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Abstract

A lattice walk with all steps having the same length d is called a d-walk. Denote by Td the terminal set,
that is, the set of all lattice points that can be reached from the origin by means of a d-walk. We examine
some geometric and algebraic properties of the terminal set. After observing that (Td ,+) is a normal
subgroup of the group (ZN ,+), we ask questions about the quotient group ZN/Td and give the number
of elements of Z2/Td in terms of d. To establish this result, we use several consequences of Fermat’s
theorem about representations of prime numbers of the form 4k + 1 as the sum of two squares. One of
the consequences is the fact, observed by Sierpiński, that every natural power of such a prime number has
exactly one relatively prime representation. We provide explicit formulas for the relatively prime integers
in this representation.
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1. Introduction

A lattice point in RN is a point with integer coordinates. The set of all lattice points
in RN is denoted by ZN . By a lattice walk or lattice path in RN we mean an ordered
sequence of lattice pointsW = (w0,w1, . . . ,wm). The point w0 is called the initial point
and wm is called the terminal point ofW. Without loss of generality, we can assume
that w0 = 0. With this assumption, there is a one-to-one correspondence between a
lattice walk W and the ordered sequence U = (u1, . . . , um) of vectors, called steps,
where ui = wi − wi−1 for i = 1, . . . ,m. Thus, we shall alternatively use W or U to
represent the same lattice walk.

There are many aspects of research dealing with lattice points and, in particular,
with lattice paths. We refer the reader to [1, 3, 6, 7, 10, 11], where various problems
for different types of lattice walks are considered.
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To present the purpose of this note, we need several definitions. A lattice walk
U = (u1, . . . , um) is called a d-walk if all its steps have the same length d, that is,
||ui|| = d for i = 1, . . . ,m, where ||x|| denotes the Euclidean norm of x.

A positive real number d is said to be N-admissible if there exists v ∈ ZN such that
||v|| = d or, in other words, if

Ud = {v ∈ ZN : ||v|| = d} , ∅.

Obviously, d is N-admissible if and only if d2 has a representation as a sum of N
squares.

For x = (x1, . . . , xN) ∈ ZN , by gcd(x) we denote the number gcd(x1, . . . , xN). If
there exists a point x ∈ Ud with gcd(x) = 1, then we say that d2 has a relatively prime
representation as a sum of N squares. In such a case, the real number d is called
N-reduced. A very important class of N-reduced lattice walks are 1-walks using steps
ui ∈ {±e1, . . . ,±eN}, where e1, . . . , eN denote the standard unit vectors in RN .

For an N-admissible real number d, we define the terminal set Td as

Td = {x ∈ ZN : x is the terminal point in a d-walk from the origin}.

It is obvious, for 1-walks in RN using steps ui ∈ {±e1, . . . ,±eN}, that Td = RN .
In [7] we proved that Td = R2 if and only if d is a 2-reduced real number whose

square, d2, is odd. In this note, we explore the terminal set Td further and study its
geometric and algebraic properties. In Section 4, we show that (Td,+) is a normal
subgroup of (ZN , +) and that Td is a sublattice of ZN . Therefore questions about
the quotient ZN/Td are well motivated. The main result of this note is in Section 5
where we provide a detailed analysis of the number of elements of Z2/Td in relation
to number theoretical properties of d. This is done by using some consequences of
Fermat’s theorem about representations of prime numbers of the form 4k + 1 as sums
of two squares. One of the consequences is the known fact, observed by Sierpiński
[8], that every power (with a natural exponent) of such a prime number has a unique
relatively prime representation. In Section 2, we provide explicit formulas for the
relatively prime integers appearing in this representation. If L is a sublattice of ZN ,
the problem of counting the number of elements in the quotient group ZN/L is of great
interest. In [4, Theorem 2.3.19], this question is answered several times in relation to
bases of the sublattice L. However, in the special case when L = Td, it would be nice to
have the number of elements of ZN/Td given in relation to d. This is why we end our
note with a problem to express the cardinality of ZN/Td in terms of d and (possibly)
of N.

