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Abstract

We give a positive answer to a question of Horst Tietz. A theorem of his that is related to the Mittag-Leffler
theorem looks like a duality result under some locally convex topology on the space of meromorphic
functions. Tietz has posed the problem of finding such a topology. It is shown that a topology introduced
by Holdgriin in 1973 solves the problem. The main tool in the study of this topology is a projective
description of it that is derived here. We also argue that Holdgriin's topology is the natural locally convex
topology on the space of meromorphic functions.

1991 Mathematics subject classification (Amer. Math. Soc): primary 30D30, 46E10; secondary 12J99,
46E25.

1. A problem of Tietz

Let Q be adomain in C. One natural way of endowing the space M(Q) of meromorphic
functions in £2 with a topology is the following. One regards M (£2) as a subspace
of the space C(£2, C) of all continuous functions on Q with values in the extended
complex plane C, where C carries the chordal metric and C(Q, C) is endowed with
the topology of locally uniform convergence. With the inherited topology, rchOr say,
M(Q) becomes a metric space; and it is complete if we add the function / ( z ) = oo
(cf. [13, VII.3]). However, this topology is not compatible with the linear structure
of M(Q). An interesting result of Cima and Schober [11] says that there is indeed no
locally convex Hausdorff topology on M(Q) that is comparable with TchOr-

On the other hand a result of Horst Tietz [25] suggests that the space M(£2) carries
a natural linear (locally convex) topology. Recall that by the Mittag-Leffler theorem
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every meromorphic function / in Q can be written as

(1) /(z)

where the h"k are the principal parts of / at its poles ak, and rk and g are certain
holomorphic functions in £2. Now, Tietz characterised those meromorphic functions
for which all rk (and g) may be chosen 0 (for notation and definitions see below):

THEOREM 0. (Tietz [25, §5]) Let f € M{Q.) with poles a,, a2 Let (yn) be a
sequence ofCauchy cycles in £2 such that (int yn)n is an exhaustion ofQ and such
that cti,... ,akn lie inside yn and akn+t, akn+2,... lie outside yn for n e N . Then

(a) The following assertions are equivalent:
(i) There is a function g e //(£2) with

k<kn

locally uniformly in Q \ {c^, a2, • • • }•
(ii) For all <p e //0(C \ Q) the limits

UrnI
exist.

(b) In (i) one has g(z) = 0 if and only if all limits in (ii) vanish.

Note that the integrals in (a)(ii) may only be defined for sufficiently large n depending
on (p.

This theorem looks like a duality result for the space M(£2) with respect to some
locally convex topology. Tietz [26] has posed the problem of finding such a topology.
Our primary aim in this paper is to study a certain locally convex topology on M(Q)
that may be considered natural. We will show in particular that it satisfies Tietz's
demands.

This topology was introduced by Holdgriin [17] in 1973, but it has not yet been
studied in any detail. After some preliminaries in Section 2 we recall its definition and
obtain a useful projective description in Section 3. This allows us to derive its main
properties in the following section. In Section 5 we determine the dual of M(Q) and
show that Holdgriin's topology does indeed solve Tietz's problem. In an appendix we
give a survey of other topologies on A/(£2) that have been defined in the literature.

The investigations in this paper parallel those of Golovin [15, 16] for the space
of holomorphic functions with (arbitrary) isolated singularities. The relevance of
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Golovin's paper to the problem of topologising spaces of meromorphic functions does
not seem to have been noticed before.

Notation and definitions. Let Q be a domain in C. The principal part of a
meromorphic function in £2 at a point a e £2 is denoted by ha. The linear mappings
/ >-> aj(f) (« e Q, j e N) on M(Q) are denned by ha(z) = £ ~ , a°(f)/(z - a)1.
Here and throughout we interpret l/(z — a)' as z> if a = oo.

An exhaustion (£>„) of a domain £2 is a sequence of relatively compact subsets Dn

of £2 with ft = (X=i £>„ and D^ c (A,+i)° for n e N.
Let y be a cycle ([24, 10.34]). A point a e C is said to lie inside y if indK(a) = 1

and outside y if mdY(a) — 0, and we set int y = {a e C : indv(a) = 1} (note that
this differs from [22]). We call y a Cauchy cycle (for a set D) in £2 if C \ £2 lies
outside y (and D lies inside y). For every compact subset K of any domain Q in C
there exists a Cauchy cycle for K in £2 ([24, proof of 13.5]). The name derives from
the validity of Cauchy's theorem for such cycles ([24, 13.5]).

