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Abstract: The crystal structure of trametinib dimethyl sulfoxide has been solved and refined using
synchrotron X-ray powder diffraction data and optimized using density functional theory techniques.
Trametinib dimethyl sulfoxide crystallizes in space group P-1 (#2) with a = 10.7533(4), b = 12.6056(5),
c = 12.8147(6) Å, α = 61.2830(8), β = 69.9023(11), γ = 77.8038(10)°, V = 1,428.40(3) Å3, and Z = 2 at
298 K. The crystal structure contains hydrogen-bonded trametinib and dimethyl sulfoxide (DMSO)
molecules. These are arranged into layers parallel to the (101) plane. There are two strong classical
hydrogen bonds in the structure. One links the trametinib and DMSO molecules. Another is an
intramolecular hydrogen bond. The powder pattern has been submitted to the International Centre for
Diffraction Data for inclusion in the Powder Diffraction File™.
© The Author(s), 2025. Published by Cambridge University Press on behalf of International Centre
for Diffraction Data. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrest-
ricted re-use, distribution and reproduction, provided the original article is properly cited.
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I. INTRODUCTION

Trametinib (marketed under the trade namesMekinist® and
Spexotras®, among others, as a dimethyl sulfoxide solvate) is an
oral anticancer medication used for the treatment of melanoma
and glioma (brain tumor). It is administered alone or in combi-
nation with dabrafenib mesylate. The systematic name (CAS
Registry Number 1187431-43-1) is N-[3-[3-cyclopropyl-5-
(2-fluoro-4-iodoanilino)-6,8-dimethyl-2,4,7-trioxopyrido[4,3-
d]pyrimidin-1-yl]phenyl]acetamide methylsulfinylmethane. A
two-dimensional molecular diagram of trametinib dimethyl
sulfoxide is shown in Figure 1.

Trametinib and preparation methods are described in
International Patent Application WO2005/121142 A1
(Sakai, 2005; Japan Tobacco Inc.), and NMR data for many
compounds are reported. This patent also describes the prep-
aration of the dimethyl sulfoxide solvate. Crystalline FormM
of trametinib dimethyl sulfoxide, different from the prior art, is
reported in U.S. Patent 9181243 B2 (Hu et al., 2015a; Hang-
zhou Pushat Pharmaceutical Technology Co. Ltd.) with X-ray
powder diffraction data. Powder patterns of crystalline FormE
(ethanol solvate), FormN (n-propanol solvate) anhydrous and
hydrated Form A, and amorphous trametinib are reported
in International Patent Application WO 2015/081566 A1
(Hu et al., 2015b). Crystal structures of ethanol, acetone,
benzene, methanol, nitromethane, and 2-propanol solvates
of trametinib have been reported by Shruti et al. (2022). The

crystal structure of trametinib complexed to a protein has been
reported by Khan et al. (2020).

This work was carried out as part of a project (Kaduk
et al., 2014) to determine the crystal structures of large-
volume commercial pharmaceuticals and include high-quality
powder diffraction data for them in the Powder Diffraction
File™ (PDF®; Kabekkodu et al., 2024).

II. EXPERIMENTAL

Trametinib dimethyl sulfoxide was a commercial reagent,
purchased from TargetMol (Batch #T5857) and was used as
received. The light beige powder was packed into a 0.5-
mm-diameter Kapton capillary and rotated during the mea-
surement at ~2 Hz. The powder pattern was measured at 298
(1) K at theWiggler LowEnergy Beamline (Leontowich et al.,
2021) of the Brockhouse X-Ray Diffraction and Scattering
Sector of the Canadian Light Source using a wavelength of
0.819563(2) Å (15.1 keV) from 1.6 to 75.0° 2θwith a step size
of 0.0025° and a collection time of 3 minutes. The high-
resolution powder diffraction data were collected using eight
Dectris Mythen2 X series 1K linear strip detectors. NIST
SRM 660b LaB6 was used to calibrate the instrument and
refine the monochromatic wavelength used in the experiment.

The pattern was indexed usingN-TREOR as incorporated
into EXPO2014 (Altomare et al., 2013) on a primitive triclinic
unit cell with a = 10.76519, b = 12.61284, c = 12.82135 Å,
α = 61.273, β = 69.878, γ = 77.810°, V = 1,431.2 Å3, and Z = 2.
The space groupwas assumed to beP-1, which was confirmed
by the successful solution and refinement of the structure.
A reduced cell search in the Cambridge Structural Database
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(Groom et al., 2016) yielded one hit, but no structures for
trametinib or its derivatives.

