
ON INDEFINITE TERNARY QUADRATIC FORMS 

B. W. JONES AND G. L. WATSON 

1, Introduction. The first systematic study of equivalence of indefinite 
ternary quadratic forms seems to be that of A. Meyer (10) (see also Bachmann 
(1)). By methods which are often obscure he showed that the number of 
classes in a genus is a power of 2, the exact power depending on certain quad­
ratic characters associated with the form. These investigations, however, 
dealt only with forms of odd determinant, in the classical sense (in our nota­
tion, A = 0(mod 2) and d = 4(mod 8)). Donald Marsh (9) established an 
algorithm by which the number of classes may be determined. Eichler (4) 
has, as a consequence of deep and general theory, thrown much light on these 
questions. 

Here, using concepts closely related to the spinor genera of Eichler, we 
define a multiplicative group Td of square-free integers prime to dy the deter­
minant of/. Further we show that Td has a subgroup Y ( / ) consisting of all 
those elements of Td which are denominators of rational automorphs of / , 
where by the demoninator of a matrix we mean the l.c.m. of the denominators 
of its elements. We show that the number of classes in the genus of / is equal 
to the order of the factor group Td/y(f). In the process of deriving this result 
we get information about the automorphs which yield much new information 
(see Theorem 2) about the representation of numbers by indefinite ternary 
quadratic forms. An alternative definition of a group T(p,f) is given in §3 
by means of which the order of the factor group above can be determined. 

2. Notation, For certain matrices with integral elements we shall use 
the notation: 

( xA I 0 — %z x2 

X2 I , Xf — (# i , #2, #3) , X = Xz 0 —Xi . 
xj L—x2 xi 0 J 

Latin capitals will denote 3 X 3 non-singular matrices, with rational elements, 
I being the identity matrix. Other letters will denote integers unless otherwise 
stated, p being always a prime. 

For a ternary form, we use the notation 
/ = /(*) = / t t i , É2,É8) = WAS, A = (atj) = (d2/M< a*,), 

and define the invariant (2, pp. 4, 5) 

d = d(f) = -\\A\. 
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INDEFINITE TERNARY QUADRATIC FORMS 5 9 3 

We assume t h a t / h a s integral coefficients and is indefinite and non-degenerate 
(i.e. that d 9^ 0). We also assume tha t / i s primitive, that is, that its coefficients 
have greatest common divisor 1. The non-primitive case can easily be deduced 
from it. We note that A, being symmetrical and having even diagonal elements, 
is congruent (mod 2) to a skew matrix, which is singular (mod 2); hence 
d is integral. 

As we are concerned with properties invariant under integral unimodular 
transformations, we may suppose when necessary that the form / is a repre­
sentative of its class satisfying one or other of the following congruences: 

3 

(2.1) / - E PUa&\ (mod / ) , p \ aw* 0 = Xi < X2 < X3; 

(2.2) / = 2Xl4>(£i, £2) + 2X2ag3 (mod 2*), Xi, X2 = 0, X or X, 0 

(2.3) / s f c f c + dçî ( m o d / ) , p \ d, 

where in (2.2) a and the discriminant of <t> are odd. This is possible for any 
prescribed /3; we assume always that /3 exceeds the highest exponent on the 
right side of the congruence by at least 2 + ( — l)p. For a proof that every / 
is equivalent to a form satisfying (2.1) if p > 2, or one of (2.1), (2.2) if p = 2, 
see, for example, Jones (6, pp. 84, 85). Starting with either of these it is easy 
to obtain (2.3). 

The exponents X*, X are unique for a given/ and are invariants of the genus, 
as are the possible values of the quadratic characters of the at and a modulo 
p or 8. But the latter are not always unique. 

3. Definition of certain groups and statement of results. We consider 
the set of integers b 9^ 0 for which, for any prescribed p and / , we can find t 
so that 
(3.1) t'A BE 0 (mod£5), f(t) = b (modpr), p f / 

with ô > 0 such that pd\\b, and r = Ô + 2 + ( - l ) p . Note that if (3.1) is 
soluble, t h e n / has the automorphism £ —> — J + tt'A£/f(t) reducing in case 
/' = (1,0,0) to 

£i> £2, £3 —> £1 + 2aïi (#12^2 + 013É3), —£2, —£3. 

The denominator of this automorph is a divisor of p~ôf(t), which is prime to 
p and congruent to p~l b modulo p or 8. 

Now we observe that the set of positive and negative square-free integers 
v forms a group, T, with the operation 

(3.2) V\'V2 = fllt>2(fll, V2)~
2. 

Any subset of T closed under this operation is a group. For any b for which 
(3.1) can be satisfied, write 
(3.3) -db = u2v, v £ T. 

Note that v is not altered by multiplying/ by any integer. We define T(p, / ) 
to be the sub-group of Y generated by all v arising from (3.3). 
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We denote by Tm the subgroup of V defined by (v, m) = 1 ; and we use the 
groups T(p,f), p\d, to define a certain sub-group of Td. 

We define y(f) as follows: q G y (J) if and only if g 6 Td and there exists a 
w such that w\d and 

wq e (\ T(p,f). 
p\d 

Note that with q, also —q belongs to y (J); also that y (J) is a group since 
(wigi) • (w2g2) = (wi-w2)(gi-g2). 