For further terminology from complex analysis we refer to [13, 22, 23, 24]. The
terminology from functional analysis follows [18, 19]; for special areas see [6, 29,
30].

2. Preliminaries

1. Let £2 be a domain in C. Then we denote by HM(Q) the space of all functions
/ on £2 that can be written as a sum of a holomorphic function and a rational function
with poles in £2, that is, with

m nt Ok oo na

in £2, where g e H{Q.) and aj =aj(f) e C (a e £2,y e N) are uniquely determined.
Thus we obtain an algebraic isomorphism

H&&) = H(Q) x C(S2xN), / h+ (g, (d?)aeOJeN).

We endow H@(Sl) with the (locally convex) product topology of the topology of
locally uniform convergence in //(£2) with the locally convex direct sum topology
of C(n*N) = ©n><N C. Note that H&{Q.) is simply the space of all meromorphic
functions on £2 with (only) finitely many poles. In particular,//^(C) = A/(C) = C(z)
is the space of all rational functions and carries its strongest locally convex topology
(cf. [18, p. 111]).

In a similar fashion, if AT is a compact subset of C, we define and topologise the
space H@(K) = H(K) x C(*xN) of (germs of) meromorphic functions on K and,
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in case K has no isolated points, the space AM(K) = A(K) x CKxN). Here, A(K)
denotes the space of continuous functions in K that are holomorphic in K°, endowed
with the topology of uniform convergence on K.

2. Let Q be a domain in C and 8 : £2 —»• No a positive divisor ([23, 3.1.1]), that
is, a function with the property that the set Ps = [a e £2 : 8 (a) ^ 0} is discrete in
£2. Then let M (£2; 5) denote the space of all meromorphic functions in £2 with the
property that all its poles lie in Ps and the order of a pole a e Ps is at most 8(a), that
is,

2; 8) = {/ € Af (£2) : o0(/) > -<$(<*) for all a e fi}.

Then it follows from the integral formula for Laurent coefficients that this space is
a closed subspace of H(Q \ Ps). We endow M(Q; 8) with the inherited topology,
making it a Fre"chet space; see [5].

3. The Holdgriin topology and its projective description

Let £2 be a fixed domain in C. One may look at the concept of meromorphy of a
function on £2 in (at least) two different ways.

1. A meromorphic function is everywhere holomorphic apart from a discrete set
where it may have poles. In this spirit we can write M(£2) = Uie®n M(Q; 8), where
S'Q denotes the space of all positive divisors on Q and the spaces M(£2; 8) are topolo-
gised as in the previous section. The set @a carries a natural order defined by 8\ < 82

if Si (a) < 82(a) for all a e f i . Then the inclusion mappings M(£2; SO -̂» M(Q; 82)
are continuous for 5i < 82. Thus the locally convex inductive limit indae@nM(£2; 8)
with respect to these inclusion mappings is defined and gives the Holdgriin topology
THOI on M(Q).

REMARK 1. The topology was actually defined by Holdgriin [17, p.44] in a much
more general setting. Earlier, Burmann and Holdgriin [9] had given a correspond-
ing definition for spaces of meromorphic functions with only finitely many poles.
Constantinescu and Gheondea [12] also obtain a (weaker) topology in some space of
meromorphic functions via a similar inductive limit.

Although we have here a strict inductive limit - the topology of M(S2; 8X) coincides
with the one inherited from M(Q; 82) for 8\ < 82 - , it is an uncountable limit so that
we cannot apply the very strong results for countable strict inductive limits (see §24, in
particular 3.3, in [14]). Thus we would have to study the topology THOI in more detail
to see, for example, if it is complete (cf. [17, pp. 46f]). Instead, we will here give
an alternative description of this topology, namely, as a projective limit. This is based
on an alternative view of meromorphic functions. The idea behind the Mittag-Leffler
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theorem is to regard them as the sum of a holomorphic function and its principal parts.
While in general one has to introduce additional terms rk to make the Mittag-Leffler
expansion (1) convergent, we always have the following.