The trametinib molecule was downloaded from PubChem
(Kim et al., 2023) as Conformer3D_COMPOUND_CID_
11707110.sdf. It was converted to a *.mol2 file using Mercury
(Macrae et al., 2020). A DMSO molecule was built using
Spartan ‘24, and saved as a .mol2 file. The crystal structure
was solved by Monte Carlo simulated annealing techniques as
implemented in EXPO2014 (Altomare et al., 2013), including a
bump penalty on the non-H atoms. One of the 10 runs yielded a
solution with a much better figure of merit.

Rietveld refinement was carried out with GSAS-II (Toby
and Von Dreele, 2013). Only the 4.0 to 60.0° portion of the
pattern was included in the refinements (dmin = 0.819 Å). The
absorption coefficient μR was fixed at 0.45. All non-H bond
distances and angles were subjected to restraints, based on a

Mercury/Mogul Geometry Check (Bruno et al., 2004; Sykes
et al., 2011). The Mogul average and standard deviation for
each quantity were used as the restraint parameters. The
aromatic rings were restrained to be planar. The restraints
contributed 3.4% to the overall χ2. The hydrogen atoms were
included in calculated positions, which were recalculated
during the refinement using Materials Studio (Dassault Sys-
tèmes, 2023). The Uiso of the heavy atoms were grouped by
chemical similarity. The iodine atom I1 was refined aniso-
tropically. TheUiso for the H atoms were fixed at 1.3× theUiso

of the heavy atoms to which they are attached. The peak
profiles were described using an isotropic microstrain model.
The background was modeled using a six-term shifted Cheby-
shev polynomial, with a peak at 10.45° to model the scattering
from the Kapton capillary and any amorphous component in
the specimen.

The final refinement of 150 variables using 22,401 obser-
vations and 112 restraints yielded the residual Rwp = 0.0753.
The largest peak (0.49 Å from I1) and hole (1.41 Å from C62)
in the difference Fourier map were 0.54(12) and � 0.49
(12) eÅ�3, respectively. The final Rietveld plot is shown in
Figure 2. The largest features in the normalized error plot are
in the shapes and positions of some of the strong peaks. These
misfits probably indicate a change in the specimen during the
measurement. A small number of unindexed peaks are pre-
sent, indicating the presence of a trace of at least one crystal-
line impurity.

The crystal structure of trametinib dimethyl sulfoxidewas
optimized (fixed experimental unit cell) with density func-
tional theory techniques using VASP (Kresse and Furthmül-
ler, 1996) through the MedeA graphical interface (Materials
Design, 2024). The calculation was carried out on 32 cores of
a 144-core (768-GB memory) HPE Superdome Flex
280 Linux server at North Central College. The calculation
used the GGA-PBE functional, a plane wave cutoff energy of
400.0 eV, and a k-point spacing of 0.5 Å�1, leading to a
2 × 2 × 2 mesh, and took ~17 hours. Single-point density

Figure 1. The two-dimensional structure of trametinib dimethyl sulfoxide.

Figure 2. The Rietveld plot for trametinib dimethyl sulfoxide. The blue crosses represent the observed data points, and the green line is the calculated pattern.
The cyan curve is the normalized error plot, and the red line is the background curve. The vertical scale has been changed to 40,000 full scale for 2θ > 30.0.
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functional theory calculations (fixed experimental cell) and
population analysis were carried out using CRYSTAL23
(Erba et al., 2023). The basis sets for the H, C, N, and O
atoms in the calculation were those of Gatti et al. (1994), and
the basis sets for F, I, and S were those of Peintinger et al.
(2013). The calculations were run on a 3.5-GHz PC using
eight k-points and the B3LYP functional and took�4.2 hours.

III. RESULTS AND DISCUSSION

The root-mean-square Cartesian displacement of the non-
H atoms in the Rietveld-refined and VASP-optimized mole-
cules is 0.097 Å (Figure 3). The agreement is within the
normal range for correct structures (van de Streek and Neu-
mann, 2014). The largest differences are in the orientations of
the methyl groups. Since the hydrogen atom positions in the
experimental structure were calculated using force-field tech-
niques, the differences are not surprising. The asymmetric
unit is illustrated in Figure 4. The remaining discussion will
emphasize the VASP-optimized structure.

Almost all of the bond distances and bond angles fall
within the normal ranges indicated by a Mercury Mogul

Geometry check (Macrae et al., 2020). The bond angles
C27–N10–C19 (Value = 132.0°, average = 122.4(21)°,
Z-score = 4.6), N10–C19–N9 (value = 122.3°, average = 117.3
(13)°, Z-score = 3.9), and C20–C22–N9 (value = 119.1°,
average = 117.2(5)°, Z-score = 3.7) are flagged as unusual.
The standard uncertainties on the last two are relatively small,
inflating the Z-scores. The torsion angle N9–C19–N10–C27
lies on a long tail of a distribution of relatively few values.
This angle reflects the orientation of the halogenated ring with
respect to the rest of themolecule. Since N10 participates in an
intramolecular hydrogen bond (see below), that interaction
may affect the value of this torsion angle.