By the denominator of a rational matrix we mean the least common de­
nominator of its elements, with either sign. We shall show t h a t / may be taken 
into a form in the same genus by a transformation whose matrix has any 
prescribed denominator q in Td. On the other hand, / has an automorph with 
denominator q in Td if and only if g Ç T ( / ) . We shall thus prove 

THEOREM 1. The number of classes in the genus of f is equal to the order of the 
factor group YJy (J). 

Alternatively, if v > 0 is the number of distinct characters in the set 

(3.4) (±2|g) if 2|d; (q\p) if p > 2, p\d 

(where the symbols are Jacobi symbols), and if these are capable of 2s distinct 
sets of values (each dbl) for q in y(f), then the class-number is 2V~S. 

Note that T(p,f) and y(J) are invariants of the genus of/, since forms in 
the same genus have the same congruence properties. The same remark 
therefore applies to the invariant d0 = d0(f) which we now define: d0 is the 
product of all the distinct odd primes p for which Tp (£ T(p,f), multiplied by 
2 in case 5 i T(2, / ) . 

We leave it to the reader to verify that the alternative statement of Theorem 
1 remains valid on putting d0 for d in (3.4). We shall see that T(p,f) = TP 

when p \ d, so that d0 divides d. We can now state 

THEOREM 2. Suppose n is represented by at least one but not by all of the 
classes of forms in the genus of f, and write dn = nin2

2, n\ square-free. Then 

(i) »i > 1; 
(ii) wi divides d0; 

(iii) n\ = l(mod 8) if d is odd; 
(iv) if (p, 2d) = 1 and (ni\p) = — 1, p cannot divide rt\\ 

(v) the number of classes in the genus that represent n is equal to the number 
that do not. 

We conclude this section with an alternative definition of T(p,f), in which 
/ is assumed to satisfy (2.1) or (2.2) as the case may be and by means of which 
y (J) could be computed. Below a{j denotes 1 or 0, according as X* + X̂  is 
odd or even. 
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ALTERNATIVE DEFINITION OF T(p,f) 

(a) p > 2. T(p,f) is the sub-group of T generated by 
(i) the group of /wi th (v\p) = 1 

(ii) the set of v = p^Widjimod p1+<T{j) for any i, j ; 
(iii) the group Tp, if two of the exponents Xi, X2, X3 are equal. 

(b) p = 2 and (2.2) holds. r ( 2 , / ) = Tor T2, according as X is odd or even. 
(c) p = 2 and (2.1) holds. T(2,f) is generated by the set of v = l(mod 8) 

or 2(Timiaj{jnod 28+(r»0, together with the following integers, reduced mod 8, 
if the stated conditions hold for any unequal i, j : 

(i) 1 + did], if X* = \j and a* = dj (mod 4); 
(ii) 5, if Xi - X; = 0, 2 or 4; 

(iii) 3, if X3 < 2; 
(iv) 1 + 2a fi], if \i — X; = 1 or 3. 

The equivalence of this to the earlier definition will be proved in §5. 

4. Rational automorphs. We make use of the rational automorphs 
S, Si, 5 2 , . . . of the form/, or of its matrix A. We shall consider only automorphs 
with determinant 1 ; we lose nothing thereby, since / has always the trivial 
automorph — J with determinant — 1. By the denominator of S we mean the 
least common denominator of its elements with either sign. 

We are thus concerned with matrices S satisfying 

(4.1) S'AS = A, \S\ = 1. 

The solution of (4.1) was found by Hermite (5) and may be written (with 
u ?£ 0, v square-free, Â = adj ^4): 

(4.2) xl - df(x) = u v, 

(4.3) uv (I + S) = 2x1 I + XoAx - dxx'A. 

We shall need the following results: 

LEMMA 1. (i) Whenever x0, x have integral values such that the left member of 
(4.2) does not vanish, S = S(x0, x) defined by (4.2), (4.3) satisfies (4.1). 

(ii) Conversely, if S satisfies (4.1) there exist integral x0, x, u, v satisfying 
(4.2), (4.3); the integer v — v(A, S) is uniquely determined by A, S as are the 
ratios of x0, #1, x2, x$. 

(iii) I + S is singular if and only if Xo = 0. 
(iv) We have with the notation of (3.1) 

(4.4) S(x0> —x) = S-1(xo, x), 
(4.5) v(A, S1S2) = v(A, Si) -v{A, Si). 

(v) If the transformation T is non-singular, then 

(4.6) v(T'AT, T'lST) = v{A, S). 

Formulas (4.2) and (4.3) are not new; see, for example, Bachmann (1, 
pp. 81-108). However, for completeness, we here give a proof in modern 
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notation based on Cayley's theorem (3) which is easily derived (8, p. 66). 
This theorem states that if 5 is an automorph in a field F of a symmetric 
matrix A in F such that I + S is non-singular, then there exists a skew matrix 
Q in F such that A + Q is non-singular and 

(A + Q)S = A - Q, 

and that all such automorphs can be expressed in this form. 
In our notation, A A = —2dl. If we choose x0 9e 0 and x so that dx = x0Q, 

the product 

(A + Q)(2xll + XoÂ x - dxxfA) 

reduces to 
(4.7) 2x\A — dAxx'A + dx Â x. 

We shall verify below that the following identity holds: 

(4.8) xÂ x + {x'Ax)A = Axx'A. 

Using this, (4.7) reduces to {2x0
2 — 2df(x)} A which, in virtue of the non-

singularity of A + Ç, yields formulas (4.2) and (4.3). Note that I + S 
non-singular implies x0 9e 0. This, subject to verification of (4.8), completes 
the proof of sections (i) and (ii) for i" + S non-singular. 

