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Abstract

It is shown that the complex semigroup algebra of a free monoid of rank at least two is x-primitive, where
* denotes the involution on the algebra induced by word-reversal on the monoid.
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Let A be an algebra over the complex field C that admits an involution *; thus * is a
mapping A — A such that foralla,b € Aand A € C

(@a+ by =a*+b*, (ab)*=b*a*, a™ =a, (ka)" =Ara*,

where A denotes the complex conjugate of A. A right module V for A is termed a
x-module if and only if it admits an inner product (| ) such that

{ua|vy = {ulva*y forallu,ve Vanda € A.

We say that A is x-primitive if and only if it has a faithful irreducible *-module.

The complex semigroup algebra of a semigroup S is denoted by C[S]. For a
nonempty set X, the free monoid and the free group on X are denoted, respectively,
by My and Gy. Note that C[Mx] is the free complex algebra-with-unity on X. It is
well known and easy to see that each of the algebras C{My] and C[G x] possesses an
involution. Let x denote the involution on C[My ] defined by

(ia,-y,-) = 2":&’3? for a; € C, y; € My,
i=1

i=]
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where (yT denotes the reverse of the word y;, and let T denote the involution on C{G ]
defined by

.
(Za,-g,-) = Zo?,-g,.“' for o, € C, g € Gy.
i=1 i=1

Now suppose that X has at least 2 elements. It was shown by Formanek [4] that
C[Gy] is primitive (that is, has a faithful irreducible right module); and his argument
can be adapted to also show that C[My] is primitive (see [8, Chapter 9, Ex. 17]).
Subsequently, explicit constructions for faithful irreducible right modules for C{My]
and C[Gx] were provided by McGregor ([7] and [6]); and alternative constructions,
without cardinality restrictions, appeared in [1} and [2]. As was pointed out by
Irving [5], the module constructed for C[G x] in [6] is in fact a t-module; thus C[G ]
is T-primitive. The purpose of the present paper is to show that C[My] is x-primitive.
This does not appear to follow from the construction in [7]. To obtain the result, we
adapt the procedure that establishes the T-primitivity of C[Gx].

The symbols N and Z denote, respectively, the sets of all positive integers and all
integers and |S| denotes the cardinal of a set §. Let X be a set with | X| > 2 and let
s, t be distinct elements of X. The identity of Gy (the empty word) is denoted by 1
and the set {x~' : x € X} by X~!. If g € Gx\{1} has reduced form g = g,g>-- - gn»
where g1, 82, ..., g, € X U X7, then we write

Ig):=n,  g:=g'g" g’
ghi=g, gi=gg g (=lifn=1).

We also take [(1) = 0. Next, we write

g has reduced form s*g,g, - - - g, for Ul

b= {ger keZ\{0},0<n <k, gie XUX"!

and E :={g € Gx : g ¢ L and g" € L}. As in [6], we use these sets to define subsets
LEUT, U, U, and Bof Gx x ZLby £ =L x {0}, & := E x {0},

Ut :={(w,n):wekE, whe Xandn e N},
U~ ={(w,—n):weE, w'e X "andn e N},

U :=U U ,and B := L UE U . We also define a subset % * of Z by
w* = {(t,3"):n e NU{O0}}.
In [6], % * is taken to be {(¢, 2") : n € N}, but this change does not affect the validity

of the construction.
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It may be verified that & has cardinal max{|X|, ®¢}. Let V be the complex vector
space consisting of all mappings % — C of finite support, so we may write a typical
element of V in the form 3_,_, «;e; forsome n € N, o; € Cand ¢; € . Again,
following [6], we define a right action of C[Gyx] on V. First, we define ex € V for
e € #and x € X by the rules below:

forall (w,0) €., (w,0x = (wx,0) e LUE,
w, et ifuelX,
forall (w,0) e &, (w,0x={{ W0 e ifw?=x"
(w=,0) e & otherwise,

9

—(w,k+1) ifx=sand(w, k) e U"*,

forall (w, k) e ., (w,k)x = .
(w,k+1)  otherwise.