Quantum chemical geometry optimization of the isolated
trametinib molecule (DFT/B3LYP/6-31G*/water) using Spar-
tan ‘24 (Wavefunction, 2023) indicated that the observed con-
formation is 4.8 kcal/mol lower in energy than the local
minimum, and has a similar conformation (rms displace-
ment = 0.623 Å). The global minimum-energy conformation
is only 1.8 kcal/mol lower in energy but has different orienta-
tionsofall of theperipheralgroups(rmsdisplacement=2.316Å).
The molecule is thus apparently flexible, and intermolecular
interactions determine the solid-state conformation.

The crystal structure (Figure 5) contains hydrogen-
bonded trametinib and DMSO molecules. These are arranged
into layers parallel to the (101) plane. TheMercury Aromatics
Analyser indicates no strong phenyl–phenyl interactions.

Analysis of the contributions to the total crystal energy of
the structure using the Forcite module of Materials Studio
(Dassault Systèmes, 2023) indicates that angle distortion
terms dominate the intramolecular energy. The intermolecular
energy is dominated by electrostatic attractions, which in this
force field-based analysis also includes hydrogen bonds. The
hydrogen bonds are better discussed using the results of the
DFT calculation.

There are three classical hydrogen bonds in the structure
(Table I). One (N11–H55���O70) links the trametinib and
DMSO molecules. Another (N10–H43���O3) is an intramo-
lecular hydrogen bond. N3–H43 also forms a weaker inter-
molecular hydrogen bond. The energies of these N–H���O

Figure 3. Comparison of the Rietveld-refined (red) and VASP-optimized
(blue) structures of the trametinib molecule. The root-mean-square Cartesian
displacement is 0.097 Å. Image generated using Mercury (Macrae et al.,
2020).

Figure 4. The asymmetric unit of trametinib dimethyl sulfoxide, with the atom numbering. The atoms are represented by 50% probability spheroids. Image
generated using Mercury (Macrae et al., 2020).
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hydrogen bonds were calculated using the correlation of
Wheatley and Kaduk (2019). Several C–H���O hydrogen
bonds, from methyl groups, ring hydrogen atoms, and the
cyclopropyl ring, link trametinib molecules. Two additional
C–H���O hydrogen bonds link the DMSO and trametinib
molecules.

The volume enclosed by the Hirshfeld surface of
trametinib dimethyl sulfoxide (Figure 6; Hirshfeld, 1977;
Spackman et al., 2021) is 704.15 Å3, 98.59% of half the unit
cell volume. The packing density is thus fairly typical. The

only significant close contacts (red in Figure 6) involve the
hydrogen bonds. The volume/non-hydrogen atom is close to
normal at 17.4 Å3.

The Bravais–Friedel–Donnay–Harker (Bravais, 1866;
Friedel, 1907; Donnay and Harker, 1937) algorithm suggests
that we might expect isotropic morphology for trametinib
dimethyl sulfoxide. A second-order spherical harmonic
model was included in the refinement. The texture index
was 1.007(0), indicating that the preferred orientation was
not significant in this rotated capillary specimen.

Figure 5. The crystal structure of trametinib dimethyl sulfoxide, viewed down the b-axis. Image generated using Diamond (Crystal Impact, 2023).

TABLE I. Hydrogen bonds (CRYSTAL23) in trametinib dimethyl sulfoxide. * = intramolecular.

H bond D–H, Å H���A, Å D���A, Å D–H���A, ̊ Overlap, e E, kcal/mol

N11–H55���O70 1.039 1.791 2.816 168.3 0.076 6.4
N10–H43���O3 1.054 1.638* 2.573 144.8 0.072 6.2
N10–H43���O6 1.054 2.700 3.410 124.5 0.011 2.4
C37–H60���O3 1.094 2.297 3.283 148.9 0.015 –

C37–H59���O4 1.102 2.703 3.670 146.3 0.010 –

C34–H57���O3 1.090 2.674 3.654 149.3 0.012 –

C30–H53���O6 1.085 1.199* 2.885 118.9 0.017 –

C26–H49���O5 1.094 2.150* 2.631 103.5 0.016 –

C14–H42���O5 1.089 2.449 3.353 139.6 0.012 –

C13–H39���O6 1.089 2.406 3.396 150.6 0.018 –

C66–H67���O4 1.098 2.567 3.541 147.3 0.013 –

C62–H64���O5 1.099 2.276 3.254 147.1 0.023 –
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