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Abstract

A multitype urn scheme with random replacements is considered. Each time a ball is
picked, another ball is added, and its type is chosen according to the transition probabilities
of a reducible Markov chain. The vector of frequencies is shown to converge almost surely
to a random element of the set of stationary measures of the Markov chain. Its probability
distribution is characterized as the solution to a fixed point problem. It is proved to be
Dirichlet in the particular case of a single transient state to which no return is possible.
This is no longer the case, however, as soon as returns to transient states are allowed.
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1. Introduction

In the vast literature devoted to urn models (see [12] as a general reference), a good number
of recent papers have been devoted to random replacement policies. Each time a ball is drawn,
the types of ball which are added or removed are random variables, whose distribution depends
on the type of the ball that has been picked; see, for instance, [1], [2], [3], [10], and [11]. Strong
convergence results [9], [10], as well as functional central limit theorems [2], [8], [11], are
now available for a vast range of models. However, in all these references, some irreducibility
hypothesis is made to ensure that there is only one possible limit for the frequency vector. Our
aim here is to answer the natural question: what happens when there is more than one possible
limit for the frequency vector?

We study the following simplest possible model: balls are added one by one, where the
type of ball added depends only on the type of ball that has been drawn. We believe that our
results can be extended to more general schemes, such as those of [11] or [3]. The ball types
are numbered from 1 to d . If a ball of type i has been drawn, then a ball of type j is added with
probability pi,j . The matrix P = (pi,j ) is a (reducible) stochastic matrix on {1, . . . , d}. As
expected, the distribution of types converges almost surely to a stationary distribution for the
matrix P (see Theorem 2.1, below). The proof is based on the classical stochastic algorithm
technique [3], [10], [13] and uses the results of [5].
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The limit of the frequency vector is a random element of the set of stationary measures,
hence, it is a random convex combination of the measures corresponding to irreducible recurrent
classes. The question arises of how to characterize its probability law. Theorem 3.1, below,
first reduces the problem to computing the d cases, where initially a single ball is present,
then characterizes those d distributions as the solution to a fixed point problem. The classical
Eggenberger–Pólya model [7] can be seen as a particular case of ours: if P is the identity
matrix, it is well known that the vector of frequencies converges to a Dirichlet random vector.
In our case, it could seem natural to expect a Dirichlet law for the limit stationary distribution;
this would be coherent with the numerous connections between Dirichlet distributions and urn
models (see, for instance, [12] and [15]). We prove that it is actually the case if no return to
a transient state is allowed; see Proposition 3.1, below. We also show, in Proposition 3.2, that
the asymptotic distribution is not Dirichlet if returns to transient states are allowed.

The convergence result is stated and proved in Section 2, and the probability distribution of
the limit is studied in Section 3.

2. Almost sure convergence

In this section the model is described then the strong convergence result is stated and proved.
Recall that a transition matrixP = (pi,j ) on the set of types {1, . . . , d} is given. Initially, the

number of balls in the urn is n0 and the distribution of types isX0 (deterministic or not). At each
instant n > 0 a ball is added to the urn; hence, the number of balls in the urn at time n is n0 +n.
The type of ball added depends on the type of ball drawn with uniform probability. If a ball of
type i has been drawn, the probability of adding a ball of type j is pi,j . We denote by Xn the
distribution of types in the urn at time n: Xn is a d-dimensional vector whose ith coordinate is
the frequency of type i after the nth addition. It is a random element of the (d−1)-dimensional
simplex, denoted by �d = {(x1, . . . , xd) ∈ [0, 1]d , x1 + · · · + xd = 1}.

We will prove that the frequency distributions, Xn, converge almost surely to a stationary
distribution of P . We denote by S their set, i.e. the set of (line) vectors x in �d such that
xP = x.

Theorem 2.1. The sequence of random vectors (Xn) converges almost surely to an S-valued
random vector.

