariski open subschemes, we see that the
following diagram is commutative.

(gVUJr/BO/Uo,+/BgUo/B)’\7 (4:_1) (avy,+/B%0,/B) |y
9‘7/’+/B(P‘7/7vl)l"‘ pV,VlN
N / » o B 3
gV’,‘F/Ba(FjO’_F/BgUo/B (4.4'1) an,—‘r/BgU()/B
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Here
gvr=glvi, oy, =agluy,  avy =lve,  GuosB =G0/ B)xerye
and similarly for V' and (70. Hence, by gluing the isomorphism (4.4.1) for ay,, O/UO, gy, and
“1,/B> We obtain a canonical isomorphism of Dy, g-modules:
9+/8%,+/5Y = a1 /8Y. (4.4.3)
The diagram (4.4.2) is still commutative for a general Xy, since the question is Zariski local
on Y. We also have the compatibility with respect to compositions of the g.

Next let us consider a crystal & of O ¢ / g-modules locally free of finite type on (X /S )Nerys- We
assume that every irreducible component of Xy is smooth and define Xy 5 (A€ A), Xo s (I CA),
ao,r: Xog —Y, &x,/s, and Ex, /7 in the same way as in §4.3. We define oz{)J: Xo,r — Y’ in the
same way as o using «f instead of . Then, from Proposition 3.5.3, we obtain the following
proposition.

PROPOSITION 4.4.4.

(1) The homomorphism g+/sa67+/s<§’X0/S — g+/5a6’+/SéDXO/S induced by the Dy g-linear
homomorphism 9,8 : a6,+/SgX0/S — 0‘6,+/ng0/5 coincides with the action of 9% € Dys
on /50 4 /56Xo/5-

(2) For n € Z, we have

H' (g1 /s(grn (g 4 /56x0/5))) =0
and
H (91/s(Walag 4 156xy/5))) =0 fori#0.
(3) For n € Z, the image of g+/S(Wn(a6’+/sé"Xo/S)) under

94/5%% 1 156x0/5 — Q0,4 /56X0/5
coincides with Wy (g 4 /56x,/s)-

(4) For a non-empty set I C A of cardinality < d + 1, the following diagram is commutative in
the category of Dy p-modules, where ry and ry: are defined as in (2.5.1).

9+/T(HI) Corollary 2.6.10

94/7% 1+ )7EX0,1 /T a0 g /rry(erfy 1 () L 168x0/5)) — ry 94 /s(erf] 1 (g 4 156x0/s))

i: xe

K
Q0,1,4/T6X /T m ,;4) ry (8171 (@04 /56%0/5))-

4.5 Cohomology and weight spectral sequence

Let ag: Xo — Y be as in the beginning of §4 and let h: Y — T be the structure morphism. Let B
be S or T' and let & be a crystal of Ox,,/p-modules locally free of finite type on (Xo/B)Nerys-
Then we see that the object hy pag /9 of D™ (Dr/p-Mod) is independent of the choice of
ap as follows. Let afy: Xo — Y’ be another morphism satisfying the same conditions as agp. Put
Z =Y x7Y'" and let B be the morphism Xy, — Z induced by o and ¢, which also satisfies
the same conditions as ag. Let h' (respectively h”) denote the structure morphism Y’ — T
(respectively Z — T'). Then, by using (4.4.3) for two projections py: Z —Y and py': Z —Y’
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and Proposition 2.6.5, we obtain

Calyan/B* N yBa0 /B9 = by yBpy 48P0+ /BY = 5B+ BY
= h+/BpY’+/350 +/BY = h+/Ba0 +/Bg‘

Let a be a morphlsm X — Y satisfying the same conditions as Q. Put Z=Y xpY' x7Y" let
ﬁo Xp— Z be the morphism induced by «y, o, and o, let qy: Z —'Y be the projection to Y,
and define gy+ and gy~ similarly. Then, by using (4.4.3) for Z —Y xrY' and Proposition 2.6.6,
we see that Caly00/B 18 also given as the composite of

hy oo+ /89 = hypay+/8Pos /89 = (hoay)y 8P+ /89
= (W oav')y/BBo+/BY =W, payry BBos/BY = h,pag /59
Here we also used the compatibility of (4.4.3) with compositions of the g. We have similar

descriptions for cap oo/B, and cuy o /5. Hence, we have coy og/B = Cafl ol /B © Caly ag/B- Thus, we
see that hy pag /¥ is independent of the choice of g up to canonical isomorphisms.

DEFINITION 4.5.1. Let Xg be as in the beginning of §4 and assume that there exists ag: Xo —
Y. (For example, such an ag exists when X is projective.) Let B be S or T, and let fy denote the
morphism X¢ — T'. For a crystal 4 of Ox,,g-modules locally free of finite type on (Xo/B)Nerys
we define the object f /¥ of D™ (Dp;s-Mod) to be hy gy /5.