If I + 5 is singular, a theorem of Stieltjes (12) states that I + S is not of 
rank 2, a result not hard to verify directly. The theorem of Jones and Marsh 
(7) establishes our result or it may be proved as follows: I + S, being of rank 
1, must be equal to xy'A for two column vectors x and y. Then S'AS = A yields 

Ayx'Axy'A = Axy'A + Ayx'A. 

Multiplying on the right by A~ly and on the left by A~l we see that yx'y = 0, 
x'y = 0 and hence y = \x for some non-zero scalar X. Then \2(x'Ax)xx' = 2\xxf 

which implies \f(x) = 1. 
It remains to verify (4.8). This is easily done directly for A a diagonal 

matrix. Suppose B is any symmetric matrix with rational elements. There is a 
matrix T of determinant 1 with rational elements such that B — T'AT. 
Then, letting x = Ty, we have Â = TBTr and (4.8) becomes a similar expres­
sion with x and A replaced by y and B by use of the following identity 

(4.9) R'(R'y)R = \R\$, 

which may be shown as follows: since R'(R y)R is skew, call it x and see that 
xy = 0 implies that y = g(R)x, where g(R) is a scalar dependent on R but 
not on y or x. Let 1^ and ItT be the matrices obtained from / by interchaning 
the ith and jth rows, multiplying the ith row by r, respectively. Then it is 
easily shown that 

g(D = 1, gdn) = " I - giltr) = r, g{RS) = g(R)g(S). 
Thus, g(R) is a linear homogeneous function of the elements of each row of R 
and changes sign when two rows of R are interchanged. Since g (I) = 1, this 
implies from Weierstrass that g(R) — \R\. 
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Assertion (iii) is now obvious. 
To obtain (4.4), note that with (A + Q)S = A - Q we have (A - Q)S~l = 

A + Q. Hence we may replace x0, x, 5, Q by x0, — x, 5"1, — Q in the foregoing 
argument, in the general case. In case I + 5 is singular, we have only to prove 
S-1 = S or S2 = L This is easily verified from (4.2), (4.3) with x0 = 0. 

To obtain (4.6), note that (4.2), (4.3) are unaltered (apart from multiplica­
tion of (4.3) on the left by T~l and on the right by T) on putting T'AT, 
T~lST, T~lx, txo for A, S, x, xo. 

It remains only to establish (4.5). This is best done by using quaternions, 
following Eichler (4), Pall (11) and others. We use a generalized quaternion 
algebra with multiplication defined by 

(4.10) (xo, x)(y0l y) = (x0y0 + \dx'Ay, x0y + yox - \Âxy). 

The vector x may be identified with the pure quaternion (0, x) ; and the 
scalar x0 with (x0, 0). The conjugate of (x0, x) is (x0, — x), and its norm is 
(x0, — x)(x0, x), which by (4.10) is x0

2 — df(x). 
It is easily verified that (4.10) defines an associative algebra. The verification 

may be simplified by the device used in the proof of (4.8); for (4.10) is 
invariant under substitution of T'AT, T~lx, T~ly, where \T\ = 1, for A, x, y. 
Thus we may suppose A to be diagonal and then (4.10) takes a familiar form. 
From the fact that multiplication is associative, it follows that the norm is 
multiplicative. Thus (4.5) will follow if we show that (4.2), (4.3) are 
equivalent to 

(4.11) (x0, — x)(0, £)(xo, x) = (x0, — x)(x0, x)(0, S£). 

Noting that £x = — x£, we see that the left member of (4.11) is 

{\dx$Ax — %dx0x'A% — jdx'AÂ x£, —\d(£Ax)x + Xo£ + %x0Â x£ 

+ U x [ x o £ + | i x f ] ) . 

The scalar component on the right is zero, and the vector component is 

(xo + Xô ï x — \dxx'A + ] I x I x)£, 

since (£'^4x)x = xx^4£. On the other hand, after transposition of the term 
uhl, the right member of (4.3) becomes 

Xo / + Xo-4 x — dxx'A + %d(x'Ax)I. 

To prove (4.11) equivalent to (4.2), (4.3) we have therefore to show that 

\dxx'A + jÂ x Â x = ^Z(x^4x)/. 

We do so by multiplying (4.8) on the left by Â. 

5. The denominator of the automorph S. It is clear from (4.3) that 
the denominator of 5 is a divisor of u2v ; we investigate whether any factor of 
u2v can cancel out. 
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LEMMA 2. Suppose (p,d) = (x0, Xi, x2, xz) = 1, and let pa be the highest 
power of p dividing u2v and all the elements of the matrix u2vS\ then pa — 1 or 4 
and divides also all elements of u2vS~l. Suppose r is the greatest integer prime to d 
that divides u2v; then the denominators of S and 5 - 1 have the same factor prime 
to d, which is either r or \r, provided (r, xo, Xi, x2} Xz) = 1. 

Proof. It is easily verified that the trace of Ax is identically zero; that of 
xx'A — (Xidf/dxj) is 2f(x). We have therefore, from (4.3), 

(5.1) uv t r ( J + S) = 6x1 - 2df(x) = 2uv + 4x1 

If we multiply (4.3) on the right by 4 , we see that, with the present hypothesis 
regarding pa, we have 

2x11 +XoI x i + 2d2xx' s 0 (mod pa). 

