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Abstract

In this paper, we obtain a closed form for the covariance function of a general stationary
regenerative process. It is used to derive exact asymptotics of the covariance function of
stationary ON/OFF and workload processes, when ON and OFF periods are heavy-tailed
and mutually dependent. The case of a G/G/1/0 queueing system with heavy-tailed arrival
and/or service times is studied in detail.
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1. Introduction

Willinger et al. (1997) introduced the notion of ON/OFF processes to model data traffic in
communication networks. In their model, an idealized source alternates between two regimes:
an ON state, in which it produces data at a constant rate, and an OFF state, in which it produces
no data. It is usually assumed that consecutive ON and OFF durations are independent, having
generally different distributions. The corresponding ON/OFF times form an alternating renewal
process and the ON/OFF process A(t) is equal to 1 if t falls into an ON period and is equal to
0 if t is in an OFF period. The primary aim of Willinger et al. (1997) and subsequent works
on ON/OFF processes was the explanation and modelling of observed long-range dependence
and self-similarity in network traffic. By a long-range dependence (LRD) property with rate
α ∈ (0, 1), we mean a regular decay of the autocovariance of a stationary process X(t), t ∈ R,
i.e.

cov(X(0), X(t)) = L(t)t−α, t > 0, (1.1)

where L is a function which is slowly varying at infinity.
In this paper, we obtain the LRD property of the stationary ON/OFF process A(t) and the

forward recurrence time W(t) of the current busy period, in the case when the consecutive ON
and OFF periods, Xon and Y off respectively, are dependent. The random vectors (Xon

j , Y off
j ),

j ≥ 1, are assumed to be independent and identically distributed (i.i.d.). It turns out that in
this case, similarly to in the case of independent periods Xon and Y off (see Heath et al. (1998)),
the decay rate of the covariances of A(t) and W(t) is determined by the decay rate of tail
probabilities of ON and OFF periods (see Corollary 3.2, below). In Section 4 we specify the
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380 R. LEIPUS AND D. SURGAILIS

above results for the G/G/1/0 queueing system (where customers arriving when the system is
busy are rejected), in terms of interarrival and service length distributions.

The ON/OFF process (with independent or dependent periods Xon and Y off ) is a particular
case of a general class of regenerative processes or random tours; see e.g. Smith (1958).
The probability distribution of a random tour starting at 0 is completely determined by the
tour distribution ({Y(t), t ≥ 0}, Z), where Z is the length of tour (regeneration interval)
and {Y(t), t ≥ 0} is the tour process. In Lemma 2.1, below, we obtain a closed form of
the covariance function of a general stationary random tour {X(t), t ≥ 0} in terms of the
renewal function of regeneration points and the expectations G0(t) = E[Y(Z − t) 1{t<Z}]
(the ‘backward tour mean’), G1(t) = E[Y(t) 1{t<Z}] (the ‘forward tour mean’), and R(t) =
E[Y0(0)Y0(t) 1{t<Z0}], where ({Y0(t), t ≥ 0}, Z0) is the initial tour and 1{·} is the indicator
function. The expression for cov(X(0), X(t)) in Lemma 2.1, below, is similar to the equation
for the covariance of the ON/OFF process and can be analyzed by renewal methods developed
by Heath et al. (1998). For the processes A(t) and W(t) discussed above, the asymptotic
behaviour of the functions G0(t), G1(t), and R(t) as t → ∞ is relatively easy to investigate;
see Section 3. For regenerative processes, the asymptotic behaviour of G0(t), G1(t), and R(t)

may be rather difficult to investigate; Lemma 2.1, below, can be regarded as a preliminary step
in establishing the LRD property of such processes.

The LRD property (1.1) is also related to the concept of long-range count dependence
(LRcD), introduced by Daley and Vesilo (1997). The LRcD property is defined in terms
of asymptotic growth of the variance var(N(0, t]) of the number of counts of a stationary
point process in a (large) interval (0, t]. Daley and Vesilo (1997), (2000) obtained the LRcD
property and the Hurst indices for several classes of point processes (not necessarily renewal)
and queueing systems. Formally, a counting process is a particular case of the (integrated)
regenerative process with tour Y(t) = δ(t), where δ(·) is the δ-function. In Section 3 we obtain
the asymptotics of the covariance function of counts of ON and OFF times in a finite moving
interval I + t , from which the LRcD property in the renewal case easily follows.