2. Locally, a meromorphic function is the sum of a holomorphic function and
its principal parts. This means that for any domain O C Si that is relatively compact
in Si every meromorphic function / is the sum of a holomorphic function in O and
the principal parts at its (finitely many) poles in O, that is, / belongs to the space
H@{0). Hence we have M{Sl) = f]0^n H@{O), where % denotes the set of all
relatively compact subdomains of SI, ordered by set inclusion.

Thus, for O, Ou O2 e ^n with Ox C O2 we consider the restriction mappings

These correspond to the mappings

To : M(Q) -* H(O) x C(OxN>,

and

H(O2) x

(8, a)

The mappings TOl ,o2 are easily seen to be continuous. Hence the projective limit
projoe^/Z^CO) with respect to the restriction mappings Pouo2

 ls defined and is
algebraically isomorphic to M(fi). This provides us with a new locally convex
topology on M(£2) that we call the Mittag-Leffler topology, denoted by rML. It is the
weakest topology such that all mappings p 0 , O e ^Q, are continuous.

REMARK 2. (i) In the particular case of £2 = C, when M(C) = C(z), we have
£2 € ^.sothatprojoe^/Z^CO) = H&(Q. Hence on the space of rational functions
TML is the strongest locally convex topology (cf. Section 2.1). This topology was also
considered by Williamson [31,4].

(ii) Instead of restricting the elements / e M(Sl) to subdomains O we may also
restrict them to compact subsets K. This leads to the representations

and

where Jtfu (J^') denotes the set of compact subsets of SI (without isolated points),
and as above we may introduce topologies on M{Q.) as projective limits with respect
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to the corresponding restriction maps. It follows easily from the general theory of
projective limits that in fact we have equivalent projective systems, that is, that the
new topologies coincide with TML (see [14, p. 38]).

(iii) Bobillo Guerrero [7] and Cima and Schober [11] have defined topologies in
a similar fashion. However, they topologise A!%{K) = A(K) x OKxH) by giving
(̂ArxN) w e a k e r norm topologies than its direct sum topology. The resulting metrisable

topologies on M (£2) are not complete and strictly weaker than TML (see Remark 5(ii)(a)
and Theorem 3(b) below).

We will now determine a convenient set of seminorms that defines TML. Let K C £2
be compact and b = (bJ)asKj€s e C*x N. For / e M(£2) we put

II/Ik* = sup
zeK aeK _^.. , _ .

Then || • H ^ is well-defined and a seminorm on M(£2).

THEOREM 1. The topology TML is generated by the directed system of seminorms
|| • \\K,b (K c £2 compact, b e C*x N).

PROOF. By Remark 2(ii), TML is the projective topology on M(£2) with respect to
the mappings

TK : M(Q) - • A(K) x C^x N >, / » (f\K -
\

Since the topology of A{K) is induced by ||g|| = supze/r \g(z)\, that of C(*xN) by
II«H«- = EaeK Ey"i \aJbJ\ for b e <£K*U (cf. [19, §30.2]), the claim follows ([14, p.
36]).

Our next aim is to show that the Holdgrun topology and the Mittag-Leffler topology
on M(£2) coincide.

We need some preparation. For any non-empty subset D of £2 let ̂ (S2; D) denote
the space of all rational functions of the form / ( z ) = ^afLDYi7=\a'j7(z ~ a ) ;»
considered as a subspace of Af (£2). It is algebraically isomorphic to C(DxN).

LEMMA 1. Let D be a non-empty and relatively compact subset ofQ. On &(Q; D)
the topology TML coincides with the one induced by C(DxN).

PROOF. This follows since for every relatively compact subdomain O of £2 con-
taining the (compact) closure D of D the topology on ^"(£2; D) induced by
coincides with the one induced by
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Note that this result is not true for arbitrary subsets D of ft: While l/(- — ri) -*• 0
in M(C) as n ->• oo, the corresponding elements do not converge in C(NxN).

LEMMA 2. (a) Every Ty^-bounded subset of M(ft) is contained and bounded in
a space M(ft; S) for some iSeff l .