The second matrix on the left is skew, the other two symmetrical, so we deduce 
(by adding the transposed congruence) 

4xo Â + ±d2xx' s 0 (mod pa). 

With (5.1) this gives that pa divides 4x0
2 and 4d2xxf, hence 4xx'. Now the 

hypothesis (#0, Xi, x2l Xz) = 1 gives pa = 1, 2 or 4. 
To complete the proof of the first assertion, it only remains to show that if 

2\u2v and u2v S then 4 divides u2v and both of u2vS±l. This is easily proved on 
using (2.3). The second assertion is an obvious corollary of the first. We next 
prove 

LEMMA 3. If the denominator of S = 5(0, x) is prime to p, then v = v(S) Ç 
F(p,f)'> and the two definitions of this group given in §3 are equivalent. 

Proof. Putting x0 = 0 in (4.2) and (4.3), and supposing without loss of 
generality that p \ x, we see that for some 8 > 0 we must have 

(5.2) P5\\f(x) = -d~lu2v, pd\xx'A, p*\x'A. 

Hence (3.1) and (3.3) are satisfied with / = x, b = / ( # ) , and v G T(p,f) 
follows. 

We see from (3.1), (3.3) that T(p,f) is generated by the group of/ with 
(v\p) = 1, or v = l(mod 8), together with those given by 

(5.3) v s p V (mod £2+(-1)P+e), e = 0 or 1, p \ v' 

for e, v' such that (5.2) can be satisfied with v = p* v' and with p \ x\ but note 
that if p\x we may put 8 — 2, p~lx for 8, x. We may, without loss, replace 
(5.2i) by a congruence mod pT with T = 8 + 2 +(—l)p and take u = 2pe 

where 0 is an integer dependent on 8 and d so chosen that v has the form of 
(5.3). 

We first dispose of the case when p — 2 and / is not diagonalizable. Using 
(2.2) (mod 2T), the condition on e, vf, obtained from (5.2) as explained above, 
becomes, since 
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d = - 22Xl+X2 ' d\ d' odd, 

(5.4) 25 tf s d'{2Xl<i>(xu x2) + 2Maxl},2*\(2Xlx1, 2Xlx2, 2X2+1x3), 

€ = X2 + 5 (mod 2). 

There are two types of solution of (5.4) : 

(i) H 

2 m K 2Xl<*>(*!, x2) 

we must have 
26\\2M<t>(xhx2),ô = Xi, *°dd . 

In particular, with x3 = 0 we have solutions of this type with e = Xi + X2 = X 
(mod 2) and v' = d'<l>(xi, x2). Since d'<£ has an odd discriminant, we can have 
v' congruent to any odd integer mod 8. 

(ii) If 
2 l+1 |2Xl*(*1,*1), 

then 
2' | |2x ,xî>Ô3 X2 (mod 2). 

I t easily follows that r ( 2 , / ) = T or T2 according as X is odd or even. 
Now with p > 2 assume (2.1), and the condition on e, v' becomes 

3 

(5.5) p*v' s aia2a3]C a* £ M» pà\2pXiXi 

(i = 1, 2, 3), € = Xi + X2 + X3 -4- 5 (mod 2) 

The case p odd is straightforward. Let ppi\\xt. From (5.5) 

Xi + Pi > 5 > min(Xi + 2pt). 

Hence if i is the index for which X* + 2pt is a minimum, we have pt = 0 
and 5 = X*. Now if X; + 2p ; = X* it follows that pj = 0. Hence we have two 
possibilities: 

(1) No two Xfc are equal and ô is equal to one of them. 

(2) Two Xfc are equal. 

Let i, j , fe be 1, 2, 3 in some order and in the first case 5 = X*, e = X̂  + \k 

(mod 2) and (v'\p) — (aidtfiza,i\p) = (ajak\p) which is condition (ii) of the 
alternative definition of T(p,f). In the second case, condition (iii) is easily 
verified. 

For p = 2, trivial solutions of (5.5) are obtained as for odd p. To obtain 
any others differing from these either in the value of e or in the residue of v' 
mod 8 we must for some i, j have 

25+1 \ 2V„ 2a+3 K 2V, • 
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A little calculation shows that, with (5.5)2, this requires 

A* < 5 < X, + 2, Xj - 2 < Ô < X, + 4, 

and so is impossible when the differences of the \ t are too large. When they 
are not, the calculations are straightforward and we leave the rest to the 
reader. 

We next show that the first assertion of Lemma 3 is true for the automorph 
S(xo, x) without the restriction x0 = 0. This can be proved by straightforward 
calculations similar to those of Lemma 3; but these are complicated for 
p = 2. We give an alternative proof, based on the fact that every 5 is a product 
of 5" s with xo = 0. 

LEMMA 4. If the denominator of S = S(x0l x) is prime to p, then 

v = v(S) <E r(/>,/) . 

Proof. We begin by making some preliminary simplifications in the case 
p = 2. First, we assume that the exponents Xz- in (2.1) are not all equal, and 
that in (2.2) X ^ 1 ; for in these two cases, which transform into each other, 
Lemma 3 gives us r ( 2 , / ) = r , and we have nothing to prove. Next, we note 
that in all other cases we either have 

(2 0 0 \ 
(5.6) i = 0 0 0 (mod 4), 

\ 0 0 0 / 

if/satisfies (2.1) or (2.2), or the reciprocal form has this property. To show 
that we need only prove the Lemma for one of two reciprocal forms, put 
T = Â in (4.6); after a little reduction this gives v(-2dÀ, S''1) = v(A,S). 
Here 5 / _ 1 is an automorph of and — 2dÂ is a multiple of the coefficient matrix 
of the reciprocal form of/. 