2.1. Proof of Theorem 2.1

The proof of Theorem 2.1 is based on the classical technique that consists of expressing
(Xn) as a stochastic algorithm; see [6] and [13] as general references. This technique has been
used several times for proving strong convergence results in urn schemes by, for instance, [3]
and [10].

For j = 1, . . . , d, let ej be the d-dimensional vector with a 1 in the j th coordinate and 0s
elsewhere. For x ∈ �d , let ε(x) denote the probability distribution on {e1, . . . , ed} such that

ε(x)(ej ) =
d∑
i=1

xipi,j .

We can write

Xn+1 = n+ n0

n+ n0 + 1
Xn + 1

n+ n0 + 1
εn(Xn), (2.1)

where the conditional distribution of εn(Xn), knowing X0 = x0, . . . , Xn = xn, is ε(xn).
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Denote by ηn the following random vector:

ηn = εn(Xn)−XnP.

The sequence (ηn) is adapted to the filtration Fn generated by (Xn) and

E[ηn+1 | Fn] = 0.

Let us rewrite (2.1) as

Xn+1 = Xn + 1

n0 + n+ 1
(Xn(P − I )+ ηn). (2.2)

Hence, Xn can be viewed as a Robbins–Monro algorithm. We will use the results of [5].
Equation (2.2) is the same as equation (2) of [5]:

Xn+1 = Xn + γnh(Xn)+ γnηn,

with

h(X) = X(P − I ), γn = 1

n+ n0 + 1
, and ηn = εn(Xn)−XnP.

The main assumption in [5] is the notion of an A-stable algorithm.

Definition 2.1. ([5, Definition 1].) We say that the algorithm is A-stable (in our particular
case) if

• it remains in a compact set, and

• the series
∑
γnηn converges almost surely.

The main steps of the proof of Theorem 2.1 are then the following.

Step 1: (Xn) is an A-stable algorithm.

Step 2: The distance fromXn to the set S of stationary measures for P tends to 0 almost surely.

Step 3: The sequence (Xn) converges almost surely; hence, its limit is an element of S.

As Xn remains in a compact subset of R
d (the simplex of probability vectors), step 1 is

proved as soon as we can show that
∑
n≥0 γnηn < ∞. Since the random variables γnηn

are the increments of a martingale, which is bounded in L2, this result is true. Hence, it
is an A-stable algorithm. A classical method to study this type of stochastic algorithm is to
compare its trajectories to the flow of an ordinary differential equation, which in our case is
y′ = h(y) = y(P − I ). It is linear, and the nonnull eigenvalues of its matrix P − I all have a
negative real part (since P is a stochastic matrix). Therefore, if x ∈ R

d and yx is the solution
such that yx(0) = x, then limt→∞ yx(t) exists.

Step 2 is rather standard and can be proved by using, for instance, Theorem 2.2 of [16,
p. 2153]: the limiting set of (Xn) is an internally chain recurrent set for the flow of the ordinary
differential equation y′ = h(y); hence, it is included in S. Since (Xn) takes its values in a
compact set, and all possible limits of its subsequences are in S, the distance fromXn to S must
tend to 0.

Step 3 is an application of Theorem 2 of [5], which we state as Theorem 2.2, below.
If x ∈ R

d and H ⊂ R
d we set d(x,H) = inf{‖y − x‖, y ∈ H }, where ‖.‖ denotes the

Euclidean norm on R
d .
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Theorem 2.2. ([5, Theorem 2].) We assume that the algorithm is A-stable. We say that S
satisfies assumption (B) if S is a closed set which has a neighborhood N where h is uniformly
Lipschitz, and there exist two uniformly Lipschitz functions π and W , defined on N , taking
values in R

d and R, respectively, and such that

(a) |π(y(t)) − π(y(s))| ≤ |W(y(t)) − W(y(s))| for any solution (y(u), s ≤ u ≤ t) of
y′ = h(y) on N ,

(b) π(x) = x if x ∈ S.