2. A stationary regenerative process and its covariance function

Let {Y(t), t ≥ 0} be a real-valued measurable stochastic process and let Z > 0 be a random
variable defined on the same probability space. Let

({Yj (t), t ≥ 0}, Zj ), j = 1, 2, . . . , (2.1)

be i.i.d. copies of ({Y(t), t ≥ 0}, Z). Let ({Y0(t), t ≥ 0}, Z0) be independent of (2.1),
generally having a different distribution. Define T0 := Z0, Tn := ∑n

i=1 Zi , n ≥ 1, and
consider a stationary regenerative process with regeneration points T0, T1, . . . defined by the
following equality:

X(t) := Y0(t) 1{t<T0} +
∞∑

j=1

Yj (t − Tj−1) 1{Tj−1≤t<Tj }, t ≥ 0. (2.2)

Assume that µ = E[Z] < ∞. Then, from Franken et al. (1981, Theorem 1.5.4), for any
p ≥ 0 we have

E[|X(t)|p] = µ−1
∫ ∞

0
E[|Y(s)|p 1{Z>s}] ds = µ−1

∫ ∞

0
E[|Y(Z − u)|p 1{Z>u}] du. (2.3)
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Let F(x) := P[Z ≤ x]. Let F�n denote the nth Stieltjes convolution of F with itself (where
F�0(x) := 1{x≥0}) and let

U(t) := E[N [0, t] | T0 = 0] =
∞∑

n=0

F�n(t)

be the renewal function, where N [0, t] := ∑∞
j=0 1{0≤Tj ≤t} is the number of renewal points in

[0, t] in a pure renewal process having a point at 0. Next, for any t > 0, define

z(t) :=
∫ t

0
G0(x)G1(t − x) dx, (2.4)

R(t) := E[X(0)X(t) 1{t<T0}] = E[Y0(0)Y0(t) 1{t<T0}], (2.5)

where

G0(t) := E[Y(Z − t) 1{t<Z}], G1(t) := E[Y(t) 1{t<Z}]. (2.6)

In the sequel, we call G0(t) a backward tour mean and G1(t) a forward tour mean.
In the following lemma, we obtain the mean and covariance of the stationary regenerative

process in (2.2).

Lemma 2.1. Assume that

E[X2(0)] = µ−1
∫ ∞

0
E[Y2(s) 1{Z>s}] ds < ∞. (2.7)

Then, for any t ≥ 0, we have

E[X(t)] = µ−1
∫ ∞

0
G0(s) ds = µ−1

∫ ∞

0
G1(s) ds, (2.8)

cov(X(0), X(t)) = R(t) + µ−1
∫ t

0
z(t − s)U(ds) −

(
m

µ2

)
, (2.9)

where

m :=
∫ ∞

0
z(s) ds = (µ E[X(0)])2. (2.10)

Proof. Relations (2.7) and (2.3) imply that
∫ ∞

0 |Gi(s)|p ds < ∞, p = 1, 2, i = 0, 1; in
particular,

∫ ∞

0
(G1(s))2 ds =

∫ ∞

0
(E[Y(s) 1{s<Z}])2 ds ≤

∫ ∞

0
E[Y2(s) 1{s<Z}] ds = µ E[X2(0)].

Therefore, the functions z(t) and R(t) in (2.4) and (2.5) respectively, are well-defined and
bounded, i.e.

|z(t)| ≤ µ E[X2(0)], |R(t)| ≤ E[X2(0)], for all t ≥ 0.
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Relations (2.8) and (2.10) follow from (2.3) and the definitions in (2.4) and (2.6). Consider
(2.9). Using (2.4), (2.5), (2.6), and the independence of disjoint tours, we obtain

E[X(0)X(t)] = E[X(0)X(t) 1{t<T0}] +
∞∑
i=0

E[X(0)X(t) 1{Ti≤t<Ti+1}]

= R(t) +
∞∑

n=0

∫
{0<s0≤s1<t}

E[Y0(0) 1{T0∈ ds0} Fn�(ds1 − s0)Y(t − s1) 1{s1<t}]

= R(t) + µ−1
∫

{0<s0≤s1<t}
G0(s0) ds0U(ds1 − s0)G

1(t − s1)

= R(t) + µ−1
∫ t

0
z(t − s)U(ds),

which proves (2.9).

