MAXIMAL GROUPS ON WHICH THE PERMANENT
IS MULTIPLICATIVE

LEROY B. BEASLEY

Let A, be the set of all # X n, non-singular matrices of the form PD,
where P is a permutation matrix and D is a diagonal matrix with complex
entries. In (1, conjecture 12), Marcus and Minc asked: Is A, a maximal
group on which the permanent function is multiplicative? (that is, per AB =
per A per B). The field over which the entries range was not mentioned in the
conjecture; however, we assume that the complex number field was intended.
Corollary 1 answers this in the affirmative. In fact, A, is the only maximal
group (or semigroup) on which the permanent is multiplicative. Let p; be
the set of all non-zero entries in the 7th row and let \; be the set of all non-zero
entries in the jth column.

THEOREM. A, is the maximal semigroup of n X n matrices with p; and \;
non-empty for all 1, j = 1,...,n on which the permanent function is muliz-
plicative.

Proof. If K is a maximal semigroup of # X » matrices with p; and \; non-
empty for all 2, j = 1,..., n on which the permanent is multiplicative, then
A, = K, since for any matrix A, per Q4 = per Q per 4, where Q is either a
permutation matrix or a diagonal matrix.

Suppose that A, < K, and let A € K — A,. Then, in A there is at least
one row with at least two non-zero entries. We shall show that this implies
the existence of a matrix F € K, such that per(F?) # (per F)2. Since every
permutation matrix is in K, we may assume that the nth row of 4 has at
least two non-zero entries, and that a,, # 0.

Let
4 Jaw ifag=0 .
0; _ll ifa, =0 fore=1,...,n,
and let 64 = diag(é:4, ..., 8,*). Now the matrix B = 48* is such that all

entries in the nth row are real and positive or zero.

In B, b,, # 0 and at least one other element of the nth row is non-zero.
Let u be a diagonal matrix such that u; is real and strictly positive, for
1 =1,...,n Ifany entry a,; in the nth row of B is zero, then we show that,
for suitable p and some permutation matrix P such that p,, = 1, H = (uPB)?
is in K and has at least one more non-zero entry in the nth row than did 4.
Let G = uPB, so that H = G2 We first show that if b,; # 0, then #,; # 0.
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The element g,; = peba; # 0 and

n—1 n—1

hnj = kzl Znilki = Gnnnj + ;1 ki = ﬂnQbmabnj + kzl Mnllkbn,kbx—l(k),jy

where P(¢;;) = (drw.;). Thus, for pu., sufficiently larger than puy
i=1,...,n — 1, hy; £ 0.

Next we show that whereas b,; = 0, we can choose u and P so that &,; # 0.
Some element in the ith column of B, say b,;, is non-zero. Choose P so that
premultiplication by P interchanges the gth and jth rows of B. Thus, g;; # 0,
and the element

n n n

I = Z Zurlii = Eniii T Z Zukgri = Mkt DniON-1¢,1 + Z Habtrbubx -1
Thus, for u; sufficiently larger than u;, 8 =1,...,n — 1, k 5 1, we obtain
hai #~ 0. Note that here u, being large does not affect the result since the last
term, u,2bubr-1(y, i = Eabuibus, in the sum is zero.

This process may be re-applied until one arrives at a matrix C’ such that
¢, is non-zero for all 2 = 1,...,n. Let C = (C'8%; then C € K, ¢,; is real
and ¢;; > Oforallze=1,...,n.

In a similar manner we can obtain a matrix £ € K, such that e;, is real
and e;; > 0 for all 2= 1,...,#n Now, for matrices « and 8, where
a = diag(1,...,1,a,) and 8 = diag(1,...,1,8,) and a, and B, are suffi-
ciently large positive real numbers, F = (Ea)(BC) is in K, f;; # 0 for all
5,7 =1,...,n,and Re(f;;) is positive and so much greater than |Im(f,;)| that

Re( I:Il fir(i)ff(mm) >0

for every ¢ € §,, the symmetric group on # letters, and every 7 € C,, the set
of all mappings 7: {1,...,n} —={1,...,n}.
Now,

n

per AB = Z H Z aikbkv(i)

0€Sy i=1 k=1

= Z Z H @iz (nbr(tyect)

€Sy TECH i=1

B

and

per 4 per B = (Z ﬁ aia(t))( > ﬁ biv(i))

¢€Sn  i=1 g€Sp i=1
3
= Z Z Qir(De(ya(o)-
0€Sy TESH i=1

Hence, for 4, B € K we must have that

0 = per AB — per 4 per B = Z Z H QiryDr(yoct)-

0€Sn 7€Cn—Sn i=1
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In particular, when 4 = B = F, this sum must be zero. However,
Re(Ilici fincafrcnocn) > 0; hence

Re( DI lfif(i)ff(i)v(i)> >0,

7€8n TECn—Sn i=
which contradicts the fact that F € K. Therefore, K = A,. Since A, is con-
tained in any maximal semigroup, it is the only one.

The following corollaries are immediate consequences of the theorem.

COROLLARY 1. A, s the maximal group of n X n, non-singular matrices on
which the permanent is multiplicative.

In the above we considered matrices with complex entries. Let A,% be the
set of all # X #n, non-singular matrices of the form PD, where P is a permuta-
tion matrix and D is a diagonal matrix with real entries. Then as a special case
of the theorem we have the following corollary.

COROLLARY 2. A, is the maximal semigroup of n X n, non-singular matrices
with real entries on which the permanent is multiplicative.

Remark. In the semigroup of all # X » matrices, a maximal semigroup on
which the permanent is multiplicative is the set of all » X # matrices with at
least one row [one column] of zeros together with the set A,.
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