2. 2-reduced numbers

To speak about d-walks, we need d to be 2-admissible. From results in elementary
number theory, a real number d is 2-admissible if and only if d2 has the form

d2 = 22β+αpα1
1 · · · p

αr
r (qβ1

1 · · · q
βs
s )2, (2.1)
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where pi and q j are distinct prime numbers such that pi ≡ 1 (mod 4) for i = 1, . . . , r,
q j ≡ 3 (mod 4) for j = 1, . . . , s, α1, . . . , αr, β1, . . . , βs ∈ N, β, r, s ∈ N ∪ {0} and α ∈ {0,1}.

In particular, we will deal with 2-reduced numbers. This is why we will need some
consequences of Fermat’s theorem about representations of natural numbers as sums
of squares. A rephrased version of Fermat’s theorem reads as follows.

Theorem 2.1 (Fermat). Let p be a prime number of the form p ≡ 1 (mod 4). Then
d =
√

p is 2-reduced.

Sierpiński [8, 9] proved that every power (with a natural exponent) of a prime
of the form 4k + 1 has unique relatively prime representation as the sum of two
squares. Below we provide explicit formulas for the integers appearing in this unique
representation.

Theorem 2.2. Let p be a prime number of the form p ≡ 1 (mod 4) with the
representation p = a2 + b2 as the sum of squares. Then, for every α ∈ N, the number
√

pα is 2-reduced, that is, pα = x2
α + y2

α for relatively prime numbers xα and yα given
by

xα =

∞∑
k=0

(
α

2k

)
(−1)ka2kbα−2k and yα =

∞∑
k=0

(
α

2k + 1

)
(−1)ka2k+1bα−(2k+1).

Proof. Suppose p is a prime of the form p ≡ 1 (mod 4) and p = a2 + b2. Obviously, a
and b are relatively prime. Moreover, x1 = b and y1 = a.

Clearly, p = (b + ia)(b − ia), where i =
√
−1. Observe that, via the binomial

theorem,

(b + ia)α =

∞∑
k=0

(
α

2k

)
(−1)ka2kbα−2k + i

∞∑
k=0

(
α

2k + 1

)
(−1)ka2kbα−2k = xα + i yα.

Hence

pα = (b + ia)α(b − ia)α = (xα + iyα)(xα − iyα) = x2
α + y2

α.

If xα and yα have a common factor greater than one, then they must both be divisible by
p and so p divides (b + ia)α. That is, (b + ia)(b − ia) divides (b + ia)α and so (b − ia)
divides (b + ia)α−1. This is impossible since (b + ia) and (b − ia) are distinct Gaussian
primes. Thus xα and yα are relatively prime. The proof is finished. �

It was pointed out to us by the editor that the formulas for xα and yα have already
been observed by Plana (compare with [5, page 241]). We show, in addition, that
the representation is relatively prime. It is worth noticing, in this context, that the
following fact is true.

Corollary 2.3. Let p be a prime number of the form p ≡ 1 (mod 4). Then, for every
α ≥ 3, the number pα has a representation pα = c2

α + d 2
α such that p||cα and p||dα.

Moreover, if p = a2 + b2, then

cα =

∞∑
k=0

[(
α − 1

2k

)
−

(
α − 1
2k + 1

)]
(−1)ka2k+1bα−(2k+1)
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and

dα =

∞∑
k=0

[(
α − 1

2k

)
−

(
α − 1
2k − 1

)]
(−1)ka2kbα−2k.

Proof. Let xα and yα be as in Theorem 2.2. Then

pα = (a2 + b2)(x2
α−1 + y2

α−1) = (axα−1 − byα−1)2 + (bxα−1 + ayα−1)2.

It is easy to check that

cα = axα−1 − byα−1 and dα = bxα−1 + ayα−1.

So, to complete the proof, it is enough to show that p divides cα and dα. For that
purpose, we consider the polynomial

W(z) =

∞∑
k=0

[(
α − 1

2k

)
−

(
α − 1
2k + 1

)]
(−1)kz2k+1bα−1−2k

of a complex variable z. One can easily check that, for α ≥ 3,

W(±ib) = ±ibα
∞∑

k=0

[(
α − 1

2k

)
−

(
α − 1
2k + 1

)]
= 0.