3. The LRD property of stationary ON/OFF processes and forward recurrence time
processes

Let (Xon, Y off), (X1, Y1), (X2, Y2), . . . be an i.i.d. sequence of random vectors taking values
in (0, ∞)2 and with arbitrarily dependent components, and let

Z := Xon + Y off , Zi := Xi + Yi, i ≥ 1. (3.1)

We shall assume that µ = E[Z] = µon+µoff < ∞, where µon := E[Xon] and µoff := E[Y off ].
Consider a stationary version of the alternating point process

0 ≤ Xon
0 < T0 < T0 + X1 < T1 < T1 + X2 < · · · , (3.2)

where

T0 := Xon
0 + Y off

0 , Tn := T0 +
n∑

i=1

(Xi + Yi), n ≥ 1.

Intervals [0, Xon
0 ), [Ti, Ti + Xi+1), i = 0, 1, . . . , will be called ON intervals and intervals

[0 = Xon
0 , T0), [Ti +Xi+i , Ti+1), i = 0, 1, . . . , will be called OFF intervals. The initial time 0

falls into an ON or OFF interval depending on whether Xon
0 > 0 or Xon

0 = 0 respectively.
With the alternating point process in (3.2) we associate two stationary processes, the ON/OFF

process {A(t), t ≥ 0} and the forward recurrence time of the busy period {W(t), t ≥ 0} as
follows:

A(t) := 1{Xon
0 >t} +

∞∑
n=0

1{Tn≤t<Tn+Xn+1},

W(t) := (Xon
0 − t)+ +

∞∑
n=0

(Tn + Xn+1 − t)+ 1{Tn≤t<Tn+1}, (3.3)

where a+ = max(a, 0). In the case of the G/G/1/0 queue, the process W(t) represents the
current workload in the system; see Section 4. In the sequel, we call W(t) in (3.3) a workload
process. It is clear from the definition that the processes A(t) and W(t) are regenerative in the
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sense of (2.2), with the tour duration Z given in (3.1), and the corresponding tour processes
given by

YA(t) := 1{t<Xon}, YW(t) := (Xon − t)+.

By stationarity, we have P[Xon
0 ∈ dx] = µ−1 P[Xon > x] dx, x > 0, therefore

E[A(t)] = µ−1
∫ ∞

0
P[Xon > s] ds = µon

µ
,

E[W(t)] = µ−1
∫ ∞

0
E[(Xon − s)+] ds = E[(Xon)2]

2µ
.

Moreover,

G0
A(t) = P[Y off < t ≤ Xon + Y off ] = Foff(t) − F(t),

G1
A(t) = P[Xon > t] = Fon(t),

RA(t) = P[Xon
0 > t],

G0
W(t) = E[(t − Y off)+ 1{Xon+Y off>t}], (3.4)

G1
W(t) = E[(Xon − t)+], (3.5)

RW(t) = µ−1
∫ ∞

t

x(x − t)Fon(x) dx. (3.6)

By definition and from (2.3), we have

∫ ∞

0
G0

W(t) dt =
∫ ∞

0
G1

W(t) dt = µ E[W(0)].

Next, for any t > 0, define

zA(t) :=
∫ t

0
Foff(x)Fon(t − x) dx,

zW (t) :=
∫ t

0
G0

W(x)G1
W(t − x) dx. (3.7)

Corollary 3.1. (i) For any t ≥ 0, we have

cov(A(0), A(t)) = µoffµon

µ2 − 1

µ

∫ t

0
zA(t − s)U(ds). (3.8)

(ii) Assume in addition that E[(Xon)3] < ∞. Then, for any t ≥ 0, we have

cov(W(0), W(t)) = RW(t) + 1

µ

∫ t

0
zW (t − s)U(ds) − (E[W(0)])2.

