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Historical notes

3.1 Extended charge models (1897-1912)

When in 1897 J. J. Thomson identified the cathode rays as consisting of parti-
cles with charge —e, not only had he discovered the first elementary particle, but
posed the theoretical challenge of computing the energy—momentum relation of
this novel object. To put it concisely, we write the equations of motion in approxi-
mately uniform E and B fields as

mv)o = e(E + ¢ 'v x B) (3.1

with m(v) the velocity-dependent mass as a 3 x 3 matrix. The challenge was to
predict the ratio m(v)/e. For small velocities it was well established that the mass
is independent of v. But for the electron with its tiny mass and unprecedented range
of accessible velocities the case was wide open. In fact, Thomson (1881) himself
had pointed out that, in analogy with a ball immersed in a fluid, the coupling to
the self-generated electromagnetic field will induce a velocity dependence of the
mass.

So which theory could be used to determine m(v)? In fact, there was little
choice. Since the phenomenon under consideration is clearly electromagnetic, the
Maxwell-Lorentz equations had to be used, and since the trajectory of a single
charge was measured, one had to couple through Newton’s equations of motion.
Thus the electron was pictured as a tiny sphere charged with electricity. In the
inhomogeneous Maxwell equations the current generated by that moving sphere
had to be inserted. On the other hand the electromagnetic fields react back on
the charge distribution through the Lorentz force. Thereby the so-called extended
charge model was introduced. Abraham (1903, 1904) adopted a charge distribution
which is rigid in the laboratory frame. The corresponding energy—momentum re-
lation is discussed at length in the second volume of his book on electromagnetism
(Abraham 1905), compare with section 4.1. For Abraham’s model, Sommerfeld
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(1904a, 1905) obtained an exact equation of motion for the electron. As a com-
plicating and unfamiliar feature it contains memory terms through the integration
over the retarded fields. Lorentz (1904a, b) proposed a charge distribution which
is rigid in its momentary rest frame, and therefore, as seen from the laboratory
frame, contracting parallel to its momentary velocity. It was left completely open
by which forces this charge distribution would be kept in place. Poincaré (1905,
1906) developed nonelectromagnetic models where additional stresses counter-
acted the Coulomb repulsion. Bucherer (1904, 1905) and Langevin (1905) intro-
duced a charge distribution Lorentz contracted under the constraint of constant
volume.

Up to 1900 electromagnetism was dominated by mechanics, in the sense that
physicists felt compelled to introduce mechanical models for electromagnetic
fields. Light would propagate through a rather mysterious gas, called the ether,
and not simply through vacuum. The great revolution of the young electrodynam-
icists of the day was to reverse this position and consider inertial mass to be of
purely electromagnetic origin. This electromagnetic world picture was nourished
by the fact that in all extended charge models the velocity-dependent mass has the
additive structure m (v) = my 1 + ms(v), as 3 x 3 matrices with 1 the unit matrix,
where my, is the bare mechanical mass of the particle, in accordance with Newto-
nian mechanics taken to be velocity independent, and m¢(v) is the mass due to the
coupling to the field, which was to be computed from the model charge distribu-
tion. In the spirit of the electrodynamic world picture it was natural to set my, = 0.
Then Lorentz predicted the standard relativistic velocity dependence, which only
for |v/c| > 0.3 differed significantly from the results of Abraham and Bucherer.

While experiments were on the way to decide between the competing theories,
the whole enterprise came to a sudden end, since Einstein (1905a, b) forcefully
argued that just like electromagnetism in vacuum also the mechanical laws had to
be Lorentz invariant. But if Einstein was right, then the energy—momentum rela-
tion of the electron had to be the relativistic one, as emphasized independently by
Poincaré (1906). Thus the only free parameter was the rest mass of the electron
which anyway could not be deduced from theory, since the actual charge distribu-
tion was not known. There was simply nothing left to compute. At the latest with
the atomic model of Bohr, to say 1913, it became obvious that a theory based on
classical electromagnetism could not account for the observed stability of atoms
nor for the sharp spectral lines. Classical electron theory, as a tool for explaining
properties of atoms, electrons, and nuclei, was abandoned.