Thus W(z) = (z2 + b2) · W1(z) for some polynomial W1(z). In particular, W(a) =

(a2 + b2) ·W1(a) which means that cα is divisible by p. In a similar way one can
check that p divides dα. The proof is finished. �

Sierpiński [8] has shown the following result.

Theorem 2.4 (Sierpiński). Let t = pα1
1 · · · p

αr
r , where pi are distinct prime numbers of

the form pi ≡ 1 (mod 4) for i = 1, . . . , r and α1, . . . , αr ∈ N. Then t has a relatively
prime representation as the sum of two squares.

The next theorem provides a general form of 2-reduced numbers.

Theorem 2.5. Every real number d such that d2 = 2αpα1
1 · · · p

αr
r , where pi are distinct

prime numbers of the form pi ≡ 1 (mod 4) for i = 1, . . . , r with α1, . . . , αr ∈ N and
α ∈ {0, 1}, is 2-reduced.

Proof. The case α = 0 is considered in Theorem 2.4. If s = 2t = 2pα1
1 · · · p

αr
r , then

Theorem 2.4 guarantees the existence of relatively prime numbers x and y such that
t = x2 + y2. Clearly,

s = 2(x2 + y2) = (x + y)2 + (x − y)2. (2.2)

In view of (2.2), the numbers x and y are of different parity. Now it is easily seen that
neither x + y nor x − y are divisible by any of the numbers 2, p1, . . . , pr. Thus x + y
and x − y are relatively prime and d is 2-reduced. �
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3. The cardinality and a property of Ud

The number of representations of a natural number n by the sum of two squares,
allowing zeros and distinguishing signs and order, is usually denoted by r2(n). It is
known, see [2], that

r2(n) =

{
4(α1 + 1) · · · (αr + 1) if n is of the form (2.1),
0 otherwise (3.1)

From (3.1), it follows that if d2 is of the form (2.1), then

|Ud | = r2(d2) = 4(α1 + 1) · · · (αr + 1). (3.2)

We now introduce a notation which plays a crucial role in finding the cardinality of
Z2/Td. Let d be a 2-admissible real number. Define

hd = min{gcd(v) ≥ 1 : v ∈ Ud}.

Lemma 3.1. Let d be a 2-admissible real number with d2 of the form (2.1). Then

hd = 2βqβ1
1 · · · q

βs
s .

Proof. Take a 2-admissible real number d with d2 of the form (2.1). Denote by h the
number h = 2βqβ1

1 · · · q
βs
s and consider the number d∗ = d/h. Then

(d∗)2 = 2αpα1
1 · · · p

αr
r .

By Theorem 2.5, there are relatively prime numbers x and y such that (x, y) ∈ Ud∗ .
Clearly, the vector (hx, hy) belongs to Ud and gcd(v) = h. This means that hd ≤ h.

Now take any vector v = (x, y) from Ud. If h 6 | x or h6 | y, then the vector v/h would
not belong to Ud/h. This, and the obvious inclusion hUd/h ⊂ Ud, would imply that
|Ud/h| < |Ud |, which gives us a contradiction because, from (3.1) and (3.2), it follows
that |Ud/h| = |Ud |. Thus, for every v = (x, y) ∈ Ud, h|x and h|y and therefore also
gcd(v) ≥ h. This implies that hd ≥ h. Consequently, h = hd and the proof is finished. �

In the proof of Lemma 3.1 we have shown the following property of hd.

Remark 3.2. Let d be a 2-admissible real number. Then

hd = gcd
( ⋃

(x,y)∈Ud

{x, y}
)
. (3.3)

Theorem 3.3. For any 2-admissible real number d,

hd · Ud/hd = Ud.