If S satisfies assumption (B), if d(Xn, S) tends to 0, and if

∞∑
n=0

γn

∣∣∣∣∣
∞∑
i=n

γiηi

∣∣∣∣∣ < +∞ ,

then (Xn) converges almost surely to some point of S.

Let us prove first that S satisfies condition (B) of [5]. Here we will take N = R
d and

π(x) = limt→∞ yx(t). From the same observation on eigenvalues of P − I as in step 2, it
follows that π is Lipschitz. If (yx(u), s ≤ u ≤ t) is any solution of y′ = h(y), then by the
definition of π , π(yx(s)) = π(yx(t)) and Theorem 2.2(a) holds with W = 0. Of course, if
x ∈ S then h(x) = 0 and yx is constant and equal to x. Thus, x ∈ S implies that π(x) = x;
hence, Theorem 2.2(b) holds.

It remains to prove that
∞∑
n=0

γn

∣∣∣∣
∞∑
i=n

γiηi

∣∣∣∣ < ∞.

Let us write

E

[ ∞∑
n=0

γn

∣∣∣∣
∞∑
i=n

γiηi

∣∣∣∣
]

=
∞∑
n=0

γn E

[∣∣∣∣
∞∑
i=n

γiηi

∣∣∣∣
]

≤
∞∑
n=0

γn E

[( ∞∑
i=n

γiηi

)2]1/2

=
∞∑
n=0

γn

[ ∞∑
i=n

γ 2
i

]1/2

< ∞.

Hence, step 3 is proved. This completes the proof.

3. Asymptotic distribution

Theorem 2.1 proves that the distribution of types in the urn converges to a random element of
the set S of stationary distributions for the transition matrix P . In this section we characterize
the probability law of that random element.

Assume that the recurrent classes for the transition matrix P are numbered from 1 to k. For
c = 1, . . . , k, denote by πc the unique element of S whose coordinates are positive on class
number c and null elsewhere. Any element of S is a convex combination of the πcs. We will
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denote by σ the one to one correspondence between S and �k defined by

σ−1(α) =
k∑
c=1

αcπc for all α = (α1, . . . , αk) ∈ �k.

Our goal is to describe the distribution of σ(limXn), which depends on the initial state of the
urn. We will generically denote byAXO the�k-valued random variable σ(limXn) if the initial
state of the urn is the random distribution X0. We also set

• Ax0 if the initial state of the urn is the deterministic distribution x0,

• A(i) if the urn initially contains a single ball of type i.

Observe that the distribution of X0 is discrete. Obviously,

AX0 d=
∑
x0

Ax0 1{X0=x0},

where X0 and all the Ax0 s are mutually independent.
Theorem 3.1, below, reduces the distribution of Ax0 to those of the A(i)s, then expresses the

A(i)s as a solution of a fixed point problem.
Let x0 = (x0(1), . . . , x0(d)) be the initial state and n0 be the initial number of balls. For

b = 1, . . . , n0, let i(b) be the type of ball b so that, for 1 ≤ p ≤ d,

x0(p) = card{b, i(b) = p}.
Theorem 3.1. (i) Let Y = (Y (1), . . . , Y (n0)) be a random vector, uniformly distributed on�n0 .
For 1 ≤ b ≤ n0, let Ab be a copy of A(i(b)). Assume that Ab, b = 1, . . . , n0 are mutually
independent, and independent from the vector Y . Then

Ax0 d=
n0∑
b=1

Y (b)Ab, (3.1)

where Ab represents the distribution of the descendents of ball b (and hence is distributed as
A(i(b))) and Y (b) represents the asymptotic proportion of balls that descend from ball b.

