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Numerical study of a viscous breaking water wave
and the limit of vanishing viscosity
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We introduce a numerical strategy to study the evolution of two-dimensional water waves
in the presence of a plunging jet. The free-surface Navier—Stokes solution is obtained with
a finite, but small, viscosity. We observe the formation of a surface boundary layer where
the vorticity is localised. We highlight convergence to the inviscid solution. The effects of
dissipation on the development of a singularity at the tip of the wave is also investigated
by characterising the vorticity boundary layer appearing near the interface.
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1. Introduction

Wave breaking is among the most common and probably most beautiful fluid flows
occurring in nature. Yet, it remains extremely challenging to study from a modelling
point of view. Being a strongly nonlinear phenomenon, the usual analytical methods
fail to capture the full mechanisms. Also, the different scales involved, as well as the
free-surface flow, significantly complicate any numerical approach. Our purpose is to
provide a new framework to compute numerical viscous water waves, allowing the free
surface to overturn until the point at which the interface intersects itself.

Remarkably, the inviscid water wave problem can be reformulated using quantities
defined on the water—air interface only (Zakharov 1968). Several numerical developments
are based on such approaches (Longuet-Higgins & Cokelet 1976; Vinje & Brevig 1981;
Baker, Meiron & Orszag 1982; New & Peregrine 1985; Baker & Xie 2011). Even though
a complete mathematical description of breaking waves seems unlikely, thorough partial
analytical studies have highlighted the possibility of self-similar solutions of a hyperbolic
crest leading to a singularity (Longuet-Higgins 1982; New 1983).
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Figure 1. Geometry of the initial (+ = 0) domain for the viscous water wave problem.

An alternative route to study the wave breaking phenomenon consists in considering the
free-surface Navier—Stokes equations with a small, but finite, viscosity (Chen et al. 1999;
Raval, Wen & Smith 2009; Di Giorgio, Pirozzoli & Iafrati 2022; Mostert, Popinet & Deike
2022). Various instabilities, including the formation of aerated vortex filaments after the
breaking stage, could thus be described (Lubin & Glockner 2015; Lubin et al. 2019). The
difficulty then lies in approaching the relevant limit of vanishing viscosity and surface
tension (when it is included). Surprisingly, none of the recent studies encompassing the
viscosity has compared their results with the inviscid case.

Here we introduce a finite-element formulation for the free-surface Navier—Stokes flow
and investigate a plunging breaker case. We investigate the formation of a sharp tip on the
plunging breaker. We achieve convergence to the Euler solution (Dormy & Lacave 2024)
and study the role of the viscous boundary layer in regularising the interface.

2. Mathematical formulation

We consider the two-dimensional water domain £2; depicted in figure 1, which we assume
to be L-periodic in x. Along the y direction, £2; is encapsulated between a rigid bottom
Iy, of the fluid domain and the water—air interface I ;, represented by a time-dependent
parametrised curve y,. The former will remain unchanged throughout the study whereas
the latter is evolving with time. Non-dimensional quantities are defined using the height of
fluid at rest hg as the unit of length, +/ghg as the unit of velocity (g being the gravitational
acceleration), and pghg as the unit of pressure (p being the fluid density, assumed to be
homogeneous). The Reynolds number is then defined as Re = pho+/gho/ i, where i is
the fluid dynamic viscosity, also assumed to be homogeneous. Some earlier studies, e.g.
Chen et al. (1999), Iafrati (2009), Deike, Popinet & Melville (2015), Di Giorgio et al.
(2022) and Mostert et al. (2022), used the deep-water scaling to define their Reynolds
number, Reg,, = p\/g? /1, where A is the wavelength of the initial wave, here set to L,
thus Reg,, = (L/ho)>/*Re.

The incompressible Navier—Stokes equations in the domain £2; then take the form

%—‘t’ +@-VYu+Vp—Re 'Vu=—9 in(0,T) x £,

V.u=0 in (0, T) x $2,

y-ﬁ:O on (0,T) x I}, 2.1
t-S-n=0 on (0,7T) x I}y,

—ph+2Re” 'S 7 = kBo'h on (0,T) x I,

u0, ) =ug in £2p.
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Stress-free boundary conditions are imposed at the water—air interface Iy ;, where « is the
surface curvature and Bo~!' = o / pgh(z) is the Bond number (with o the surface tension).
At the bottom I}, we use stress-free conditions in the tangential (£) direction and enforce
no penetration in the normal direction. The above formulation is sometimes referred to
as ‘single fluid’ as the air density has been dropped. Finally, S denotes the stress tensor
defined as S(u) = %(Vu + (Vu)h).