Proof. The inclusion hd · Ud/hd ⊂ Ud is obvious. From (3.3) it follows, for every
v = (x, y) ∈ Ud, that hd |x and hd |y. Therefore there exists v′ = (x′, y′) ∈ Ud/hd such
that hdv′ = v. This means that v ∈ hdUd/hd . Thus the inclusion Ud ⊂ hd · Ud/hd is also
true and the proof is complete. �
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4. The terminal set Td

Let d be an N-admissible real number. Recall that the terminal set Td consists of
all lattice points in ZN that can be reached from the origin by means of a d-walk.
Since d-walks use steps from the set Ud, obviously, Ud ⊂ Td. Therefore an immediate
consequence of Theorem 3.3 is the following corollary.

Corollary 4.1. For any 2-admissible real number d,

Td = hd · Td/hd .

It is clear that Ud is a finite set which is symmetrical with respect to the origin and
all coordinate axes. The symmetry properties of Ud guarantee that the terminal set Td

is also symmetrical with respect to the origin and all coordinate axes. We have also
the following property of Ud.

Proposition 4.2. For any permutation π : {1, . . . ,N} → {1, . . . ,N},

(x1, . . . , xN) ∈ Ud =⇒ (xπ(1), . . . , xπ(N)) ∈ Ud.

In the next theorem, we show an algebraic property of Td.

Theorem 4.3. Let d be an N-admissible real number. The pair (Td ,+) is a normal
subgroup of (ZN ,+).

Proof. Since (ZN ,+) is an Abelian group, we only need to check that (Td ,+) is a
subgroup of (ZN ,+). Take x and y from Td. In order to prove the theorem, it suffices
to show that x − y ∈ Td. There are d-walks

U1 = {u1, . . . , uk} and U2 = {v1, . . . , vm}

from the origin to x and y, respectively. Consider the d-walk

U = {u1, . . . , uk, uk+1, . . . , uk+m},

where uk+i = −vi for i = 1, . . . ,m. Clearly,U is a d-walk from the origin to x − y. Thus
x − y ∈ Td and the proof is complete. �

We say that L ⊂ ZN is a sublattice of ZN if L is an additive subgroup and the vector
space spanned by L is RN . From the abovementioned geometric properties of Td,
Proposition 4.2 and Theorem 4.3, we get the following corollary.

Corollary 4.4. Let d be an N-admissible real number. Then Td is a sublattice of ZN .

Let u1, . . . , uN ∈ Z
N be linearly independent vectors in RN . The sublattice L of ZN

generated by u1, . . . , uN is defined as

L =

{ N∑
i=1

aiui : ai ∈ Z, i = 1, . . . ,N
}
.
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The fundamental parallelepiped of L is the set

ΠL =

{ N∑
i=1

tiui : 0 ≤ ti < 1, i = 1, . . . ,N
}
.

The next lemma is similar to [4, Theorem 2.3.12] and can be proved in an analogous
way.

Lemma 4.5. Let L be a sublattice of ZN generated by u1, . . . , uN . Then, for any w ∈ ZN ,
the coset w + L coincides with a coset w0 + L for some w0 ∈ ΠL ∩ Z

N . Moreover, if w1
and w2 are two distinct points in ΠL ∩ Z

N , then (w1 + L) ∩ (w2 + L) = ∅.

An immediate consequence of Lemma 4.5 is the following corollary.

Corollary 4.6. Let L be a sublattice of ZN generated by u1, . . . , uN ∈ Z
N . Then

|ZN/L| = |ΠL ∩ Z
N |.

5. The cardinality of Z2/Td

After observing Theorem 4.3, it is natural to deal with the quotient ZN/Td, which
will be the main object of the remaining part of this note. We start with two useful
lemmas, the first of which immediately follows from [7, Theorem 4.1].

Lemma 5.1. Let d be a 2-reduced real number such that d2 is an odd number. Then
Td = Z2.

Lemma 5.2. Let d be a 2-reduced real number such that d2 is even. Then Td , Z
2 and

Td is a sublattice of Z2 generated by the vectors (1, 1) and (−1, 1).

Proof. Assume that d is a 2-reduced real number such that d2 is even. From the proof
of [7, Theorem 4.1], it follows that (1,0) < Td and hence Td , Z

2. In view of Corollary
4.4, it is enough to show that the vectors (1, 1) and (−1, 1) belong to Td. As Td is
symmetrical with respect to the y-axis, we only show that (1, 1) ∈ Td.