Note that (3.8), the equation for the covariance of A(t), is the same as in the case of
independent ON and OFF periods; see Heath et al. (1998, Equation (2.7)). Using the results of
Heath et al. (1998), we therefore obtain the following corollary.
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Corollary 3.2. Let

Fon(t) = t−αonLon(t), (3.9)

Foff(t) = o(Fon(t)), t → ∞, (3.10)

where 1 < αon < 2 and where Lon is a function, slowly varying at infinity. Assume, moreover,
that there exists an n ≥ 1 such that F�n is nonsingular, where we recall that F is the distribution
function of Z = Xon + Y off . Then we obtain

cov(A(0), A(t)) ∼ µ2
off

(αon − 1)µ3 t−(αon−1)Lon(t), t → ∞. (3.11)

Proof. Note that (3.9) and (3.10) imply

F(t) ∼ Lon(t)t
−αon , (3.12)

zA(t) ∼ µoffLon(t)t
−αon , (3.13)

where (3.12) is proved in Lemma 3.1, below. Relation (3.13) follows from (3.12), (3.9), (3.10),
and Heath et al. (1998, Lemma 4.2). Finally, (3.11) follows from (3.8), (3.13), and the argument
in Heath et al. (1998, proof of Theorem 4.3).

Consider now the LRcD property of the introduced ON/OFF process. Let I ⊂ (0, ∞) be a
(fixed) interval of a finite Lebesgue measure |I |. Introduce the counting processes

Non(I ) =
∞∑

n=0

1{Tn∈I },

Noff(I ) = 1{Xon
0 ∈I } +

∞∑
n=0

1{Tn+Xn+1∈I } .

Note that the processes Non(I + t) and Noff(I + t), t ≥ 0, are both stationary and

E[Non(I )] = E[Noff(I )]
= |I |

µ
,

cov(Non(I ), Non(I + t)) =
∫

I

∫
I+t

P[Non(dx) = 1, Non(dy) = 1] −
( |I |

µ

)2

= µ−1
∫

I

(U(I + t − x) − µ−1|I |) dx, (3.14)

cov(Noff(I ), Noff(I + t)) =
∫

I

∫
I+t

P[Noff(dx) = 1, Noff(dy) = 1] −
( |I |

µ

)2

= µ−1
∫

I

((Foff � U � Fon)(I + t − x) − µ−1|I |) dx, (3.15)

provided that I ∩ (I + t) = ∅.
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Corollary 3.3. Assume the same conditions as in Corollary 3.2. Then, as t → ∞, we obtain

cov(Non(I ), Non(I + t))

cov(Noff(I ), Noff(I + t))

}
∼ |I |2

(αon − 1)µ3 t−(αon−1)Lon(t), (3.16)

var(Non[0, t])
var(Noff [0, t])

}
∼ 2

(αon − 1)(2 − αon)(3 − αon)µ3 t3−αonLon(t). (3.17)

Proof. Let F2(x) := µ−1
∫ ∞
x

F (y) dy. From Heath et al. (1998, Equation (3.12)) and
Lemma 3.1, below,

U(I + t) − µ−1|I | ∼ µ−1
∫

I+t

F2(x) dx ∼ |I |
(αon − 1)µ2 t−(αon−1)Lon(t), (3.18)

implying the first asymptotic relation in (3.16) by (3.14) and by the dominated convergence
theorem. The second relation in (3.16) follows analogously from (3.15) and

(Foff � U � Fon)(I + t) − µ−1|I | ∼ |I |
(αon − 1)µ2 t−(αon−1)Lon(t). (3.19)

Relation (3.19) follows from Heath et al. (1998, Theorem 3.1(ii)), the fact that
∫ ∞

0 F(y) dy =∫ ∞
0 Fon � Foff(y) dy = µ, and (3.18). Relation (3.17) is immediate from (3.16) and αon ∈

(1, 2).

Remark 3.1. Note that the covariance cov(A(0), A(t)) = cov(1 − A(0), 1 − A(t)) as well as
the covariances in (3.14) and (3.15) are symmetric with respect to the change of Fon by Foff
and vice versa. Accordingly, Corollaries 3.2 and 3.3 remain valid, with obvious changes, if
conditions on ON and OFF intervals are exchanged.

Lemma 3.1. Let X, Y ≥ 0 be arbitrarily dependent random variables such that

(i) P[X > t] = L(t)t−γ ,

(ii) P[Y > t] = o(P[X > t]) as t → ∞,

where γ > 0 and L is slowly varying at infinity. Let Z := X + Y , then

P[Z > t] ∼ L(t)t−γ .