The experimental status remained ambiguous for some time. Kaufmann (1901)
favored Abraham’s model up to 1906. Only through the experiments of Bucherer
(1908, 1909) were the predictions of Einstein and Lorentz considered to be rea-
sonably confirmed. Of course, by that time Einstein had already convinced the
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theoreticians, and any other outcome would have been in serious doubt. A repeti-
tion of these historical experiments dryly concludes that “it seems fair to say that
the Bucherer—Neumann experiments proved very little, if anything more than the
Kaufmann experiments, which indicated a large qualitative increase of mass with
velocity”, Zahn and Spees (1938).

The effective equation of motion for the electron as given by Eq. (3.1) could
not possibly have been the full story. Through the work of Larmor it was already
understood that a charge loses energy through radiation at a rate roughly propor-
tional to ©”. Lorentz observed that in the approximation of small velocities this
loss could be accounted for by the friction or radiation reaction force

&2

Fo=——. (3.2)

which had to be added to the Lorentz force in Eq. (3.1). In 1904 Abraham obtained
this friction force for arbitrary velocities as

2
e .. _ . _ N ..
F, = P [y4c_2('v v+ 390w v)2u+3yte i (v- v + )/2'0] . 33

He argued that energy and momentum are transported to infinity through the far
field. On that scale the charge distribution is like a point charge and the electromag-
netic fields can be computed from the Liénard—Wiechert potentials. Using conser-
vation of energy and momentum for the total system he showed that the loss at
infinity could be balanced by the friction-like force (3.3). Von Laue (1909) real-
ized that the radiation reaction (3.3) is relativistically covariant and can be written
as

2
€ .. I
Frr = m [l.l —C 2(“ : ll)ll] s (34)

with u the four-velocity. It is in this form that the radiation reaction appears in the
famous 1921 review article of Pauli on relativity. But apparently there was no in-
centive to study properties of Newton’s equations of motion (3.1) including the full
radiation reaction correction (3.3). Using the data from the Kaufmann experiment
Abraham estimated the radiation reaction to be down by a factor of 10~ relative
to the Hamiltonian motion. Schott (1912) after studying the motion in a uniform
electric field concluded: “Hence the effect of the reaction due to radiation is quite
inappreciable in this and probably in all practical cases.”

The first chapter on the dynamics of classical electrons closes around 1912 with
the relativistic version of elasticity theory for deformable bodies by Born (1909)
and von Laue (1911a, b). In essence there were two results: (i) a relativistically
covariant expression for the radiation reaction and (ii) an energy—momentum rela-
tion for the charged particle dependent on the particular model charge distribution.
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Of these models only Lorentz’s model of a charge distribution properly contract-
ing along its instantaneous velocity is consistent with Einstein’s theory of special
relativity.

3.2 Nonrelativistic quantum electrodynamics

The time lapse was short: In late 1925 Heisenberg formulated his matrix mechan-
ics and in early 1926 Schrodinger had come to wave mechanics. Through Dirac’s
transformation theory both approaches were shown to be equivalent. But more
importantly in our context, Dirac clearly formulated the rules of canonical quanti-
zation, providing the tools for quantizing any Hamiltonian system including those
with an infinite number of degrees of freedom. In 1928 Dirac discovered the rela-
tivistic generalization of the Schrodinger equation. From then on the theoretician’s
avant garde strived for creating a relativistic quantum electrodynamics understood
as a specific quantum field theory — no small effort — which in a broad sense still
continues with us today. The nonrelativistic theory, our concern here, was regarded
as being settled. In fact, in its basic theoretical aspects, the research monograph of
Heitler (1936) does not differ significantly from modern variants. But obviously,
many fascinating phenomena and theoretical developments still lay ahead.