The interface I ; being a material surface, a two-dimensional advection problem needs
to be solved to follow the evolution of y, with time,

Y+
5 = u(t,y,). (2.2)
With this approach the shape of the interface does not need to be a graph. This is a key
property to describe breaking waves and causes difficulties with several formulations of
the water-wave problem (see Lannes 2013, chapter 1).
We consider as initial condition a simple wave (solution of the linearised equations) of
finite amplitude a so that the initial interface can be represented as

.m0 = {(x, ho + acos(kx)), with x € [0, L]}, 2.3)

where k = 2n/L denotes the wavenumber. The initial velocity ug on the interface I ;—o
is given by a finite-amplitude extension of the first-order two-dimensional solution of the
inviscid water wave problem (e.g. Johnson 1997, chapter 2),

uo(x) = ay/gk tanh(kh) - [(tanh("’;fgg;)m("x)] . 2.4)

The initial velocity u(0, -) in the full fluid domain could be approximated from the series
expansion in ka. However, since we consider a large-amplitude wave, we would rather
compute it numerically. This is easily achieved by solving the Laplace equation for the
initial velocity potential ¢ in §2,—¢ (hence assuming a vanishing initial vorticity)

A¢pg =01in 29 sothat wu(t=0,x) = Vep(x), (2.5)

with boundary conditions

0 d
<in =0on/l}, and <in =up-non ., (2.6a,b)
on on '

corresponding to u(0, ) - n =0on I, and u(0, ) - 1 = ug - A on [ —o.
In order to achieve a finite-element formulation, we need to rewrite problem (2.1) in a
weak form. This is achieved by introducing the function space

H}h(Q,) = {v e (H'(£2,))* such that v - 2 = 0 on I}}, 2.7

where H'(£2;) stands for the usual Sobolev space. We then multiply the velocity equation
by an arbitrary test function v € H }«h (£2;) and the incompressibility condition by another

test function ¢ € L?(£2;). Integrating over the whole domain £2, and making use of
our boundary conditions (e.g. Guermond et al. 2012) leads to the following variational
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formulation: Find u € C'([0, T); Hy, (£2;)) and p € L ([0, T); L*(£2,)) such that

/ v 8u+v (u-Vu
2 ot

+2Re*13(v) :Sw)—pV-v—qgV-u—v .g] d%x
= / kBo 'v . adS (2.8)
It
and u(0, -) = ug for all test functions v € H}h (£2y) and g € L2(£2)).

3. Numerical discretisation

We numerically approximate solutions of system (2.8) using the FreeFEM language (Hecht
2012).

Once (2.8) has been numerically integrated, the interface must be advected following
(2.2). This is achieved using an arbitrary Lagrangian Eulerian method (Hirt, Amsden &
Cook 1974). At each iteration, we numerically construct a mesh velocity solving

AW == 0 in ,Z;lna
w=0 on Ipp, (3.1
w=u(t,-) only, p,

where the subscript & denotes the discrete numerical boundary. We then advect the mesh
vertices using the mesh velocity w. It is thus necessary, in this approach, to recompute
finite-element matrices at each time step since the mesh is advected (the Jacobian of the
transformation between the reference element and the global cell is thus not constant). The
w field is subtracted from the advection term of the fluid equation.

Even though the effects of surface tension are discarded in this study, the capillary term
in (2.8) can easily be included in the numerical scheme. Extension to two-phase flows can
be considered, at the cost of meshing both domains.

Extension of this approach to the three-dimensional case, though not impossible in
theory, will be very challenging in practice. First, this is because of remeshing issues
in three dimensions, but also because the number of degrees of freedom needed to achieve
convergence to such large Reynolds numbers would then become difficult to handle, even
with modern supercomputers. This is due to the need for recomputing matrices at each time
iteration with a moving fluid domain. Besides, a major limitation of our approach lies in the
impossibility for the interface to intersect itself. Hence the simulation has to stop as soon
as a splash has occurred. Analysis of the post-breaking behaviour is not permitted with our
approach, but see e.g. Iafrati (2009), Deike et al. (2015), Lubin & Glockner (2015), Deike,
Melville & Popinet (2016) and Lubin ef al. (2019).