Proof. Let 0 < ε < 1. Then we have

P[X > t] ≤ P[X + Y > t]
≤ P[Y > εt] + P[Y ≤ εt, X + Y > t]
≤ P[Y > εt] + P[X > (1 − ε)t].

Dividing the above inequality by P[X > t], we obtain

1 ≤ lim inf
t→∞

P[Z > t]
L(t)t−γ

≤ lim sup
t→∞

P[Z > t]
L(t)t−γ

≤ (1 − ε)−γ , (3.20)

where we used the following fact:

lim sup
t→∞

P[Y > εt]
L(t)t−γ

≤ lim sup
t→∞

P[Y > εt]
P[X > εt] lim sup

t→∞
L(εt)(εt)−γ

L(t)t−γ
= 0
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(by assumptions (i) and (ii)), while lim supt→∞ L((1−ε)t)((1−ε)t)−γ /L(t)t−γ = (1−ε)−γ .
As ε > 0 is arbitrary in (3.20), this completes the proof.

Next, we turn to the asymptotics of cov(W(0), W(t)). According to Corollary 3.1, this can
be written as

cov(W(0), W(t))) = RW(t) − µ−1h(t), (3.21)

where the function RW(t) is defined in (3.6) and h(t) := (m/µ) − ∫ t

0 zW (t − x)U(dx), with
zW (t) given in (3.7). The next corollary encompasses the following two cases:

(i) h(t) = o(RW(t)),

(ii) RW(t) = o(h(t)).

In case (i), the asymptotics of cov(W(0), W(t)) coincides with that of RW(t), and in case (ii),
it coincides with the asymptotics of −µ−1h(t).

Corollary 3.4. Assume that the following conditions hold: E[(Xon)3] < ∞, F�n is nonsingular
for some n ≥ 1, and

Foff(t) = t−αoff Loff(t), (3.22)

G0
W(t) = o(Foff(t)), t → ∞, (3.23)

where 1 < αoff < 2 and Loff is slowly varying at infinity.

(i) Let
Fon(t) = t−αonLon(t), (3.24)

where 3 < αon < αoff + 2 and Lon is slowly varying at infinity. Then

cov(W(0), W(t)) ∼ RW(t) ∼ 1

µ(αon − 3)(αon − 2)
t−(αon−3)Lon(t). (3.25)

(ii) Let
Fon(t) = o(t−2Foff(t)). (3.26)

Then

cov(W(0), W(t)) ∼ −µ−1h(t) ∼ m

(αoff − 1)µ3 t−(αoff−1)Loff(t). (3.27)

Proof. (i) Note that (3.24) implies

RW(t) = 1

µ

∫ ∞

t

x(x − t)x−αonLon(x) dx ∼ 1

µ(αon − 3)(αon − 2)
t−(αon−3)Lon(t).

Hence, by (3.21), (3.25) reduces to

h(t) = o(t−(αon−3)Lon(t)). (3.28)

Let us prove that E[(Xon)3] < ∞ and that (3.22) and (3.23) (where 1 < αoff < 2) imply

zW (t) = o(F (t)) = o(Loff(t)t
−αoff ), t → ∞. (3.29)
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Indeed, by (3.5) and the Chebyshev inequality, we have G1
W(t) ≤ t−2 E[(Xon)3]. Using this

fact and (3.23), we obtain

zW (t) =
∫ t/2

0
G0

W(x)G1
W(t − x) dx +

∫ t

t/2
G0

W(x)G1
W(t − x) dx

≤ C

(
t

2

)−2 ∫ ∞

0
G0

W(x) dx + o(Loff(t)t
−αoff ) sup

t/2≤x≤t

Loff(x)x−αoff

Loff(t)t−αoff

∫ ∞

0
G1

W(x) dx

= O(t−2) + o(Loff(t)t
−αoff )

= o(Loff(t)t
−αoff ),

since αoff < 2. This proves (3.29). Using (3.29) and Heath et al. (1998, Theorem 3.1(iii)), we
obtain

h(t) ∼ − m

(αoff − 1)µ2 t−(αoff−1)Loff(t), t → ∞, (3.30)

which implies (3.28), since αon < αoff + 2.

(ii) Equation (3.27) follows from (3.21), (3.30), and RW(t) = o(h(t)); in other words, it
follows from

RW(t) = µ−1
∫ ∞

t

x(x − t)Fon(x) dx = o(t−(αoff−1)Loff(t)).