It can be shown that for all x € X\{s} the mapping & — HB, e > ex isa
permutation. Thus we may extend it by linearity to an invertible mapping V — V,
v > vx. Although the rule ¢ > es for ¢ € & does not give a permutation of 4,
it also extends to an invertible mapping V — V, v — wvs. For all v € V we take
v1 := v. Next, we define vx~' € V forallv € V and all x € X by vx~! = w, where
wx = v. This enables us to define a right action of Gx on V and hence a right action
of ([Gxlon V.

The first lemma states that, with respect to this action, V is a T-module.

LEMMA 1 (Irving {5]). Let {|) be the inner product on V defined by

1 ife=f,

0 otherwise.

foralle, f € B, (elf)=

Then (ua|v) = (ulva®) forallu,v € V and a € C[Gy].

We now gather together some further properties of V for ease of reference. These
properties are straightforward consequences of the action on V and are mostly stated
in [6, Lemma 1].

LEMMA2. (i) ete U  forallee U*,et™ € U foralle € U,

(ii) forall e € B, there exists n € N such that et € % and et™ € U ™,

(iii) (s",0)g e Lforallr e Nandg € Gy withl(g) <r;

(iv) forallr e Nandg, g € Gy withl(g), I{g) <r, (s",0)g = (s", 0)g’ implies
g=8.

Next, as in the proof of [3, Theorem 1.1], we define a homomorphism 8 : C[Mx] —
C{Gx]l by 8(x) := x + x~! for all x € X. Any mapping X — C[Gx] extends
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uniquely to a monoid homomorphism My — (C[Gx], ) and hence to an algebra
homomorphism C[Myx] — C[Gx]. The lemma below lists some properties of 6.

LEMMA 3. (i) 0 is an injective homomorphism;

(ii) for each n € N, there exists a polynomial f, over Z of degree n such that, for
alx € X, x"+x7" = f,(0(x));

(iii) for all a € C[My], (6(a))" = 6(a*).

PROOF. (i) We may regard My as a submonoid of Gy. Let a € C[Mx]\{0}.
Consider an element w of supp(a) with /(w) maximal. Then w € supp(6(a)), which
shows that 8(a) # 0. Hence 6 is injective.

(ii) This can be established by induction. In fact, f, is closely related to the nth
Chebychev polynomial of the first type.

(iiiyForallx € X, (0(x))' =x +x"! =60(x) and so, forall y € My, 8(y))' =
6(Y). Hence, foralla € C[Mx], (8(a)) = 6(a*). 0

Denote the element (7, 1) of & by e; and define W C V by
W = {e,0(a) : a € C[My]}.

Then W is a nonzero subspace of V. Next, we define o : W x C[Mx] — W by
woa = wh(a) forw € W, a € C[My]. It is straightforward to see that o is a right
action of C[Mx] on W. We now show that W is faithful and irreducible under this
action.

LEMMA 4. W is a faithful module for C[My].

PROOF. Let a € C[Mx]\{0}. Then, by Lemma 3 (i), 8(a) € C[Gx]\{0}. Thus
6(a) = Z;’zlaig,- for some n € N, some distinct elements g; € Gy, and some
coefficients «;, not all zero. Take

re=max{l(g):i=1,...,n}+5
and write
wi=e (P +17HE +57).

Since (£2 + t72)(s" + s77) = 0(f2(¢) f,(s)), by Lemma 3 (ii), we have that w € W.
The action of r and of s on certain elements of 4 can be represented diagrammatically
as

t: s =D > L0 > (1,0) - 1,0 > (¢, 1) > (1,2) > -,
st =D L0 o 0~ @, 1) > ~(,2) > —(1,3) > ..
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Hence we have that

(1) w={3)+1,0Is +s7)
=4+, r+3) -0, —r+4+G,0+",0).

From the choice of r,

(2) +(t,r+3)g e, (' —r+4g e fori=12 ..., n
and

3) {7,0g:i=01L2,....nN{s",0g :i=1,2,...,n}=0.

Now, by Lemma 2 (iv), since the g; are distinct so are the elements (s", 0)g; for
i = 1,...,n. However, by Lemma 2 (iii), these lie in .. Hence, from (1)-(3),
wé(a) # 0, thatis, w oa #£ 0. Thus W is faithful. O

LEMMA 5. W is an irreducible module for C{Mx].