(b) The space (M(ft), TML) is bornological.

PROOF, (a) Let B C M(ft) be r^-bounded. For every relatively compact subdo-
main O of ft, T0(B) is a bounded subset of H{0) x C(OxN), so that for almost all
a e O and j e N we have aj(f) = 0 for all / € B. This implies that there is a
positive divisor 8 : ft —*• No such that aj(f) = 0 for all a e ft and y e N with
y > <5(a) and all f e B. Hence B is contained in M(ft; 8). Now let K be a compact
subset of Q. \ Ps, where Ps = {a € £2 : 8(a) ^ 0}. Since no element / 6 B has a pole
in K, Theorem 1 and the boundedness of B imply that sup/eB

 suPzeAr l/(z)l < °°-
Since M(Q; 8) carries the topology of //(ft \ Ps), we see that B is bounded in this
space.

(b) Let U be an absolutely convex subset of M(£2) that absorbs every tM
subset of M(ft). We firstly show:

(+) There exists a relatively compact subdomain O of Q, a compact subset K
of O and some e > 0 such that, if / € M(Q) has no pole in O and satisfies
supz€Ar | / (z) | < e , t h e n / e U.

Assume that (+) does not hold. Choose an exhaustion (Ok) of ft by relatively compact
subdomains. Then there are functions fk e M (ft) without poles in Ok+\ such that
suPz€o7 l/*(z)l < 1/* b u t fk<£Uforke N. Consider the set B = {kfk : k e N},
and let O0 be a relatively compact subdomain of ft. Since there is some k0 € N with
O0 C 0* for k > ko, it follows that T0o(B) is a bounded subset of H(O0) x C(0°xN).
Hence B is a bounded subset of M(ft), but clearly not absorbed by U.

It follows that (+) holds with some K C O C ft and e > 0. By Lemma 1 the
space &o '•= ^(ft ; O), considered as a subspace of A/(ft), is bornological. Now,
U n &o is an absolutely convex subset of S%0 and absorbs every bounded subset of
@o- Hence [/ n ^"0 is a 0-neighbourhood in £%0 = C(0xN), so that the set

= (/ eM(ft) :sup /(z) - YV(z)
zeAT ^""^zeK aeO

< £ and V / z " e U

is a 0-neighbourhood in M(ft). For every / e V we have by (+)

Thus we have \ V C U, so that £/ is a 0-neighbourhood of Af (ft).
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THEOREM 2. In M(Sl) we have TML = THOI-

PROOF. For rHoi > TML it suffices to show that the inclusion mappings M(£l; 8) -̂>
HM(O) are continuous for every 8 e 3>Q and O € tfQ. Let Ps = {a £ Q : 8(a) ^ 0}
and let fk —> 0 in M(Q.\ 8). Then we can write

aeP,r\O j=\ K '

with gk G H{0), and since fk(z) —> 0 locally uniformly in Q \ P&, the integral formula
for Laurent coefficients implies that aj(fk) -»• 0 for all a e Ps n O, j < 8(a), hence
(aJ(fk))a 0 H -* 0 in C(OxN). As a consequence we have gk(z) —> 0 locally
uniformly in O \ Ps, hence in O by the maximum principle, that is, gk —> 0 in H(O).
This shows that fk -> 0 in H&(0).

Conversely, by Lemma 2(a) every tML-bounded subset of M(£2) is contained and
bounded in some space M(£2; 5), 8 e @a, hence in (M(£2), THOI). Since by Lemma
2(b) the space (M(S2), TML) is bornological, this implies that THOI < ^ML- Altogether
we have the equality of the two topologies.

Thus we see that there are two distinct but completely natural ways of defining a
locally convex topology in the space M(£2), and the two resulting topologies rHoi and
TML coincide. Since, in addition, we shall see in the next section that this topology
is complete, we may consider it as the natural locally convex topology on M(Q).
Moreover (M(£2), TML) is a projective limit of relatively simple spaces so that one
may call TML the projective description of Holdgriin's topology.

We also note the following.