Let us briefly recall the major steps. Born, Heisenberg and Jordan (1926) quan-
tized the wave equation by regarding it as corresponding to an infinite set of har-
monic oscillators. They studied the energy fluctuations and derived Planck’s law.
On 2 February 1927 Dirac proudly reported to Bohr that, on the basis of the new
quantum theory, he knew how to compute the lifetime and the line shape of an
excited state of an atom in the approximation where only a single photon is emit-
ted. A systematic quantum treatment of emission and absorption of radiation is
Dirac (1927). Fermi (1930) recognized the importance of the Coulomb gauge and
quantized a system with an arbitrary number of charges. His 1932 review article
discusses the quantization of the (many-particle) Abraham model as we know it
today; compare with chapter 13. With the theoretical foundations laid down, most
physical processes of interest could be handled through second-order perturbation.
Perturbation theory as applied to an isolated bound state had been well established.
However, for radiation one has to deal with resonances, i.e. unperturbed energies
embedded in the continuum energy of field modes. On a practical level Fermi’s
golden rule settled the issue. The reason why and in what sense this was the cor-
rect answer triggered a continuing theoretical effort. As the body of radiation phe-
nomena explainable through quantum mechanics accumulated, the trust in the new
theory increased. Divergences were of concern, but, according to Heitler, “it seems
now that there is a certain limited field within which the present quantum electro-
dynamics is correct”. High frequencies had to be cut off to taste. In this spirit Bethe
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arrived at his famous prediction for the Lamb shift of the 2S level of the hydrogen
atom.

As well as ultraviolet divergence, nonrelativistic quantum electrodynamics is
also infrared divergent, as discovered by Bloch and Nordsieck (1937) and more
exhaustively studied by Pauli and Fierz (1938). Even today infrared divergence is a
somewhat elusive physical phenomenon. It says that an accelerated charge radiates
an infinite number of photons. Since their total energy is finite, by necessity these
photons must have ever-increasing wavelengths.

3.3 The point charge

In the 1930s and early 1940s it was a fairly widespread belief that one way to
overcome the difficulties of quantum electrodynamics is a better understanding of
the classical theory of point charges coupled to their radiation field. Of course,
this was to be understood only as an intermediate step to the final goal, namely a
consistent quantized theory. Our third section deals with a single paper: “Classical
theory of radiating electrons” submitted by P. A. M. Dirac on 15 March 1938.
Dirac’s paper was equally motivated by quantum electrodynamics; however, as
such it is concerned only with classical electron theory.

We have to report the findings of Dirac in sufficient detail, since most later
activities start from there. The formal argument in the original paper can be well
followed and alternative versions can be found in Rohrlich (1990), Teitelbom et al.
(1980), and Thirring (1997). Thus there is no need for repetition and we can focus
on the conclusions. At first reading it is best to disregard all philosophical claims
and concentrate on the equations. But before that, let us see how Dirac himself
viewed the 1897-1912 period:

The Lorentz model of the electron as a small sphere charged with electricity, possessing
mass account of the energy of the electric field around it, has proved very valuable in
accounting for the motion and radiation of electrons in a certain domain of problems,
in which the electromagnetic field does not vary too rapidly and the accelerations of the
electrons are not too great.

Dirac’s goal was to construct quantum electrodynamics. There the electron is re-
garded as an elementary particle with, almost by definition, no internal structure.
Thus Dirac had to dispense with model charges and develop a theory of point-like
electrons.

What then did Dirac really accomplish? Of course, he assumes the validity of
the inhomogeneous Maxwell equations. The current is generated by a point charge
whose motion is yet to be determined. Mechanically this point charge is relativistic
with bare mass my,. There is no explicit reaction of the field back onto the charge,
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since at no stage would Dirac invoke the Lorentz force. Instead conservation of
energy and momentum should suffice to fix the true trajectory of the point charge.
Note that this is very different from the extended charge models where the starting
point is a closed system of equations for the particle and the Maxwell field. Dirac
studies the flow of energy and momentum through a thin tube of radius R around
the world line of the particle. The computation simplifies by writing the retarded
fields generated by the motion of the point charge as

1 1
Fret = 5 (Fret + Fadv) + 5 (Fret - Fadv) (3-5)

in all of space-time. The difference term turns out to be finite on the world line of
the charge and, through a balancing of energy and momentum, yields in the limit
R — 0, the relativistic radiation reaction (3.4).

The more delicate term in (3.5) is the sum, which is divergent on the world
line of the particle. At the expense of ignoring other divergent terms, cf. Thirring
(1997), Eq. (8.4.16), Dirac obtains the expected result, namely

2

s .
~ IR U= T (3.6)

Adding the radiation reaction (3.4) and equating with the mechanical four-
momentum, the final result is an equation of motion which determines the tra-
jectory of the particle,

(mp + M) = Mmeypit = eFey - u+ [i —c @ wu] + OR) (3.7)

67 c3

with an error of the size of the tube, where we have added the prescribed electro-
magnetic field tensor Fex of external fields.

