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1. Introduction
We prove the following theorem, which was established by Abel (1) for the

case M = 1.

Theorem. If u, k are positive integers and x, aly..., au, /? are real numbers,
then
/ u \k k (1) £ , u

lx+ £ a,-1 = £ X 7~,—7T,—; ,(X + W)k~l I ! ai(cci~siP)Si~1' '"-(I)
\ j—i ) i = o s i , . . . , s u yk — / ) ! S i ! . . . 5 U ! i = i

(0
where the sum £ is taken over all distinct ordered solutions (su ..., su) in

u

non-negative integers of the equation £ s,- = /.
i = 1

It is clear that, when ft = 0, equation (1) reduces to the multinomial expan-
sion. The theorem is applied in Section 3 to obtain a proof by induction of the
well-known result of Cayley that the number of rooted trees with n distinct
nodes is n"'1.

2. Proof of the Theorem
The theorem is proved by induction on k + u. It is trivial to verify that (1)

holds for k = 1 and all u. In (1) Abel showed that (1) is true for « = 1 and all
k. We assume that (1) holds for k = m— 1, u = v, for k = m—1, u = v— 1
and for k = m, u = v— 1, and we prove that then (1) holds for k = m, u = v.

By the hypothesis then, we have

, 1 7 1 - 1 - 1

x fl afa-sffir-1 (2)
i = 1

Integrating with respect to x, we obtain
- 1 (I) |

??
x f[ «,(«i-»/)"" + C (3)
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where C is independent of x. Multiplying (2) by mfi, adding to (3) and then
substituting x = — mfS, we obtain

/ v \ m — 1 / " V"

\i-i*J m) v- i /

e - 1

i = 1

m (I) m | _ O " 1
 s _ j

m rli l » - l

= ^ g t
m; ^^-(m-o^r- '-^n «fa-'iPr

(™) m l -H. ,
= Z, 7"^ n

, „ ! ! . . . s p ! i= I
This relation in conjunction with (3) completes the proof by induction.

3. Enumeration of Rooted Trees
We now prove by induction that the number of rooted trees with n distinct

nodes is n""1. As there is only one rooted tree with one node, the formula
holds for n = 1. We assume that the number of rooted trees with i nodes is
V~l for all i^n. Now, rooted trees with n +1 nodes are formed by first choosing

any one of the n +1 nodes as root and joining it in any one of ( J ways to r

of the other nodes. The remaining n—r nodes are divided into r ordered sets
(some of which may be empty), each of which forms a tree with one of the
previous r nodes as root. Therefore, the number of rooted trees with n+l
nodes is equal to

<»+i) i h T ^,(s1 + ir- i . . . (s r + i ) -
1

and this is equal to (n+1)" whenever, for 1 g r ^ n ,

i.e. whenever
V ("- r ) ! ( S l + D"-1...(sr+l^-1 = rn-f-1 (4)

SI *r SJ...S,.!
Now,

(n-r)! _ (w-r-1)! y . = y (n-r-1)! ( 5 )

! ! ! ! S- ' ^ ! s ! ( s l ) ! s ! s !
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where every st > 0. When some s, are zero the corresponding terms are omitted
in the final summation of (5). Therefore the left side of (4) is equal to

Z £ ; r-(si + l)Sl 1

I = 1 51 Sr S j I . - . S , . !

and so, from (4), the formula is verified if
( n - r - l ) („_-_ 1)\

II Sr SY\...Sr\

This relation follows from (1) by putting w = r— 1, fc = n — r— 1, x = n — r + 1 ,
<*! = ... = an = 1, /? = — 1, and so the proof is complete.
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