REMARK 3. It is not difficult to see that HM(0) = indS€®n M(O; 8\0) for any
O e ^Q, the locally convex inductive limit being taken with respect to the inclusion
mappings, while M{Q.\ 8) = projO(E% M{0; 8\0) for any 8 e @Q, the projective
limit being taken with respect to the restriction mappings. Thus Theorem 2 can also
be read as a result on interchanging limits (compare [16, p. 22]):

ind3 6 % M(O; 8\0) = indie@n projOe% M(O; S\o).

4. Properties of the locally convex topology on M(£2)

Let £2 be a domain in C. We regard M(Q) endowed with the topology TML = tHoi-

THEOREM 3. (a) M(Q) is a complete Hausdorff locally convex space. It is
ultrabornological, hence also barrelled and bornological. It is a Montel space, hence
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also reflexive and weakly sequentially complete with the Schur property (that is, every
weakly convergent sequence converges (strongly)).

(b) M(£2) is not metrisable or separable, nor is it nuclear or a Schwartz space.

PROOF, (a) The space M(£2) is a complete Hausdorff space as a projective limit
of such spaces. It is ultrabornological as a locally convex inductive limit of Frechet
spaces. It is a Montel space since it is barrelled and a projective limit of Montel
spaces. The remainder follows from general results ([18]).

(b) By Lemma 1, M (£2) contains a subspace isomorphic to C(A) for some uncount-
able set A. Since this space is not metrisable, nuclear or a Schwartz space, the same
follows for M(£2) (see [18, p. 202]). To see that it is not separable, let (/„) be any
sequence in M(£2). Let a e £2 be a point that is not a pole of any /„, and let / be
the function / ( z ) = l/(z — a). Then, with the seminorms of Theorem 1, we have
II f« ~ fWw.b > \b"\ for all n e N and b e Oa]*N. Hence the /„ cannot form a dense
set in M (£2).

We had noted earlier that the inductive limit rHoi is a strict inductive limit. It is well
known that countable strict inductive limits have strong properties. We will show that
some of them are shared by the present uncountable inductive limit.

THEOREM 4. (a) A subset B o/M(£2) is bounded if and only if it is contained and
bounded in some step M (£2; 8), that is, the inductive limit inda€®nM(£2; 8) is regular.

(b) Each space M{SI; 8) (8 e @a) is a closed subspace of M(£2), and its topology
coincides with the one inherited from M(£2). In particular, M(£2) induces on //(£2)
the topology of locally uniform convergence.

(c) A sequence (/„) converges in M(£2) if and only if it is contained and conver-
gent in some step M(£2; 8).

PROOF, (a) follows from Lemma 2(a) (with Theorem 2).
(b) The topology of M(£2; 8) is stronger than the one inherited from M(£2). Con-

versely, for every compact subset K of £2 \ {a e £2 : 8(a) ^ 0} we have, with the
seminorms of Theorem 1, supz6A- | / ( z ) | = | | / | |K,J , for / e M(£2; 8), where b is any
fixed element in £KxN. This shows that the topology of M(£2; 8) is also weaker
than the one inherited from M(Q). As a complete space, M(£2; 8) now becomes a
closed subspace of M(£2). The last claim in (b) follows since //(£2) = M(£2; 8) for
8 (a) = 0.

(c) is now a consequence of (a) and (b).

REMARK 4. Golovin [15,16] has defined a locally convex topology on the space of
all functions that are holomorphic in £2 with possible exception of (arbitrary) isolated
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singularities, hence a space that contains M(£2). Our treatment here is analogous
to his. By its definition, Golovin's topology, restricted to M(ft), is weaker than
Ĥoi = TML- In fact it is strictly weaker: Fix some a e Q and consider the functions

/„ € M(fi), given by fn(z) = \/((nn(z - a)n) for n e N. From [16, Proposition 4]
it follows that /„ —»• 0 in Golovin's topology while we have that /„ •/*• 0 in M(Q) by
Assertion (c) of the last theorem.

Algebraically, the space M{Q.) has a rich structure. Apart from being a vector space it
is also a field under the usual definition of the product of two meromorphic functions.
In a different language, M(fi) is a (commutative) division algebra. The locally convex
topology of M (Q) is well-behaved with respect to the linear structure of the space,
but less so with respect to its multiplicative structure, as we see now.

THEOREM 5. The operation of multiplication of two functions is separately con-
tinuous but not jointly continuous on M(£l). Also, inversion is not continuous on
M(Q)X = M(fi) \ {0}.