Now by (5.6), if p = 2, or (2.1), if p > 2, we may remove from /(£) the 
terms in £i£2, £i£3- We do this by an obvious transformation with denominator 
prime to p, which affects neither the hypothesis nor the conclusion of this 
Lemma, nor the assumption (5.6); see (4.6). Thus we may assume (5.6) and 

(5.7) /({) = a t f + £«2,t3), P \ a, 

where the binary form g has a divisor 2 if p — 2, by (5.6), and we may suppose 
that the coefficient of J2^3 is divisible by at least as high a power of p as that 
of £2

2. Writing for convenience 

(5.8) y= (1 ,0,0) ' , 0 = (0 ,1 ,0) ' . 

we must have that t = z satisfies (3.1) and 

(5.9) z'Ay = 0. 

For convenience write U(t) = 5(0, t), and note that U(t)t = t, U{t)% = — £ 
if tfA% = 0, as is clear from (4.2), (4.3) with Xo, X — 0, t. 
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First suppose that Sy = —y. Then Lemma 1 (iii) shows that x0 = 0, 
whence v(S) € T(p,f) follows from Lemma 3. 

Next suppose Sy = y. Then from (5.9) we have U(z)Sy = — y, and by the 
case just considered 

v(U(z)S) = v{u(z))-v(S)er(pj). 
But as t = z satisfies (3.1), U(z) has denominator prime to p, so by Lemma 3 
v(U(z)) is in Y(p,f) and so must be v(S). 

Now note that U(y + Sy) takes y — 53/ into Sy — y, because 

( / + y'S') A(y- Sy) = y'S'Ay - y',4Sy = 0, 

and leaves y + Sy invariant. Hence this transformation takes Sy into y. 
Similarly, U(y — Sy) takes Sy into —y. 

Our conclusion will thus follow from the special cases already considered 
if we can show that at least one of y ± Sy is a solution of (3.1). We have, 
however, 

f(y ± Sy) = W ± / S ; ) 4 (y ± Sy) = 2/(y) ± y'ASy = 2a ± y'.4Sy, 

and by proper choice of the sign / (y db Sy) is not divisible by p, if p > 2, or 
8, if £ = 2. 

This completes the proof for p > 2. For p — 2 we need to prove 

4|(y' zby'S 'M, 

i.e., if / S ' = (771,772,773), 2|(1 + Vl). This follows from (5.6) and/(y) = f(Sy). 

6. The groups and the automorphs. We construct automorphs with 
certain desired properties, making use of the assumption that / is indefinite. 

LEMMA 5. Iff has an automorph S with denominator a in Tdy then a G T ( / ) . 

Conversely, suppose q G T ( / ) , whence by the definition of y(f) there exists a w 
with 

w\d, wq Ç (1 T(p,f). 
V\d 

Then for every such w there exists an automorph S of f with f{S) = wq. 

Proof. With v(S) = wq, w = ± (v,d), (q, d) = 1, the denominator of S 
must, if it is in Td1 be g or — q. For by Lemma 2 it must be qui2 or Iqui2, U\ 
some factor of u, and so it is square-free only if, with U\ — 1 or 2, it is equal 
to q. Then the hypothesis of the first part of the Lemma gives, with Lemma 4, 

v = wq £ fl T(p,f), 
V\d 

whence qÇ 7(f). It turns out that the two cases ui=l,2 correspond to the same 
set of possible values of v, which simplifies our proof of the second assertion. 

If now v = wq G r(^?,/), suppose first that v is in the set of generators of 
T(p,f) defined in §3. Take any solution of (3.1) with b satisfying (3.3) and 
construct the automorph S(0, t) = Su say. Plainly v(Si) = vi is such that 
v -Vi is a quadratic residue modulo p or 8, if p — 2, and Si must have denomina-
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tor prime to p, though possibly not square-free. We thus have a solution 
with to = 0 of 
(6.1) tl - df(t) = uv (mod p0), 

(6.2) 2t\I + to! i - dtt'A = 0 (mod p°), 

for a, p with pa\\u2v, 0 = a + 2 + ( - l ) p . 
By multiplying together two or more such automorphs Si we can construct 

a solution of (6.1), (6.2) when v, though in r (/>,/), is not one of the generators. 
From the solution thus found, we can obviously construct another in which u 
has no factor prime to p. 

Next, if 

v e fl T(p,f) 
p\d 

we can find /0, /, u so that all the pairs of congruences (6.1), (6.2), for p ranging 
over the prime divisors of d, hold simultaneously; and so that u is a product of 
powers of primes all dividing d. Suppose now that we can solve 

(6.3) xl — df(x) = u2v; x0, x = t0l t (mod pa), 

for each p\d. Then from (4.2), (4.3) it is clear that S(x0, x) has denominator 
prime to d, while the number r of Lemma 2 is q, so the denominator cannot 
be \r = \q but must be q. Thus S(xo, x) will give us all we require. 