The last fact follows from (3.26), (3.22), and
∫ ∞
t

x(x − t)x−2Foff(x) dx = O(t1−αoff Loff(t)),
which completes the proof.

Corollary 3.5. Assume that the following conditions hold: Fon(t) = t−αonLon(t), Foff(t) =
t−αoff Loff(t), Fn� is nonsingular for some n ≥ 1, and (3.23), where 3 < αon < 4, 1 < αoff < 2,
and αon 
= αoff +2. Then, W(t) in (3.3) has the LRD property with rate min(αon −3, αoff −1) ∈
(0, 1).

Note that all the conditions of Corollaries 3.2–3.5, with the exception of (3.23) and the
obviously mild condition that F�n is nonsingular for some n ≥ 0, are formulated in terms of
marginal distributions of ON and OFF periods. We show below that assumption (3.23) is also
not very restrictive, in the sense that it holds in the case of independent ON and OFF periods.

Proposition 3.1. Assume that Xon and Y off are independent, E[(Xon)3] < ∞, and (3.22) is
satisfied, with 1 < αoff < 2. Then (3.23) holds.

Proof. Decompose G0
W(t) = J1(t) + J2(t), where

J1(t) :=
∫ t (1−ε)

0
(t − u)Fon(t − u)Foff(du), J2(t) :=

∫ t

t (1−ε)

(t − u)Fon(t − u)Foff(du).

Using tFon(t) ≤ Ct−2, for all t > 0, we obtain, for each ε > 0,

J1(t) ≤ C

∫ t (1−ε)

0
(t − u)−2Foff(du) ≤ C(tε)−2,
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where the constant C does not depend on t and ε. On the other hand, using (3.22), we have

J2(t) ≤ C

∫ t

t (1−ε)

Foff(du)

= C
Loff(t)

(t (1 − ε))αoff

(
Loff(t (1 − ε))

Loff(t))
− 1

)
+ CLoff(t)

(
1

(t (1 − ε))αoff
− 1

tαoff

)

=: J3(t) + J4(t).

Here, the term J4(t) = O(εLoff(t)t
−αoff ); in other words, the ratio J4(t)/(Loff(t)t

−αoff ) can
be made arbitrarily small uniformly in t ≥ 1 by taking ε > 0 to be small enough. Clearly,
Ji(t) = o(Loff(t)t

−αoff ), i = 1, 3, for any ε > 0 fixed. This proves (3.23).

4. Application to the G/G/1/0 queue

Consider a G/G/1/0 queueing system, with general interarrival distribution Fτ (x) =
P[τ ≤ x] and general service distribution Fσ (x) = P[σ ≤ x], x ∈ (0, ∞). We assume
that µσ := E[σ ] < ∞ and µτ := E[τ ] < ∞. The interarrival and service times τi , σi ,
i = 1, 2, . . . , are all independent, and customers arriving when the system is busy are rejected.
The number of customers in the system at time t , A(t), is equal to 1 or 0. As noted in Section 1,
A(t) is a particular case of the ON/OFF process with generally dependent ON and OFF intervals
whose joint distribution is given by

P[Xon ∈ dx, Y off ∈ dy] :=
∞∑
i=1

P[σ1 ∈ dx, τ1 + · · · + τi−1 ≤ x, τ1 + · · · + τi ∈ dy + x]

= P[σ ∈ dx]
∫ x

0

∞∑
i=1

P[τ1 + · · · + τi−1 ∈ du, τi ∈ dy + x − u]

= Fσ (dx)

∫ x

0
H(du)Fτ (x − u + dy), (4.1)

where

H(t) :=
∞∑

n=0

F�n
τ (t)

is the renewal function of the arrival process. A stationary version of the corresponding G/G/1/0
queue and the processes A(t), W(t), t ≥ 0, can be constructed as in Borovkov (1976, Chapter 7)
or Baccelli and Brémaud (1994, Chapter 2.5).

We obtain the following results about the asymptotics of the covariances of the processes
A(t) and W(t) in the G/G/1/0 queue with heavy tailed arrival and/or service times.

Proposition 4.1. Assume that F�n is nonsingular for some n ≥ 1, where F(x) = P[Xon +
Y off ≤ x].