PROOF. We consider the map • : M(Q) x M(Q) -> M(Q), (/, g) i-+ fg. Let us
fix g e M(£2). Then to every positive divisor S on £2 there is a positive divisor S
so that the mapping M(Q; S) —*• M(£2; 8), f i->- fg is well-defined, and it is clearly
continuous. Hence the linear mapping M(£2) -> M(£2), / i-»- fg is continuous. By
symmetry, the product • is separately continuous.

Now let us assume that the product is also jointly continuous. Let K C £2 be an
uncountable compact set, and let e = (l)a£K- Then there is a compact subset K D K
of £2, some b e CKxN and some c > 0 such that

(2) ll/glke<c||/||jf,6||sl|jf,*

for all / , g e M(Q) (see Theorem 1). For a, P e K define /o,^(z) = l/(z - a) +
l/(z - 0). Then, setting f = g = fa0in (2) with a ^ 0 gives

(3) 2+|-^T<c(|^l

Now, since K is uncountable, there is an infinite subset Ko of K with supagA-o \b"\ < oo.
Since Ko has an accumulation point, we obtain a contradiction to (3).

Finally, consider the functions /„ defined by fn(z) = z + \/n. Although (/„) is
convergent in M(Q)X, the sequence (1/ /J does not converge in M(£l) by Theorem
4(c).

REMARKS 5. (i) The result generalises [31, Theorem 2] where the non-continuity
of multiplication is proved for M(C) = C(z).
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(ii) The theorem says that M(£2) is a topological algebra in a weak but not in a
strong sense (i.e., multiplication is separately but not jointly continuous); and it is not
a topological field. This may seem undesirable. But in fact there are limitations on
how well a topology on A/(£2) can behave.

(a) There is no completely metrisable vector space topology on M(Q) in which,
for some a e £2, every functional f i-> aj(f) (j e N) is continuous.

(b) There is no Hausdorjf locally convex topology on M(Q.) that is a field
topology; in other words, there is no Hausdorff locally convex algebra topology (even
in the weak sense) on M(Q) in which inversion is continuous.

For (a) note that M(Q) = \J°°=1{f : aj(f) = 0}. Hence by the Baire category
theorem some set {/ : a"{f) = 0} would have to have non-empty interior. This
forces it to coincide with M(Sl), which is absurd. Finally, (b) is a consequence of
Arens's extension of the Gelfand-Mazur theorem [1].

5. The dual of M(ft) and Tietz's problem

For £2 = C we have M(fi) = C(z) = ClxN\ and its dual is C C x N. Thus we may
assume that Q ^ C, or, without loss of generality, that £2 is a domain in C. We will
use the projective description of the locally convex topology on M(£2) to determine
its dual M(Q.)'b under the strong topology.

As usual, let H0(C\K) denote the space of functions that are holomorphic outside
the compact set K and vanish at oo. Then, for compact subsets K\ ,K2 of SI with
^1 C K2 we define the mappings

SKltKl : H0(C \ Kx) x C*'*N -+ //0(C \ K2) x

where
'bj for i

f 0 r

That (//0(C \ K) x €K *N, SKlJCl) " is an inductive system is part of the next result.

THEOREM 6. We have M(Q)'b = indK6jrs! (Ho(€ \ K) x CK*N), the locally convex
inductive limit being taken with respect to the mappings SK2_Kl {K\ C

PROOF. By Remark 2(ii) we have M(Q) = pTOJKeJtn (H(K) X CKxf>i)), where
the projective limit is taken with respect to the mappings TKuKl (Kx c ^2) and
the isomorphism is induced by the mappings TK; here, TKuKl and TK are denned in
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analogy to the mappings TOl ,o2 and To in the discussion preceding Remark 2. This
projective limit is reduced by Runge's theorem ([23, p. 253]) according to which
every element in H(K) can be approximated uniformly on some neighbourhood U of
K by rational functions with poles outside U. Hence

Af (£2); = ind*£jrn (//0(C \ K) x <C**N),

noting that all spaces involved are reflexive ([19,22.7(9), 23.3(1) and §27.3]). And the
locally convex inductive limit is taken with respect to the adjoints T'K Ki. It remains to
show that TKuKi = SK2,Kl for A', c K2. To see this let <p e H0(€\KI) k H(Ki)',b e
CK'xN = (Ck<xN))',g € H(K2) andae C ( ^ x N ) . Then we have

(n,,K2(<P> b), (8, a)) = ((<p, b), TKuKl(g, a))

E

where we have used that

fora e K2 \ Kt (cf. [19, p. 373]). Hence we have TKuKi = S^,*,.