4. The effect of viscous dissipation on the interface evolution
We consider numerically a domain $2,—¢ with L =2mw, hg = 1 and a = 0.5. Surface
tension is neglected o = 0 (thus Bo~! = 0) in the following. The domain £2; has been

discretised with up to 4000 vertices on the water—air interface. This results in roughly
270000 triangles and hence about 1.2 million unknowns for the Navier—Stokes problem.
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Figure 2. Evolution of the interface with time at Re = 10°. (An animation corresponding to the simulation
presented in this figure is available as supplementary material available at https://doi.org/10.1017/jfm.2024.
208.)

Simulations were run with Reynolds number ranging from 10 to 10°. Results for
Re = 10° are presented in figure 2, and a comparison of the interface for various Reynolds
numbers is available in figure 3. The resulting wave behaves as a plunging breaker —
see the classification of Galvin (1968). We should stress that the initial condition being
irrotational, the vorticity vanishes everywhere except for a thin boundary layer near the
surface (see § 5). The fact that the vorticity is localised helps in the numerical resolution
at large values of the Reynolds number.

Our objective is now to characterise the convergence as the Reynolds number is
increased. The time evolution of the interface is compared for different Reynolds numbers
with the same initial condition in figure 3. The solution of the Euler equation (Dormy &
Lacave 2024) for the same problem is also included for comparison. The regularising
effects of dissipation are clearly visible. The overhanging region takes a round shape
and falls faster at larger dissipation (i.e. for decreasing Reynolds number). Perhaps more
surprisingly, the effects of dissipation are localised near the plunging jet. The Euler
interface appears to provide a limit solution towards which the Navier—Stokes solution
converges as the Reynolds number is increased. Only a very small difference remains
between the Euler solution and the Navier—Stokes solution for Re = 10°. This minute
difference may be due to the finiteness of Re but also possibly to some amount of numerical
diffusion, as this extreme Reynolds number case is at the edge of our numerical resolution
(see below).

In order to quantify the convergence of the finite-Reynolds-number flow to the Euler
solution, we must measure the differences between the various interface positions. (The
numerical convergence at a given Re was assessed varying the mesh size (see the
Appendix).) We cannot use a standard norm to do that, since the interface is not a graph
as soon as the wave overturns. We therefore rely (as in Dormy & Lacave 2024) on the
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Figure 3. Interface evolution with time for different values of the Reynolds number with emphasis on the tip
of the wave. The Euler solution was obtained from Dormy & Lacave (2024). The shaded region corresponds to
the Euler fluid domain.
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Figure 4. (a) Convergence of the Navier—Stokes solutions to the Euler solution (Dormy & Lacave 2024) as
the Reynolds number is increased using the Hausdorff distance. (b) Time evolution of the maximum curvature
radius with time for different values of the Reynolds number. The last four curves are indistinguishable at this
scale.

bidirectional Hausdorff distance between the curves, i.e.

8u(A, B) = max(8u(A, B), i (B, A)), with 8y (A, B) = ma}rbnig la—bll. (4.1)
ae €

The time evolution of the distance between each curve obtained for a given Reynolds
number and the Euler solution is presented in figure 4(a). The initial condition being
identical, the distance is a growing function of time until the splash approaches. The time
at which the effect of viscosity becomes significant increases as the Reynolds number
increases.

No finite-time wedge-like singularity seems to be developing for the initial condition
considered here, even in the case of the Euler solution (Dormy & Lacave 2024). This
can be assessed by introducing the minimum curvature radius R.(¢?) (see figure 4b). The
curvature of the interface can be computed numerically, with a maximum corresponding
to the crest. The minimum curvature radius R.(f) is then the inverse of the maximum
curvature. Figure 4(b) presents R, as a function of time. Each simulation is interrupted
when the interface self-intersects. Though R, tends to zero for large enough Reynolds
number, it remains strictly positive for all time in all our simulations. No finite-time
singularity is obtained for this set-up. Our low-Reynolds-number cases Re < 10° are
characterised by a larger R.(¢). The fact that the curves are indistinguishable in the figure
for Re > 10%, and coincide with the Euler simulation of Dormy & Lacave (2024), indicate
that the lack of finite-time singularity for this configuration is not a consequence of
viscosity and that the Bernoulli principle, accelerating the fluid near the tip of the wave
(Pomeau & Le Berre 2012), does not cause a singularity for such initial data. Further initial
conditions and domain geometries thus need to be investigated to study the necessary
conditions for the formation of such a singularity.