(i) Let Fτ (x) = Lτ (x)x−α and Fσ (x) = o(Fτ (x)), where Lτ is slowly varying at infinity
and 1 < α < 2. Then, as t → ∞, we have

cov(A(0), A(t)) ∼ µ2
σ

(α − 1)µ2µτ

t−(α−1)Lτ (t),

where µ := µσ + µoff and µoff is given in (4.5).
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(ii) Let Fσ (x) = Lσ (x)x−β and Fτ (x) = o(Fσ (x)), where Lσ is slowly varying at infinity
and 1 < β < 2. Then, as t → ∞, we have

cov(A(0), A(t)) ∼ (µ − µσ )2

(β − 1)µ3 t−(β−1)Lσ (t).

Proposition 4.1 is a direct consequence of Corollary 3.2 and Lemma 4.1, below. Similarly,
Corollary 3.4 and Lemmas 4.1–4.2, below, yield the following result.

Proposition 4.2. Assume that the following conditions hold: E[σ 3] < ∞, F�n is nonsingular
for some n ≥ 1, and Fτ (x) = x−αLτ (x), where 1 < α < 2 and Lτ is slowly varying at
infinity.

(i) Let Fσ (x) = x−βLσ (x), where 3 < β < α+2 and Lσ is slowly varying at infinity. Then

cov(W(0), W(t)) ∼ 1

µ(β − 3)(β − 2)
t−(β−3)Lσ (t).

(ii) Let Fσ (x) = o(x−2Fτ (x)). Then

cov(W(0), W(t)) ∼ m

(α − 1)µ3 t−(α−1)Lτ (t),

where m := (E[σ 2])2/4 and µ is the same as in Proposition 4.1.

The following lemma is a straightforward consequence of (4.1).

Lemma 4.1. We have

Fon(x) = Fσ (x), (4.2)

µon = µσ , (4.3)

Foff(x) =
∫ ∞

0
H(du)

∫ ∞

u

Fσ (dw)Fτ (w − u + x), (4.4)

µoff = µτ

∫ ∞

0
Fσ (u)H(du) − µσ , (4.5)

Foff(x) ≤ qFτ (x), (4.6)

where q := ∫ ∞
0 Fσ (u)H(du) = (µσ + µoff)/µτ . If, in addition, Fτ is long-tailed, i.e. for

every z ≥ 0

lim
x→∞

Fτ (x + z)

Fτ (x)
= 1, (4.7)

then
Foff(x) ∼ qFτ (x), x → ∞. (4.8)

Proof. Note that the renewal equation H(x) = 1 + ∫ t

0 Fτ (x − u)H(du) implies that, for
every x ≥ 0,

∫ x

0
Fτ (x − u)H(du) = 1,

∫ x

0

(∫ x−u

0
Fτ (z) dz

)
H(du) = x. (4.9)
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Relations (4.2), (4.3), and (4.4) are immediate by (4.1) and (4.9). Consider (4.5). Using (4.4)
and (4.1), we have

µoff =
∫ ∞

0
H(du)

∫ ∞

u

Fσ (dw)

∫ ∞

w−u

Fτ (z) dz

= µτ

∫ ∞

0
Fσ (dw)

∫ w

0
H(du) −

∫ ∞

0
Fσ (dw)

∫ w

0
H(du)

∫ w−u

0
Fτ (z) dz.

From the second equality in (4.9), (4.5) therefore follows.
Next, using (4.4), (4.5), (4.7), and the dominated convergence theorem, we obtain

Foff(x) = Fτ (x)

∫ ∞

0

{∫ ∞

0

Fτ (x + z)

Fτ (x)
Fσ (u + dz)

}
H(du) (4.10)

∼ Fτ (x)

∫ ∞

0
Fσ (u)H(du)

= qFτ (x),

which proves (4.8). Relation (4.6) is immediate from (4.10) and Fτ (x +z) ≤ Fτ (x), x, z ≥ 0,
and does not require (4.7). Therefore, the proof is complete.

Lemma 4.2. Assume that E[σ 3] < ∞ and Fτ (x) = L(x)x−α , where 1 < α < 2 and L is
slowly varying at infinity. Let G0

W(t) be defined as in (3.4), from the joint distribution in (4.1).
Then G0

W(t) = o(Fτ (t)).