(ii) For i = 1, . . . , d, let A(i)
′

and A(i)
′′

be independent copies of A(i), Y (i) be uniformly
distributed on [0, 1], and Ui have distribution (pi,j )j=1,...,d . Assume that all these random
variables are mutually independent. Then

A(i)
d=

d∑
j=1

1{Ui=j}(Y (j)A(i)
′ + (1 − Y (j))A(j)

′′
). (3.2)

Proof. Assume that the n0 initial balls are labeled from 1 to n0. Assume that at each step
the ball that has been added receives the same label as the one that has been drawn. Replacing
types by labels, we obtain a standard Eggenberger–Pólya urn [7]. Denote by Yn = (Y

(b)
n ),

b = 1, . . . , n0, the distribution of labels at time n: it converges almost surely to a random
vector Y whose distribution is uniform on the simplex�n0 . For b = 1, . . . , n0, denote by Z(b)n
the d-dimensional vector of the frequencies of types among the balls with label k at time n. By

https://doi.org/10.1239/jap/1189717535 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1189717535


Urn models with reducible replacements 657

Theorem 2.1, Z(b)n converges almost surely to a random variable Z(b), distributed as if the urn
initially had only one ball with label i(b); the distribution of Z(b) is that of A(i(b)). Moreover,
these random variables are mutually independent. The overall distribution of types at time n
decomposes as

Xn =
n0∑
b=1

Y (b)n Z(b)n .

As n tends to ∞, Xn tends to

X =
n0∑
b=1

Y (b)Z(b);

hence, (3.1) follows.
Now assume that, initially, a single ball of type i is present. At time 1, another ball is added,

which is of type j with probability pi,j . Let us apply (ii) with n0 = 2. If two balls of types i
and j are present, then the final distribution is

Y (i)A(i)
′ + (1 − Y (i))A(j)

′′
.

The limit starting with one single ball of type i or two balls at time 1 must be the same; hence,
(3.2) follows.

Equations (3.1) and (3.2) characterize the distribution of Ax0 for any x0. This follows from
the standard results of [14] and [4]. In practice, finding the actual distribution of Ax0 may be
rather intricate. We will give two examples with a single transient state: one with no possible
return (see Proposition 3.1, below) and the other with possible returns (see Proposition 3.2,
below).

Observe that from the point of view of Ax0 , the contents of recurrent classes is not relevant:
each recurrent class can be aggregated into one single absorbing state. Thus, we can assume,
with no loss of generality, that the transition matrix P has k absorbing states and d−k transient
states.

Proposition 3.1. Assume that the matrix P is of the form

P =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 p2 p3 · · · pd
0 1 0 · · · 0

0 0 1
. . . 0

...
...

. . .
. . .

...

0 0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎠
,

with p2 + · · · + pd = 1. Moreover, assume that initially a single ball of type 1 is present.
Then the probability distribution of A(1) is the Dirichlet distribution on �d−1, with parameter
(p2, . . . , pd).

Proof. We prove this result by the classical method of moments, using a martingale argument.
For u = (u2, . . . , ud) ∈ �d−1, we set, for every z ∈ N

d ,

hu(z) = (s(z)− 1)!
	(z2 + p2) · · ·	(zd + pd)

u
z2
2 · · · uzdd ,

https://doi.org/10.1239/jap/1189717535 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1189717535


658 R. ABRAHAM ET AL.

where s(z) = ∑d
i=1 zi . Then, if ei denotes the ith vector of the canonical basis of R

d , we have,
for 2 ≤ i ≤ d,

hu(z+ ei) = s(z)

zi + pi
uihu(z)

and, hence,
d∑
i=2

p(z, z+ ei)hu(z+ ei) =
d∑
i=2

uihu(z) = hu(z).