From this result we obtain a concrete representation of M(Q)'.
Define N(£2) as the following subspace of H0(C \ Q) x CQxH: An element (<p, b)

of this product belongs to N{Q.) if there is a compact subset K of £2 with

— 1
(*) cp e //0(C \ K) and b" w(]~X){a) for a e Q \ K, j e N.

; 0' - 1)!
For any (<p, b) e N(Q) and / e M(Q) we define

1
(4) ( , , ) / / /M £

where K is any compact set in £2 satisfying (*) and

(**) y is a Cauchy cycle for K in £2 such that every pole of / in Q, \ K lies outside y.
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LEMMA 3. The functional uiiPib) is well-defined.

PROOF. We need to show that the definition does not depend on K and y. The
independence of y follows from Cauchy's theorem ([24, 10.35]). Let Kv be compact
subsets of Q. satisfying (*) and yv cycles satisfying (**) with respect to Kv, v = 1,2.
We may assume that Kx C K2. Using (*) we obtain by Cauchy's theorem

for any pole a of / in K2 \ Kt. This implies that

1 °°

A711 JYl a€K2\K, y = l

aeK2 j=l

THEOREM 7. We have M(S2)' = N(£2) /« the following sense:

(i) A functional u belongs to M(Q)' if and only if u = U(Vib) for some element
(<p, b) e N(£2).

(ii)The element (<p, b) e N(Q) in (i) is uniquely determined by u, and we have

/ 1 \ ^
w(z) = —u I for z ^ o o i n a neighbourhoodofC \ S2 and

\--z I

b] = u I I /or a e Q and j e N.

PROOF, (i) Firstly we note the following. Given (<p,b) e N(Q) we have for

/ €

(5) (,« ^ £)
Z7tl J \ / aeK ; = 1

where K is any compact subset of £1 satisfying (*) and y is any cycle satisfying (**).
For, if a € K, j e N, and yR denotes the positively oriented circle of radius R > 0,
then

/ ^ I *^ 0
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as R —> oo since lim^oo <p(£) = 0, so that in fact

1
(6) / :<p(S)dt = 0,

which implies (5).
Now, by (the proof of) Theorem 6 a functional u belongs to M(£2)' if and only if

there is a compact subset K of Q and elements <p G H0(C\ K) and & e £*:><N such
that« = SK{<p,b), where 5A- = T'K is the adjoint of the mapping

TK : M(Q) -* / / ( * ) x C(iCxN), / H* ( / - J^h", (aJ(f))aeKJeN

(see Remark 2(i) and the discussion preceding Remark 2); in other words,

for / G M(fi), where y is any cycle satisfying (**). Thus, if we define bj =
—<plJ~l)(a)/(j — 1)! for a e £2 \ K and y e N, we see, comparing (5) and (7), that
u e M(Q)' if and only if u = u{<Pib) for some {up, b) € N(£2).

(ii) Let u e M(Q)' be given by some ((p,b) e N(£2) via u = u(Vib). Define
ff e M(£l)by /fit) = l / ( ^ - a ) y fora e f l , j € M. Suppose that <p is holomorphic
in C \ K, and let z e C \ A". Let y be a Cauchy cycle for K in £2 \ {z} and / a Cauchy
cycle for K U {z} in £2. Then, by (4) and (6), we have

- z 2ni \JY JY,J £ -z

If a e f2 and j e N, we obtain by (5) applied to K U {a}: u{ff) = ba
r This proves

(ii).

We are now in a position to give a new proof of Tietz's theorem that is based on the
duality theory for the space M(£2). This then solves Tietz's problem.