Proof. From (4.1), we have

G0
W(t) =

∫ t

0
(t − u)

∫ ∞

t−u

P[Xon ∈ dx, Y off ∈ du]

=
∫ t

0
(t − u)

∫ ∞

t−u

Fσ (dw)

∫ w

0
H(dz)Fτ (w − z + du)

= Q1(t) + Q2(t),

where

Q1(t) :=
∫ t

0
Fσ (dw)

∫ w

0
H(dz)

∫ w

0
xFτ (w − z + t − dx),

Q2(t) :=
∫ ∞

t

Fσ (dw)

∫ w

0
H(dz)

∫ t

0
xFτ (w − z + t − dx).

The second term can be easily evaluated as follows using integration by parts, (4.9), and the
Chebyshev inequality:

Q2(t) =
∫ ∞

t

Fσ (dw)

∫ w

0
H(dz)

(
tFτ (w − z) −

∫ t

0
Fτ (w − z + t − x) dx

)

≤ t

∫ ∞

t

Fσ (dw)

∫ w

0
Fτ (w − z)H(dz)

= tFσ (t)

≤ t−2 E[σ 3]
= o(L(t)t−α). (4.11)
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To evaluate Q1(t), we split it up, i.e.

Q1(t) =
∫ t∗

0
Fσ (dw) · · · +

∫ t

t∗
Fσ (dw) · · · =: Q11(t) + Q12(t),

where t∗ = tγ with (1 + α)/3 < γ < 1. Similarly, as above, using integration by parts and
(4.9), we have

Q12(t) =
∫ t

t∗
Fσ (dw)

∫ w

0
H(dz)

(
wFτ (t − z) −

∫ w

0
Fτ (w − z + t − x) dx

)

≤
∫ t

t∗
wFσ (dw)

∫ w

0
Fτ (t − z)H(dz)

≤
∫ t

t∗
wFσ (dw)

∫ w

0
Fτ (w − z)H(dz)

=
∫ t

t∗
wFσ (dw)

≤ t t−3∗ E[σ 3]
= o(L(t)t−α). (4.12)

Consider the main term, Q11(t). Integrating by parts, we have

Q11(t) =
∫ t∗

0
Fσ (dw)

∫ w

0
H(dz)

∫ w

0
xFτ (w − z + t − dx)

=
∫ t∗

0
Fσ (dw)

∫ w

0
H(dz)

(
wFτ (t − z) −

∫ w

0
Fτ (w − z + t − x) dx

)

= P1(t) − P2(t),

where

P1(t) :=
∫ t∗

0
wFσ (dw)

∫ w

0
H(dz)(Fτ (t − z) − Fτ (t)),

P2(t) :=
∫ t∗

0
Fσ (dw)

∫ w

0
H(dz)

∫ w

0
(Fτ (w − z + t − x) − Fτ (t)) dx.

In view of (4.11) and (4.12), it remains to show that Pi(t) = o(L(t)t−α), i = 1, 2. We show
that this relation holds for P2(t); the proof for P1(t) is analogous. To that end, write

P2(t) = Fτ (t)(p
′(t) + p′′(t)),

where

p′(t) :=
∫ t∗

0
Fσ (dw)

∫ w

0
H(dz)

∫ w

0

(
w − z + t − x

t

)−α(
L(w − z + t − x)

L(t)
− 1

)
dx,

p′′(t) :=
∫ t∗

0
Fσ (dw)

∫ w

0
H(dz)

∫ w

0

((
1 + w − z − x

t

)−α

− 1

)
dx.
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Using the dominated convergence theorem, a well-known property of slowly varying functions,
and H(w) = O(w), we see that

p′(t) = O

(
δt

∫ t∗

0
Fσ (dw)

∫ w

0
wH(dz)

)

= O

(
δt

∫ ∞

0
wH(w)Fσ (dw)

)

= O(δt )

= o(1),

where δt → 0 as t → 0. Finally,

|p′′(t)| ≤ Ct−1
∫ t∗

0
Fσ (dw)

∫ w

0
H(dz)

∫ w

0
(w − z − x) dx

≤ Ct−1
∫ t∗

0
wH(w)Fσ (dw)

= O(t−1)

= o(1).

This completes the proof.
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