5. Energy dissipation

To further characterise the difference between the Euler and Navier—Stokes solutions,
we now investigate the spatial distribution of viscous dissipation. A typical global
energy-balance equation can be computed by setting v = u in the weak formulation (2.8)
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and using the incompressibility condition,

d [ u? 2
— —dx:/ (g-u——S(u) :S(u)) dx
2

dr 2 2 Re
1d 9 2
=—=— ds — — S(u) : S(u) dx, 5.1
S dr Fs,,y ny Re Jo, (u) : S(u) dx (.1
for a vertical gravitational acceleration g = —yp and a flat bottom. This is the usual

kinetic and potential energy for water waves (e.g. Lannes 2013) with an additional viscous
dissipation term.

A local equation for the kinetic energy can also be computed directly by multiplying the
Navier—Stokes equation (2.1) by u and using the typical relation Au = —V-(VL . u) =
—V-4w, where ut = (—uy, uy) denotes a /2 anticlockwise rotation and w = Vi.uis
the two-dimensional vorticity. This leads to

d Vot [V - (ut 2 5.2
o gy uVpt V- (we) — o] (5.2)
Hence the viscous dissipation happens in regions of the domains where the vorticity does
not vanish.

The vorticity is represented in figure 5(a—e). Note the formation of a vorticity sheet
near the interface as the Reynolds number is increased. The Lundgren & Koumoutsakos
(1999) theorem states that the source of mean vorticity in the boundary layer is in fact this
superficial vortex sheet. It is interesting to note that a small-magnitude positive-vorticity
boundary layer appears at the tip of the wave (see figure 5f). As time proceeds, the vorticity
sheet grows where the curvature of the interface becomes important — see Longuet-Higgins
(1992), for the steady-state case.

The boundary layer is expected to scale as Re ™!/ — see e.g. Landau & Lifshitz (1987)
for the general theory, Liu & Davie (1977) for the particular case of viscous water waves
and Masmoudi & Rousset (2017) for a mathematical description of this limit. We present
in figure 6 vorticity cross-sections in the normal direction starting on the interface at y =
0.925 (indicated on figure Sa—e). The boundary layer of the Re = 10° case is spread over
three to four nodes at most, so that the exponential behaviour is not clearly captured.
Figure 6 nevertheless clearly illustrates the Re~!/? scaling of the boundary layer for Re =
10° to Re = 10° and is compatible with the scaling for Re = 10°. As already mentioned,
the Re = 107 case is so viscous that the interface does not exhibit the same characteristics
as the others. The inward-pointing normal vector at y = 0.925 is ascending whereas the
others are descending. This explains the different behaviour in figure 6.

Interestingly the vorticity sheet becomes comparable in size to the minimum curvature
radius R, near Re = 10%, i.e. when the curvature radius, as a function of the Reynolds
number, reaches its minimum (figure 4). Another striking aspect of figure 6 lies in the
value of the vorticity at the boundary, which appears to be fairly independent of the
Reynolds number. This suggests a pointwise convergence to the interface vorticity of the
Euler problem, i.e. the vortex intensity y in Baker et al. (1982).

6. The regularising effects of viscosity

The formation of a vorticity layer near the interface is associated with the viscous
regularisation of the boundary. Indeed, following Longuet-Higgins (1953) we can define
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Figure 5. (a—e) Vorticity w near the tip of the wave for different values of the Reynolds number at time r = 2.9.
(f) A zoom on the tip of the wave for the Re = 10° case. The colour legend has been truncated from below to
guarantee overall colour coherence.
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Figure 6. Vorticity cross-sections along the straight lines, normal to the boundary, shown in figure 5(a—e).
Here s is the arclength, which parametrises the lines.