PROOF. Take (|} to be the inner product on V defined as in Lemma 1. Let
w € W\{0}. Then w = ¢,6(a) for some a € C{Mx] and so {¢,0(a)le0(a)) # 0.
However, by Lemma ! and Lemma 3 (iii),

(e10(a)lei8(a)) = (e1le\0(@)(B(a))’) = (e1|wb(a®)) = (e |w oa®)

and so the coefficient of ¢, in woa* is nonzero. Thus we may write woa* = Z,'.'zl a;e;
for some n € N, some distinct ¢; € & with ¢, = (¢, 1), and some nonzero coefficients
a fori=1,..., n

By Lemma 2 (i) and (ii), there exists p € N such that

et’ e, et Pe fori=1,...,n.

These 2n elements are distinct. Write (g;, k;) := e;t? fori = 1, ..., n. In particular,
(g1, k1) = (¢, D" = (t, p + 1). Let ] € N be defined by

[:=max{k; : 1 <i <nandg =t}

Choose m € N such that 3"~! > [ and take q := 3™ — [. Then

4) eit" ! = (giki+qg)=(g,3" —l+k) fori=1,...,n

Let j € {1,...,n}besuchthat g, =rand k; = [. Then, by (4), e;t"*? = (¢, 3") and
SO

(5) ettt —s) =2(t,3" + 1), e’ =57 =0.
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We next show that
(6 et’i(t—s5)=0, et!M@' —5s")Y=0 @ #j).

Leti e {l,...,n} withi # j. First, suppose that g; = t. Then k; < [ and so
3" — [ + k; < 3™. Further, since 3™ > [, we have that 3" — [ > 3™ ! 4+, and so
3" — 1+ k; > 3™! + 1. Since ;1?7 = (¢,3™ — | + k;), by (4), it follows that (6)
holds. Now suppose that g; # t. Then, from (4), we see that (6) holds in this case
also. Thus we have established (6). Since ¢;1=? € % ~,

7 et Pt ~s5)=0, et P9t '—s"H)=0 fori=1,...,n.
Write u :=t +t~! —s — s~'. Then, by (5)—(7),

(wWoa)(tPH +tP Nu=(woa )" (@t —s)+ (woa’)t" ™' —s7h)
+woa M Pt —s)+ (woa)t™ P — 57
=20;(t,3" + ).
Now write r ;= 3" — 1. Then (£, 3" + 1)(¢" + ") = (¢,2.3™) + (¢, 2) and so

3"+ D@+t =230 —s)+ £,2.3¢ " =57
+, D -+ @, D¢ =s7h
=2(t, 1) = 2e,.

Hence
®) Woa )’ + 177 Du(t’ + 1t u = 4aje.

Let b € C[Mx] be defined by b := f,,,(t)(t — 5) f,(t)(t — 5), where f,,, and f,
are the polynomials defined in Lemma 3 (ii). Then6(b) = (¢?*7 +¢ P NDu(t" +1t " u
and so, from (8), w o (a*h) = (w o0 a*)0(b) = 4aje,. Since a; # 0, it follows that
wo C[My] = W. Thus W is irreducible. O

The main result now follows.
THEOREM 6. Let Mx denote the free monoid on a set X with at least two elements
and let * denote the involution on C[My] induced by word-reversal. Then C[My] is

x-primitive.

PROOF. By Lemmas 4 and 5, W is a faithful irreducible module for C[Mx]. Now,
by Lemma 1, there exists an inner product {|) on V such that, for all u, v € V and
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all b € C[Gy], (ublv) = (u|vb™). Consider the restriction of this inner product to W.
Then, for all w,, w, € W and all a € C{My],

() 0 alwy) = (w8(@)|wy) = (wiwy(8(a))’)

= {w;|w,0(a*)), by Lemma 3 (iii),

(wylwy oa™).
Hence W is a x-module and so W is x-primitive. O

REMARK. The construction in [7] also shows that the Banach algebra /'(My) is
primitive for the case |X| > 2. The question of whether I!(My) is x-primitive in this
case remains open.
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