To complete his argument, Dirac had to take the limit R — 0. Since m; — oo,
this amounts to

mp — —00, mf — 00, Mexp = My + my  fixed, (3.8)

where mexp is adjusted such that it agrees with the experimentally determined mass
of the charged particle. The combined limit (3.8) is the classical mass renormal-
ization.

Dirac admits that “such a model is hardly a plausible one according to current
physical ideas but this is not an objection to the theory provided we have a reason-
able mathematical scheme.”

Equation (3.7), dropping the terms O(R), is the Lorentz—Dirac equation. Within
the framework of Dirac it makes no sense to ask whether the Lorentz—Dirac equa-
tion is “exact”, since there is nothing to compare with. The Lorentz—Dirac equation
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comes as one package, so to speak. One could compare only with real experiments,
which is difficult since the radiation reaction is very small, or one could compare
with higher-level theories such as quantum electrodynamics. But this has never
been seriously attempted, since, to begin with, it would require a well-defined rel-
ativistic quantum field theory which is a difficult task.

The Lorentz—Dirac equation is identical to the effective equations of motion ob-
tained from extended charge models, if we ignore for a moment the possibility that
the kinetic energy might come out differently depending on which model charge
is used. In this sense Dirac has recovered the previous results through a novel ap-
proach. However, there is an important distinction. For extended charge models
one has a true solution for the position of the charged particle, say q(z). One can
then compare (¢) with a solution of the Lorentz—Dirac equation and hope for
agreement in asymptotic regimes, like slowly varying potentials. In addition, for
an extended charge model one can set the bare mass to some negative value and
study the consequences.

Dirac continues with a remark which shattered the naive trust in classical elec-
tron theory. He observes that even for zero external fields Eq. (3.7) has solutions
where |v(t)/c| — 1 as t — oo and |v(r)| increases beyond any bound. Such un-
physical solutions he called runaway solutions. It is somewhat surprising that run-
aways apparently went completely unnoticed before, which only indicates that
no attempt was made to apply the Lorentz—Dirac equation to a concrete physi-
cal problem. If one inserts numbers, then runaways grow very fast. For instance,
for an electron ¥(f) = v(0)e’/T with r = 10723 s. Thus if the Lorentz—Dirac equa-
tion (3.7) is a valid approximation in an extended charge model, which after all
was the general understanding of the 1897-1912 period, then this model must
also have runaway solutions — a conclusion in obvious conflict with empirical
evidence.

Dirac proposed to eliminate the runaway solutions by requiring the asymptotic
condition

lim () = 0. (3.9)

As a bonus the problem of the missing initial condition is resolved: since in (3.7)
the third derivative appears, one has to know q(0), q(0), as in any mechanical
problem, and in addition (0). If one accepts (3.9), the initial condition for u is
replaced by the asymptotic condition (3.9). Dirac checked that for zero external
forces and for a spatially constant but time-dependent force the asymptotic condi-
tion singles out physically meaningful solutions. By the end of 1938 the classical
electron theory was in an awkward shape, in fact in a much worse shape than by
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the end of 1912. Formal, but even by strict standards careful, derivations yielded
an equation with unphysical solutions. How did they come into existence? While
Dirac’s asymptotic condition seemed to be physically sensible, it was very much
ad hoc and imposed post festum to get rid of unwanted guests. Even physicists
willing to accept the asymptotic condition as a new principle, like Haag (1955),
could not be too happy. Solutions satisfying the asymptotic condition are acausal
in the sense that the charge starts moving even before any force is acting. To be
sure, the causality violation is on the time scale of = 10723 s for an electron, and
even shorter for a proton, and thus has no observable consequences. But acausality
remains as a dark spot in relativistic theory. The clear recognition of runaway so-
Iutions generated a sort of consensus that the coupled Maxwell-Newton equations
have internal difficulties.
In the preface of his book Rohrlich writes:

Most applications treat electrons as point particles. At the same time, there was the
widespread belief that the theory of point particles is beset with various difficulties such as
infinite electrostatic self-energy, a rather doubtful equation of motion which admits phys-
ically meaningless solutions, violation of causality, and others. It is not surprising, there-
fore, that the very existence of a consistent classical theory of charged particles is often
questioned.