LEMMA 4.5.2. Let & be a crystal of Ox,s-modules locally free of finite type on (Xo/S)Nerys-
Then we have a canonical isomorphism rrfo /59 = fo +/79’', where rr denotes the functor
D™ (Dyys-Mod) — D~ (Or-Mod) and &' denotes the inverse image of 4 on (Xo/T )Nerys-

Proof. 1t suffices to show that the following diagram is commutative.

Corollary 2.6.10 (4.3.3)
rrhy sag 1 /s(9) gy hyjrryaos/s(9) —— hey a1 r(97)
lca/ ,ag/S Elcaf),ao/T

(4.3.3)

Corollary 2.6.10

rrh! g0 o) Wy ryialy o 6(9) Wy 4 (')

This follows from Lemma 2.6.11 and the commutative diagram (4.4.2), which holds for
general Xj. O

If N=1 (i.e. T=1),), then, by Proposition 2.6.5 and Corollary 2.6.2, we see that
hy/pag /¥ is canonically isomorphic to Rfo.«(9x, ®oy, Q%, /TO)[d] as an object of

D~ (k-Vect). If X is proper over Sy, then we can prove that Hi(fO,Jr/Bg) is a finitely generated
Win-module by reducing to the case N =1 and using the above comparison with the de Rham
cohomology. With these observations, it is natural to ask the following question.

Question 4.5.3. Let Xo, B, and fo be as in Definition 4.5.1. Then, for a crystal ¥ of Ox,/p-
modules locally free of finite type on (Xo/B)crys, is there a canonical isomorphism

H'(fo+/59) = H((X0/T)erys, 9)

of W-modules?

When B =, it is also natural to ask whether the endomorphism 9, on the left-hand side
corresponds to the monodromy operator N on the right-hand side defined in the same way as
in [HK94, 3.5].
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Now let us consider a crystal & of O Xo/ g-modules locally free of finite type on ()0(0 /S)Nerys- We
assume that every irreducible component of X is smooth and define Xy » (A€ A), Xo 1 (I CA),
ao,r: Xor —Y, Exy/s, and Ex, /7 in the same way as in §4.3. Let fo; denote the morphism
Xo,; — T. Then, from the isomorphism (4.3.5), Proposition 4.4.4, and Corollary 2.6.10, we obtain
the following theorem.

THEOREM 4.5.4. Let the notation and assumptions be as above. Then there exists a canonical
spectral sequence:

BV= P P HY(forsmxe, ) = EXT=H(fo4/56xs)-
b—2a=—1 ICA
0<a<b<d  |I|=b+1

Furthermore, there exists a morphism of spectral sequences of degree (2, —2):

E’] _ _ H—i—] & +7 47
Drzae—s D rcr H foryréionr) —— B = H™(fy 1156, /5)

i Laiog

+ i+
=D iy’ EBIIIICb/}H H (for4/76%0,1/7) — B = =H"(fo 1 /5Ex,/8)

2.

E{TT
The homomorphism E] b, EHZJ % of the E; term is defined by 0 on the component of E] Y for
a = b and the identity map from the component of E¥ for (a, b, I) with a < b to that of E“LQ’J 2
for (a+1,b,1I).

Proof. We will prove the existence of the morphism of spectral sequences. Let I be a subset
of A of cardinality <d + 1 and put b= |I| — 1. By the construction of £; in Lemma 3.4.9 and
Proposition 3.3.3(1), we see that the composite of

(810g b+1

Q0,1,4+/T6X0 1T gry (o456, /s) ——— 810 _s(a 4 /56X, /5)

AN
(4.3.4)
is 0. Hence, we have the following commutative diagram:

b—2a= ICA QO 1+/TEXy )T — = o oW
@ogagbgnd EBm /T X1/ 8ty (@0,1/56%y/5)
l aiog

Dv—20=n—2 D ICA Q0,1+ /TEXo 1 )T —= s oW
0<a<b<d |T|=b+ AT X1/ grn_o(0,1/5x,/5)

for —d + 2 < n < d. Here the left vertical homomorphism is defined by 0 on the component of the
source for a = b and the identity map from the component of the source for (a, b, I') with a < b to
that of the target for (a + 1, b, I). On the other hand, by the same argument as in the proof of
Proposition 3.5.3(1), we see that the endomorphism of h, ;g 1 /5, /s induced by the action
of 8i0g € Dy;s on g 4 /56,5 coincides with the action of aiOg € Drys on hysag 4 /56x,/s-
Hence, by taking h /p of the above commutative diagram and using Corollary 2.6.10, we obtain
the desired morphism of spectral sequences. O
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