We have therefore only to prove the solubility of (6.3). We note first the 
obviously necessary congruence condition, namely the solubility of 

(6.4) xl — df(x) = u2v (mod£' ), 

for every prime power p'e, subject to the restriction, vacuous if p' \ d, that 
the solution must satisfy (6.3)2- The solubility of (6.4) for p' \ d is obvious 
from (2.3); for, using (2.3), (5.4) becomes 

2 T j2 2 2 

Xo — dxix2 ~ d Xz = u v. 
So we take pf = p, p\d, and we may suppose 6 = /3 by elementary properties 
of quadratic residues. Now the desired solution of (6.4), (6.3)2 is x0j x = /0, /. 

Hence the necessary condition is satisfied, and the proof is completed by 
remarking that it is also sufficient. For x0

2 — df(x) is a non-degenerate, 
indefinite form in more than three variables, and so a recent result of one of us 
(13) gives what is required. 

7. Forms in the genus of / . Let the forms/,/ i be in the same genus. This 
means, by the classical definition, t ha t / goes in to / i by a rational unimodular 
transformation with denominator prime to 2d. Then by the classical theory we 
know that the transformation may be chosen so as to have its denominator 
prime to any prescribed positive integer. We can therefore find Ri, R2, with 
denominators n , r2f such that 

(7.1) / i t t ) =f(R& = / ( * i € ) , (ri.d) = (f2,dr0 = 1. 
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The following lemmas will tell us more about the possible values of the 
denominator. 

LEMMA 6. Suppose that a is square-free and prime to d and that qr2 is a 
quadratic residue modulo every odd prime factor of dri, and also modulo 8 if dri 
is even. Then Q may be found so that /i(£) = f(Q£) and Q has denominator q. 

Proof. By (7.1), R2Rrl and its reciprocal R\R2~
l are automorphs of / 

whose denominators, dividing r^r2, r2
2rh are prime to d and hence equal, 

by the last part of Lemma 2. Hence it is easily seen that each denominator 
must be equal to rtf2, whence by Lemmas 1 and 2 we must have 

(7.2) R2RÏ1 = S(y0,y), yl — df(y) = u\u\wrxr2, 

with w\d, U\ — 1 or 2, (ui, d) = 1 and u0 having no prime factor that does not 
divide d. 

The conditions on q ensure that we can solve for 0, 

(7.3) ulr20
2 = q (mod <?ulwr\), (6, dr{) = 1. 

We now seek a solution of 

(7.4) xl — df(x) = u\wrxq, 

subject to 
(7.5) xo = dyo, x = By (mod u0wri). 

By the result used in the proof of Lemma 5, (7.4) and (7.5) are soluble if, 
for every prime p, with a = a(p) such that pa\\u^wr^q, (7.4), treated as a 
congruence modulo pP, has a solution consistent with (7.5) for any prescribed 13. 
Now if p \ dri, (7.5) is vacuous and the solubility of (7.4) modulo p& is trivial. 
On the other hand, if p\dri, (7.2) and (7.3) show that x0 = 6y0l x = 6y is 
such a solution for a value of 0 certainly not less than a + 3. We need not, 
by elementary properties of quadratic residues, consider any greater value of 
13] so (7.4) and (7.5) are simultaneously soluble. 

We now show that Q — 5(x0, x)Ri, which clearly takes / into / 1 , has de­
nominator q. By (4.3), with u2v = u^wr^q, and the corresponding equation 
for 5(̂ yo, y), and (7.3), we have the following congruences, in which the matrices 
occurring on both sides of the congruences are integral: 

r2UowriqS(xo,x) = r2u0wriqR2R^ (modw0Wi), 

qr±r2Q = qr\r2R2 = 0 (mod ri). 

Hence r2qQ is integral, and so is qQ, since it has denominator prime to r2. 
On the other hand, since Ri is unimodular with denominator prime to g, 
if Q had as denominator a proper divisor of q, so would 5(x0, x), contradicting 
Lemma 2. This completes the proof. 

DEFINITION. Y ( / I , / ) is the set of all q in Td that are denominators of 
matrices taking/ into/1,/1 being any form in the genus of/. 
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Lemma 6 shows that the set y(fuf) is not empty; we prove 

LEMMA 7. y(fuf) is a coset of y{f) in Yd. 

Proof. We first show that if q\ and q2 are in y(fuf) then qi-q2 is in y(f). 
In case (ci, Ç2) = 1, this is clear; for with an obvious notation we see that the 
automorph (?2(?i-1 of / must, as in the proof of Lemma 6, have denominator 
gi?2 = qvq2 G T ( / ) . 

If (<?i, ^2) > 1, we may argue as above with a suitably chosen ç3 prime to 
#2 in place of q\. We have only to make g3 satisfy the sufficient condition of 
Lemma 6, with any t\ prime to qiq2, and with q2 for r2. This sufficient condition 
obviously ensures that q2 and <?3 belong to the same coset of y (J) in Td; and 
the conclusion of Lemma 6 gives q$ £ y(fuf)-

Conversely, we show that, with qiy y(fi,f) contains all q2 in the coset to 
which qi belongs. This follows for q2 = q0qu (<Zo, #1) = 1, qo 6 y (J), if we 
replace Qi by SQi, S being an automorph of / with denominator q0. When q2 

does not satisfy these conditions, we consider, as in the first part of the proof, 
a suitable g3 that does. The conclusion follows. 

We note some properties of the cosets Y ( / I , / ) . 