In Chapter 28 of the Feynman Lectures we read:

Classical mechanics is a mathematically consistent theory; it just doesn’t agree with ex-
perience. It is interesting, though, that the classical theory of electromagnetism is an un-
satisfactory theory all by itself. The electromagnetic theory predicts the existence of an
electromagnetic mass, but it also falls on its face in doing so, because it does not produce
a consistent theory.

And finally to quote from the textbook on mathematical physics by Thirring:

Not all solutions to (3.7) are crazy. Attempts have been made to separate sense from non-
sense by imposing special initial conditions. It is to be hoped that some day the real solution
of the problem of the charge—field interaction will look differently, and the equations de-
scribing nature will not be so highly unstable that the balancing act can only succeed by
having the system correctly prepared ahead of time by a convenient coincidence.

To be sure, these issues were of concern only to theoretical physicists in search
of a secure foundation. Synchrotron radiation sources were built anyhow. The
loss in energy of an electron during one revolution can be accounted for by
Larmor’s formula. This is then the amount of energy which has to be supplied
in order to maintain a stationary electron current. The radiation emitted from
the synchrotron source is computed from the inhomogeneous Lorentz—Maxwell
equations with a point charge source, i.e. from the Liénard—Wiechert potentials.
No problem.
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3.4 Wheeler—Feynman electrodynamics

To avoid the infinities of self-interaction Wheeler and Feynman (1945, 1949) de-
signed a radical solution, at least on the classical level, since the quantized version
of their theory was never accomplished.

Their basic tenet is to have as dynamical degrees of freedom only the trajectories
of the particles. As such there are no electromagnetic fields, even though one still
uses them as a familiar and convenient notational device. As Wheeler (1998) puts
it later on, the 1940s were his period of “all particles — no fields” and he wanted to
understand how far this point of view could be pushed.

Wheeler—Feynman electrodynamics starts from an action which was first writ-
ten down by Fokker (1929). Let us consider N particles, where the i-th particle has
mass m;, charge e;, and a motion given by the world line q; (7;), i = 1,...,N. The
world line is parametrized by its eigentime 7; and the dot ‘" denotes differentiation
with respect to this eigentime. The action functional has the form

N 1 N . .
S= _Zm" szdff ) Zl ¢iej //5(((11' —q,)")(@; - q;)drdr; . (3.10)
i,j=

i=1 .
i#j
A formal variation of S leads to the equations of motion

N
. e 1 :
miq; = ?l ; E(Fret(j)(qi) + Faav(j(@i)) - 4i - (3.11)
J#i
Here Fie(j)(g;) and Fagy(j)(q;) are the retarded and advanced Liénard—Wiechert
fields generated by the charge at ¢ ; and evaluated at ¢;. They are derived from the
retarded and advanced potentials

Arer(j)(X) = €4 (Tjre) [(X — qj (Tjrer)) - 4 (Tjre)] ", (3.12)
Aav()H %) = €jq; (Tjaa)[(X = q; (Tjady)) - 4 (Tjaan)] ™" (3.13)

with T, Tespectively 7jaqyv, the eigentime when the trajectory q; crosses the
backward, respectively the forward, light cone with apex at x. Notationally (3.11)
looks like a set of ordinary differential equations. In fact, the locations of the other
particles have to be known both at the advanced and retarded times, a situation
which is not covered by any of the standard techniques. Even if the existence of
solutions is taken for granted, it is widely open which data would single out a
specific one.

To transform (3.11) into a familiar form, we use the decomposition (3.5) and
Dirac’s observation that (Fre; — Fagy)/2 at the trajectory of the particle yields the
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radiation reaction. Then

N 2
. € . e .- o
A — — F . Y. a- ! . . Q- .
miq; B ; ret(])(ql) qi + 673 (qz c 7 (q; ql)ql)
J#
e N g )
+— D 5 (Faav( (@) = Frea( (@) - G (3.14)

1

J

Of course, being symmetric in time, we could have equally transformed to the
advanced fields for the force and a radiation reaction with reversed sign.