PROOF OF THEOREM 0. Let / e Af (£2) and P = {«i, a2,...} its set of poles. Let
(yn) be a sequence of Cauchy cycles in £2 with the stated properties,

(a) Condition (i) in the theorem is equivalent to
0i) ( / — 12k<kn h

ak) converges in the space M(£2; N),
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where N e @a is defined by N(a) = —oa(f) if a e P and N(a) = 0 otherwise; note
that the limit function is automatically holomorphic in all of Q. By Theorem 4(c) this
is equivalent to

&) ( / - £*<*„ hat)n converges in M{Q).
Since by Theorem 3(a) the space M(Q.) is weakly sequentially complete and has the
Schur property, this in turn is equivalent to

(i3) (M ( / - ^2k<kii h
at))n converges for every u e M{£1)'.

Now represent u e M(£2)' as u = u^<b) with (<p, b) e N(Q). Let K be a compact
subset of Q. satisfying (*). Then yn satisfies condition (**) for the function / —
]C*<* ha" if n is sufficiently large. Hence we have for these n

u (f -T,hat) = T~ f
1

2^7

(see (6)). Since, on the other hand, every <p e Ho(€ \ Q) appears in some pair
(<p, b) e N(Q), we see that (i3) is equivalent to condition (ii) in the theorem.

(b) The reasoning in (a) shows that if (i) (or (ii)) holds, then \im(2niylf f{t;)<p(i;)di;
n—*OQ Y"

= "(*>,(»(£) where g = lim ( / - £*<*„ h"k). Hence (b) follows.

Appendix: Literature on the problem of topologising spaces of meromorphic
functions

We give here a survey of topologies on M{Q) that have been considered in the
literature.

1. The most natural topology in the space of meromorphic functions is the
topology rchor of locally uniform convergence with respect to the chordal metric in the
range space C; see the introduction. This topology was introduced by Ostrowski [21]
to capture Montel's notion of a normal family and is widely used in complex analysis.
However, it does not reflect the linear structure of M(£2). For details see, for example,
[13, VII. 1-3].

2. Topologies on M(Q) as extensions of the topology (of locally uniform con-
vergence) on H(Q.)\ typically, these topologies have the property that every functional
/ (->• aj(f) (a e Q, j e N) is continuous. We have already mentioned [7, 9, 11, 12,
17] in Remarks 1 and 2(iii). Topologies on subspaces of M(Q) with prescribed poles
are given in [5, 10, 27, 32] (see also [2, 3, 4]). Some of the topologies discussed in
these papers are non-linear. We believe that THOI = ~CML is the natural locally convex
topology on
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3. Topologies on M(£2) with an emphasis on compatibility with its algebraic
structure - in particular field topologies. A common procedure in field theory is to
define a field topology via a given absolute value on the field, where the absolute
value may come from a valuation, see [29, 30]. Thus the natural - and essentially only
([23, p. 96]) - valuations v(f) = oa(f) with a e £2 define a metric field topology on
M{Q.) ([30, pp. 9f]) which is not a vector space topology. On C(z) this topology was
introduced by Kiirschak [20] as early as 1913.

Field topologies on C(z) that are also vector space topologies were defined by
Williamson [31, Section 2] (see also [28, IX.3] and [6, Example 4.9-1]) and Boehme
[8]. They are metrisable, non-complete and, necessarily, non-locally convex (see
Remark 5(ii)(b)). It is not difficult to see that Williamson's idea can be extended to
define a metrisable vector space and field topology on any space M(£2). Williamson
[31, Section 3] also defined a metrisable locally convex algebra topology on C(z);
it is non-complete and inversion is necessarily discontinuous (see Remark 5(ii)(b)).
Another interesting topology on C(z) was defined by Waelbroeck [28, IX.4]: It is
its strongest vector space and field topology; it is non-metrisable but sequentially
complete. We do not know if it is complete.

We finish with two problems that seem to be open:
(1) Is there a complete Hausdorff vector space and field topology on M (£2)? Can

such a topology even be metrisable?
(2) Is there a complete Hausdorff locally convex algebra topology (in the strong

sense; see Remark 5(ii)) on M(Q)1 Can such a topology even be metrisable?
The questions are already of interest for M(C) = C(z). In this case, Waelbroeck's

topology on C(z) may be a solution to the first question in (1).
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