LEMMA 8. T ( / I , / ) depends only on the classes of / 1 , / , y(f,f) = y(f), 
7( / , / i ) = T (/!,/) and 7 ( / ! , / 2 ) = 7 ( / i . / ) -7 (/»,/)• 

Proof. The first two assertions are obvious. The first part of the proof of 
Lemma 6 shows that R\ and î f"1 must have the same denominator r\\ hence 
the third assertion, taking r\ to be in T ( / I , / ) . T O prove the last assertion, 
consider coprime representatives of the cosets y(fi,f), y(f2,f) and multiply 
the corresponding Q. 

8. Proof of Theorem 1 ; a set of forms representing the genus. Theo­
rem 1 follows from Lemmas 7, 8 if we show that every q in Td is the denominator 
of a matrix taking / into a form in its genus. We do this by constructing 
certain forms which we shall also use for the proof of Theorem 2. 

We may suppose, see (2.3), that, for any prescribed q in Td1 

(8.1) m)^^2 + d& (mod?3). 

Putting x0 = 0, u2v = — dq, and R for 5 in (4.2), (4.3), we define an automorph 
R = R(x) of the form on the right of (8.1), for any x for which 

(8.2) X\x2 + dx\ = q 

holds, by 
/ 0 1 0 

(8.3) q(I + R) = xxi 1 0 0 
\ 0 0 2d 

By Lemma 2, R has denominator q, and we note that R2 = I. Now we define 
^ = *(f,R) by 
(8.4) *({) = f ( ^ ) = / (* ) (mode?). 
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When q is odd, \j/ is in the genus of/, by the classical definition. This is also 
true for even q\ to prove it we use the automorph 5(4, x) of/, and we verify 
from (4.2), (4.3), (8.1), (8.2), (8.3) that 5(4, x)R has an odd denominator 
prime to d. 

For integral £, R% is integral if 

/ 0 1 0\ 
(8.5) x'l 1 0 0 J £ = Xi£2 + *2Éi + 2*c3j3 = 0 (mod g). 

\ 0 0 2d/ 

By Lemmas 7, 8, the class of \f/ depends only the coset of 7(/) in Td to which q 
belongs; so we are free to choose x so that any £ in which we are interested 
satisfies (8.5). 

LEMMA 9. Given any q in Td and any 0i, 02 ^ 0, 0, there exists an x satisfying 
(8.2) such that, for R = R(x) defined by (8.3), Ri; is integral when 

(8 .6) £20
2i + 2^30102 - ^102 = 0 ( m o d q). 

Proof. Without loss of generality we may suppose 0i = 1. Then (8.6) 
becomes (8.5) and (8.2) holds, if = 1, q - dd2\ 02. 

We note that, regarding £ as given and (8.6) as a quadratic congruence for 
the ratio d\\ 02, the discriminant of the congruence is 4d(£i£2 + d£3

2), which by 
(8.4) is congruent to 4d/(£) modulo q. 

9. Representation of integers. We study in this section the representa­
tion of an integer n ^ 0 by forms in the genus of/; and as in the statement of 
Theorem 2 we write dn = nin2

2, n\ square-free. We prove three lemmas and 
deduce Theorem 2. 

LEMMA 10. Suppose f\ is the genus of f, q Ç T ( / I , / ) , and f represents n. 
Then a sufficient condition for / i to represent n is that (dn\p), the Legendre 
symbol, is 0 or 1 for each odd prime p dividing q. 

Proof. For any J with/(J) = « w e can solve (8.6) by the hypothesis of this 
Lemma (see the remark following Lemma 9). With the x, R{x) whose existence 
is asserted by Lemma 9, consider the form yp = \f/(JyR) defined by (8.4). 
We have 
(9.1) » = / ( * ) = \ K ^ ) = * ( * { ) , 

and R% is integral; so \[/ represents n. But since q Ç T ( / I , / ) a n d / goes into yp 
by R with denominator q, we see from the definition of Y ( / I , / ) and Lemmas 
7, 8 that \[/ is equivalent t o / i ; hence/i represents n. 

LEMMA 11. Iff represents n, then so does / i in the genus of f if there exist 
q0, qi satisfying 
(9.2) q0\2n2,qo Ç Td, qx Ç y(fuf), (g0?i, »i) = 1, 

(9.3) n(»i,gogi)„ = 1 
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where the symbol in (9.3) is the Hilbert Symbol (6, p. 27) and the product is 
over all primes p dividing n\ if d is odd or n± ^ — 1 (mod 4) ; over all primes 
dividing 2n\ if d is even and n\ = — 1 (mod 4). 

Proof. By Dirichlet's theorem we may choose a positive prime 

(9.4) pi s= q0qx (mod dzn\), p± \ 2n2. 

Then, taking q = qopi in Lemma 10, we need only verify (dn, pi)Pl = (ni\pi) = 1. 
Now (9.3) and (9.4) imply if d is odd or ni ^ — l(mod 4), 

i = n («i» mi)v = n (wi, pi)P. 
v\n\ v\n\ 

By a fundamental property of the Hilbert symbol the last product is equal 
to (#i, pi)Pl (nu pi)œ multiplied by (nupi)2 if ^i is odd; that is (nx\pi) or 
(n\\p\)(nu p\)i according as n\ is even or odd. But (nupi)2 = 1 if #i = 1 
(mod 4), while if n\ = — 1 (mod 4) and d is odd we may choose pi = 1 (mod 4) 
consistent with (9.4). The case d even and n\ = — l(mod 4) is similar but 
simpler. 