From the assumption that d is 2-reduced, it follows that there exists a vector
v1 = (x1, x2) ∈ Ud with gcd(x1, x2) = 1. Of course, we may assume that 0 < x1 < x2.
Consider the subset U0

d ⊂ Ud consisting of v1, v2 = (−x2, x1), v3 = (x2, x1) and v4 =

(−x1, x2). We shall show that there exists a lattice walk from the origin to the point
(1, 1) using steps from the set U0

d ∪ (−U0
d). The existence of such a walk will be clear

if we show that the system of linear equations{
1 = a1x1 − a2x2 + a3x2 − a4x1,
1 = a1x2 + a2x1 + a3x1 + a4x2,

(5.1)

has an integral solution a1, a2, a3 and a4. By substituting α = a1 − a4, β = a3 − a2,
γ = a3 + a2 and δ = a1 + a4, the system (5.1) gives{

1 = αx1 + βx2,
1 = γx1 + δx2.

(5.2)
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Since gcd(x1, x2) = 1, both equations in (5.2) have the same integral solution α0 and β0.
All other solutions of (5.2) are given by

α = α0 + x2t, β = β0 − x1t, γ = α0 + x2s and δ = β0 − x1s,

where t, s are arbitrary integers.
Using this, and returning to the original unknowns a1, a2, a3 and a4, yields{

a1 − a4 = α0 + x2t,
a1 + a4 = β0 − x1s, and

{
a3 − a2 = β0 − x1t,
a3 + a2 = α0 + x2s.

Solving the two systems, we easily obtain

a1 =
α0 + β0 − x1s + x2t

2
, a4 = a1 − (α0 + x2t) (5.3)

and

a3 =
α0 + β0 − x1t + x2s

2
, a2 = a3 + (x1t − β0). (5.4)

It remains now to show that, for suitable integers t and s, all four unknowns are
integers. In view of (5.3) and (5.4), it is enough to ensure that a1 and a3 are integers.

From the assumptions that d is 2-reduced and d2 is even, it follows that both the
numbers x1 and x2 are odd. From this and the equality α0x1 + β0x2 = 1 it follows, in
turn, that α0 and β0 must be of different parity. It is easy to check that when we put
s = α0 and t = β0, then a1 and a3 are integers. Hence all four unknowns are integers
and this completes the proof. �

Now we are ready to establish the main result of this section and the paper.

Theorem 5.3. Let d be a 2-admissible real number. Then

|Z2/Td | =

{
h2

d when (d/hd)2 is odd,
2h2

d when (d/hd)2 is even.

Proof. Take a 2-admissible real number d. From (2.1) and the form of hd, it follows
that (d/hd)2 is either odd (when α = 0) or even (when α = 1). We will consider the two
possible cases separately.

Case α = 0: By Lemma 5.1, the terminal set Td/hd is just Z2. From Corollaries 4.4
and 4.1, it follows that Td is a sublattice of Z2 generated by the vectors u1 = (hd, 0)
and u2 = (0, hd). Clearly, ΠTd contains h2

d lattice points. This, in conjunction with
Corollary 4.6, ends the proof in this case.

Case α = 1: By Lemma 5.2 and Corollaries 4.4 and 4.1, Td is a sublattice of Z2

generated by the vectors u1 = (hd, hd) and u2 = (−hd, hd). One can easily check that, in
this case, ΠTd contains 2(hd)2 lattice points. By Corollary 4.6, |Z2/Td | = 2(hd)2, which
establishes the case when α = 1. The proof of the theorem is complete. �
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6. A problem about the cardinality of ZN/Td

Corollary 4.6, in conjunction with Corollary 4.4, provides some kind of implicit
information about the cardinality of ZN/Td. It would be interesting to find an explicit
formula for |ZN/Td | depending on d and N in a similar way to the formula in Theorem
5.3. Therefore we formulate the following problem.

Problem 6.1. Let d be an N-admissible real number. Express the cardinality of ZN/Td

in terms of d and N.
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