This shows that hu is a harmonic function and so the process (hu(Zn)) is a martingale.
Let α = (α2, . . . , αd) ∈ R

d−1 such that αi + pi − 1 ≥ 0. We set

gα(z) =
∫
�d−1

hu(z)u
α2
2 · · · uαdd λd−1(du),

where λd−1 denotes the Lebesgue measure on �d−1. Note that (gα(Zn)) is still a martingale.
Let us here suppose that, for every 2 ≤ i ≤ d, Zin tends to ∞. Then, using the fact that

	(x + h)

	(x)
∼ xh as x → ∞,

we have (recall s(Zn) = n+ 1)

gα(Zn) = 	(n+ 1)

	(n+ s(α)+ d)

	(Z2
n + α2 + 1)

	(Z2
n + p2)

· · · 	(Z
d
n + αd + 1)

	(Zdn + pd)

∼ n−(s(α)+d−1)(Z2
n)
α2+1−p2 · · · (Zdn)αd+1−pd

=
(
Z2
n

n

)α2+1−p2

· · ·
(
Zdn

n

)αd+1−pd

−→ (A
(1)
2 )α2+1−p2 · · · (A(1)d )αd+1−pd .

Let us add that the same kind of computation shows that gα(Zn) tends to 0 if one of the Zin is
bounded, so the formula is still true in that case.

This computation also proves that gα is a continuous function that admits limits at ∞ and
hence is bounded. Therefore, gα(Zn) is a bounded martingale and the convergence also holds
in L1.

Consequently, for every integer k2, . . . , kd , taking αi = pi + ki − 1, we have

E

[
(A

(1)
2 )k2 · · · (A(1)d )kd

]
= gα((1, 0, . . . , 0)) = 1

	(s(k)+ 1)

	(k2 + p2)

	(p2)
· · · 	(kd + pd)

	(pd)
.

This is also the moments of the Dirichlet distribution with parameters (p2, . . . , pd) on �d−1
and all these moments characterize the law as its support is compact.

We will now show that the pleasant result of Proposition 3.1 worsens as returns to transient
states become possible.

Proposition 3.2. Let d = 3 and

P =
⎛
⎝p1 p2 p3

0 1 0
0 0 1

⎞
⎠ ,
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withp1,p2, andp3 strictly positive. Starting initially with a single ball of type 1, the distribution
A(1) charges only the two absorbing states 2 and 3. Let us write A(1) = (A, 1 − A), where A
is the asymptotic frequency of type 2. Let ϕ be the generating function of moments of A,

ϕ(z) =
∞∑
n=0

E[An]zn.

Then
1

ϕ(z)
= (1 − z)p2

2F1(p2,−p1, 1 − p1)(z), (3.3)

where 2F1(p2,−p1, 1 − p1) is the hypergeometric function with parameters (p2,−p1) and
1 − p1.

Having computed the moments of A, it is easy to check that its distribution is not Beta,
except for the particular case in which p2 = p3. Hence, the distribution ofA(1) is not Dirichlet.

Proof of Proposition 3.2. From Theorem 3.1(ii), A is equal in distribution to

YA′ + (1 − Y )(A′′ 1{U=1} + 1{U=2}), (3.4)

where A′ and A′′ are distributed as A, Y is uniformly distributed on [0, 1], U has distribution
(p1, p2, p3), and (A′, A′′, Y, U) are mutually independent.

Denote by cn = E[An] the nth moment of A. From (3.4), the following induction for cn is
deduced:

cn = 1

n+ 1
cn +

n−1∑
k=0

(
n

k

)
E[ρk(1 − ρ)n−k](ckcn−kp1 + ckp2),

⇐⇒ ncn = p1

n−1∑
k=0

ckcn−k + p2

n−1∑
k=0

ck,

⇐⇒ (n+ p1 + p2)cn = p1

n∑
k=0

ckcn−k + p2

n∑
k=0

ck.

Multiplying by zn and summing leads to

zϕ′(z)+ (p1 + p2)ϕ(z) = p1ϕ(z)
2 + p2

ϕ(z)

1 − z
.

Letting ψ = 1/ϕ leads to

z(z− 1)ψ ′(z)− (p1(z− 1)+ p2z)ψ(z) = p1(1 − z),

from which (3.3) follows.

The technique of conditioning upon the first drawn ball also permits treatment of the case in
which there is a single transient state with possible returns, and more than two absorbing states.
By induction on d , we can express the distribution of A(1) using Proposition 3.2.
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