Figure 7. Coordinate system (s, n) definition, and geometrical interpretation of s and k.

a curvilinear coordinate system (s, n) following the interface with time. This coordinate
system is sometimes known as the Frenet frame. Here s denotes the arclength while
n is the normal coordinate, pointing inwards (figure 7a). We also write u = usS + u,n,
i.e. the decomposition of the fluid velocity along the tangential and normal vectors. The
time evolution of the curvature x (positive when convex inwards) of the interface can be
expressed as
oK 9%u,, oK 42 ©.1)
— = — Us— + K up, .
at sz ds "
where u; and u,, are evaluated at n = 0. The full argument can be found in Longuet-Higgins
(1953, § 6), with a different sign convention for the curvature.
Defining the metric factor h = 1 — nk (¢, s) (see figure 7), the continuity equation
becomes

B
Veu=—+ —(hu,) =0. (6.2)
as on

The full Navier—Stokes equations written in such a coordinate system can be found in
Longuet-Higgins (1953). We introduce the streamfunction v such that

oy 10y
Uy = E and Uy, = —Zg (63a,b)
The vorticity is defined as
0 0
w=h" (2" ). (6.4)
as on
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Where the vorticity vanishes, we can define a velocity potential ¢ as

10¢ a¢p
Us = ]Tla and u, = a_n (65d,b)
Inserting ¢ and v in the continuity equation (6.2) and vorticity equation (6.4) yields
Ap=0 and AY = —ow. (6.6a,b)

We now decompose the flow as a global potential plus a local viscous component (e.g.
Lundgren & Koumoutsakos 1999), u = V¢ + VJ‘wRe, where V= is defined by (6.3a,b).

The g, component, i.e. viscous effects, localised in a boundary layer of size § = Re~(1/2)
disappear as the viscosity vanishes (see figure 5). We introduce an expansion of g, in
powers of §,

Yre(s, n, 1) = 81 (s, n, 1) + 8%y (s, n, 1) + O(8). (6.7)
Furthermore, because of the boundary layer structure, we can introduce g, (s, n/8,1t) =
YRre (s, n, t). Inserting the expression (6.7) into the vorticity equation (6.4) leads to terms
of order 0(8*1). Figures 5 and 6, however, highlight that the vorticity remains of order

O(1), leading to the conclusion that ¥ = 0(8?) and hence that y/; = 0.
Rewriting the curvature evolution equation (6.1) with ¢ and Wg,, we find that

¢ 193¢ 9k KZa_d’

3t onds  h s ds as
3% (19 Ak d 29
(= YRe __K l,”Re+K_ YRe . (6.8)
ds* \ h 0s ds On h 0s
—_—— Y ———
0(52) o) 0(82)

The effects of viscous dissipation on the interface thus enter the leading-order balance
when the surface curvature becomes of order O(8~') (i.e. a curvature radius of order
0(8)). Conversely, when the surface curvature becomes of order O(§) or smaller, viscous
effects appear in time O(82). In practice, for the large Reynolds numbers applicable to
water waves, surface tension will also become significant at similar scales.

7. Conclusions

The present work has demonstrated that the viscous water wave problem converges towards
the inviscid solution, even in the case of wave breaking. We highlighted the regularising
effect of finite viscosity and quantified the curvature at which viscous effects become
significant. Further work, involving different initial conditions, is needed regarding the
possible formation of a finite-time singularity at the tip of a breaking wave.

Supplementary material. A supplementary animation corresponding to the simulation in figure 2 is
available at https://doi.org/10.1017/jtm.2024.208.
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Figure 8. Numerical convergence for each Reynolds number; the rectangular region indicated on the left is
blown up on the right. Note that N = 1000 for Re = 10° is unstable for times larger than 2.2, thus only two
meshes are compared in the last graph.

Appendix. Numerical convergence

All simulations have been carried out with meshes of different sizes, measured by N,
the number of points at the free surface. (The total number of degrees of freedom of the
finite-element mesh is much larger than N. For example for Re = 10® with N = 4000, the
final number of degrees of freedom is =~ 2.2 x 10°.) Different values of N have been used
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depending on the Reynolds number. Numerical convergence is highlighted in figure 8 by
using in each case grids with N/2, N/4 and N/8 points at the free surface.
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