As a specific example let us consider the scattering of two charges with all other
charges far apart. In the framework of the Lorentz model one would start with two
charges and their comoving Coulomb field, sufficiently far apart and with incoming
velocities. If radiation reaction is neglected, the bare mass is renormalized, and
the force on one particle is due to the other particle at the retarded time. In the
Wheeler-Feynman theory for rwo particles, the mass is just the bare mass, the
forces are the average of retarded and advanced, and there is no radiation reaction.
The Wheeler—Feynman theory seems to be at variance with empirical observations.

The crucial new element of their theory is that even in the case of two-particle
scattering, the motion of all other charges cannot be ignored. Thus in (3.14), we
take only i = 1, 2, but sum over large N. Wheeler and Feynman spend a consider-
able amount of effort to argue that when averaged over the random-like motion of
all other charges, the last term in (3.14) vanishes and they call this the condition
of a perfect absorber. The exact cancellation is hard to check and one has to be
satisfied with qualitative arguments. The perfect absorber granted, in the first sum
of (3.14) only the terms j = 1, 2 contribute by assumption and one has achieved
the reduction to a two-particle problem with retarded forces. In its 18-dimensional
phase space there is a 12-dimensional submanifold of physical solutions; all others
run away. Wheeler and Feynman discuss an energy-like quantity for the system of
N charges which seems to ensure that all solutions to (3.11) are well behaved. As a
consequence, only the physical solutions to (3.14) with perfect absorber are a valid
approximation to the motion of N charges as governed by (3.11) and agreement
with the conventional theory is accomplished.

Notes and references
Section 3.1

An authorative, highly recommended source on the history of the classical elec-
tron theory is Miller (1997), which should be augmented by Pais (1972, 1982),
by Rohrlich (1973), and by the introductory chapters of Rohrlich (1990). For a
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discussion of the Kaufmann experiments I refer to Cushing (1981) and Miller
(1997). The monograph by Schott (1912) is the most complete technical account.
It contains lots of material which has become an integral part of our present-day
textbooks on electrodynamics and discusses in detail properties of various electron
models. Reviews of classical electron theory are Honl (1952), Caldirola (1956),
Erber (1961), Barut (1980), Teitelbom et al. (1980), Coleman (1982), and Pearle
(1982). The interconnection with quantum electrodynamics before the 1947 Shel-
ter Island conference is vividly described in Schweber (1994).

Section 3.2

There are excellent studies of the historical development of quantum electrody-
namics as culminating in the work of Dyson, Feynman, Schwinger, and Tomon-
aga, in which as one part also the nonrelativistic theory is discussed. The most
complete coverage is Schweber (1994), where the mentioned letter by Dirac is re-
produced. Miller (1994) covers the history up to 1938 and includes reprints of the
most important papers. A somewhat different selection is Schwinger (1958) with
a recommended introduction. A further source is the monumental work of Mehra
and Rechenberg (2000) on The Historical Development of Quantum Theory. The
relevant volume is no. 6, part 1. Modern textbooks and research monographs on
nonrelativistic quantum electrodynamics are Heitler (1936, 1958), Power (1964),
Louisell (1973), Healy (1982), Craig and Thirunamachandran (1984), Cohen-
Tannoudji, Dupont-Roc and Grynberg (1989, 1992), Milonni (1994) among others.
They all have a common core, but emphasize rather diverse aspects once it comes
to applications.

Section 3.3

Kramers’ (1948) investigations on the mass renormalization in the classical theory
were instrumental for a correct computation of the Lamb shift. We refer to Dresden
(1987) and Schweber (1994).

Section 3.4

The two-body problem in Wheeler—Feynman electrodynamics is discussed by
Schild (1963). The existence and classification of solutions is studied by Bauer
(1997). A few explicit solutions are listed in Stephas (1992).

The opposite extreme “no particles — all fields” is briefly mentioned in the Notes
to section 2.5.

https://doi.org/10.1017/9781009402286.004 Published online by Cambridge University Press


https://doi.org/10.1017/9781009402286.004