Putting q0 = <?i = 2, we see that / and / i represent the same integers if 
2 Ç y(fuf)- Notice that if d is odd and ri\ = — l(mod 4) we can choose 
£i(mod 4) consistent with (9.4) so that 

1 = (ni\pi) = (nupi)2TL (numi)v 
V\n\ 

whatever the value of the product in (9.3). 

LEMMA 12. Suppose f represents n. Then all forms in the genus off represent 

n if (for suitable pu pz) one of the following holds: 

(9.5) q e T(p2,f), (q,nid) = 1, p2 |»i, (»i, q)P2 = - 1 , 
(9.6) ni < 0 or ni = — 1 (mod 4) wz/^ d odd, 
(9.7) g Ç 7(f), (<Z> »i) = 1, ! [ (»! , g)p = - 1 , 
(9.8) pi|2»2, (pu nid) = 1, I I (» i , pi)v = - 1 , 

w/^re /&e products are over the same range as in (9.3). 

Proof. We first show t h a t / i represents n if (9.5) holds and 

(9.9) (q\p) = 1 for each odd p T* p2 dividing dni, and 
q s 1 (mod 8) if £2 ^ 2. 

We have from (9.5)i, in case p2\d, and (9.9), that 

g e f l v(p,f); 
v\d 

thus q is in the subgroup of 7( / ) for which w may be taken equal to 1 in the 
definition of y (J). Thus if the product in (9.3) with q0 = 1 is — 1, then the 
product II(wi, qiq)P is + 1 since 

E[ (»i, q)v = Et (»i, Q)P = - 1. 
P | 2 n i p | n i 
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But g Ç y (J) implies gig 6 y(fuf) and hence (9.5) and (9.9) are sufficient. 
But if (9.5) is soluble at all it must have a solution satisfying (9.9) ; for the two 
formulae, for given p2l are congruences for q to coprime moduli. Hence (9.5) 
alone is sufficient. 

Next (9.6)2 follows from the remark after the proof of Lemma 11. Suppose 
n\ < 0. Then 

n ( » i . - D » = ( » i . - i ) - = - 1 
v\n\ 

if rt\ is even and — (»i, —1)2 if tii is odd. Both are — 1 unless n\ = — 1 (mod 4). 
We have just excluded n\ = — 1 (mod 4) when d is odd. If d is even the product 
in (9.3) with g0gi replaced by —1 is over primes dividing 2rii and hence is 
— 1. Thus one of 

H(nhq0qi)p, I I (wi, —qoqi)P 

is + 1 ; we may put —go for g0 in (9.2), (9.3). 
If (9.7) holds and (9.3) is denied for g0 = 1, then gig is an element of y(fuf) 

and (9.3) holds for gi replaced by g gi. 
If (9.8) holds, then (9.3) can be satisfied either with g0 = 1 or g0 = pi. 

Proof of Theorem 2. We write as in the foregoing lemmas dn = n1n2
2

1 

n\ square-free; and by the hypothesis of the theorem, some form/ in the genus 
considered represents n, but there is at least one form in the genus that does 
not. It follows that none of the sufficient conditions of Lemma 12 can be 
satisfied, while that of Lemma 11 must fail for some /1. 

(i) Condition (9.6) gives us fix > 0. If %i = 1, (9.2) can be satisfied with 
g0 = 1 and some gi, and then (9.3) necessarily holds. Hence n\ > 1. 

(ii) Suppose p2\tii> with p2 odd. Then (9.5)3, (9.5)4 hold if (q\p2) = — 1 
and so (9.5)i must fail for such g satisfying (9.5)2. This means that T(p2,f) 
does not contain the group TP2 of v prime to p2. By the definition of d0 this 
means that p2\d0. 

Now take p2 = 2 in (9.5). Then (9.5)i must fail for g = 5(mod 8), with 
which (9.5)2 to (9.5)4 can be satisfied. Hence 5 is not in r(2, / ) ; this means, 
by the definition of d0l that 2\d0. We have thus shown that p2\tii implies 
p2\d0 and hence ni\d0. 

(iii) For odd d, fii\dQ\d and hence we have nx= l(mod 4) by (9.6)2. If 
m s 5(mod 8), then (9.8) is satisfied by pi = 2. Hence n\ = 1 (mod 8) for 
odd d. 

(iv) By the hypotheses of this part of the theorem, (9.8)2 and (9.8)3 hold 
with pi — p; for by (ii) p prime to d cannot divide tii, while II(wi, pi)p 

reduces to (ni\pi). Hence (9.8) 1 must fail and p = pi does not divide n2. 

(v) From (ii) we see that (9.7) 2 is implied by (9.7) r, hence the failure of 
(9.7) for any /1 means that I I (wi, q)p = 1 for all g in 7( / ) . This means that 
I I(»i , q)p has a fixed value ± 1 , say x(fuf), for all g in y(fi,f). Now Lemma 11, 
with g0 = 1, tells us tha t / i represents n if x(fuf) = 1- We see from Lemma 8 
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that this condition holds for just half the classes in the genus. It may be, 
however (since the condition of Lemma 11 is only sufficient), that n is repre­
sented by some form f2 with x(/2,/) = — 1. If so, we have to show that, 
contrary to hypothesis, all forms in the genus represent n. But Lemma 11, 
with this assumption regarding/2, shows that either x(fuf) = 1 or x(/i»/2) = 1 
is sufficient for representation of n by f\. And from Lemma 8 it is clear that 

Xifnh) = xifij) X(f*,f) = - X(fij). 

The proof of the assertion (v) is thus complete. 
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