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COSET ENUMERATION IN A FINITELY 
PRESENTED SEMIGROUP 

BY 

ANDRZEJ JURA 

1. Introduction. The enumeration method for finite groups, the so-called 
Todd-Coxeter process, has been described in [2], [3]. Leech [4] and Trotter [5] 
carried out the process of coset enumeration for groups on a computer. 
However Mendelsohn [1] was the first to present a formal proof of the fact that 
this process ends after a finite number of steps and that it actually enumerates 
cosets in a group. Dietze and Schaps [7] used Todd-Coxeter's method to find all 
subgroups of a given finite index in a finitely presented group. B. H. Neumann 
[8] modified Todd-Coxeter's method to enumerate cosets in a semigroup, 
giving however no proofs of the effectiveness of this method nor that it actually 
enumerates cosets in a semigroup. 

The present paper presents a proof of the fact that given a finite and finitely 
presented semigroup, the coset enumeration process in that semigroup ends 
after a finite number of steps and that it actually does enumerate the semigroup 
cosets. In this proof we make use of the lemma on stabilization of r initial rows 
in all tables after a finite number of steps (Mendelsohn, [la]) as well as some 
fragments of Schreier's theory—appropriately modified for semigroups—which 
has been described e.g. in [6] and used by Mendelsohn in his proof. The final 
result in this paper is the description of an effective way of determining the 
semigroup Ps of transformations of a set Z into itself, where Z = { 1 , 2 , . . . , fc}, 
isomorphic to a given finite and finitely presented semigroup S of order k -1. 

The paper is self-consistent, however Mendelsohn's terminology is widely used. 

2. Description of the method. Let IT = (al9 a 2 , . . . , an ; u1 = vl9... ,ur = vr) 
be a presentation of a semigroup S. Suppose that ut = ah ah • • • aik and vt = 
api a^ • • • aPf. For each relation u{ = vt we build a double-table with k +1 + 2 
columns. In the î-th row, the first and (fc + 2)-nd entries are to be the integer i. 
The (fc + l)-st and last columns of this table are called final columns. At the top 
of this table between columns, the consecutive letters of the word u will appear 
followed by—one position being left empty—the letters of the word vt. (See 
Table I). The q-th column will be called the "/-column" of the letter aiq, while 
the (q + l)-st column will be called the "r-column" of aiq. 

For the generators we build a table with n + 1 columns. At the top of this 
table between i-th and (i + l)-st columns we place the gererator av In the i-th 
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row of the table of generators, the first entry is the integer i. The unfilled places 
in the table of generators are ordered from left to right and each place in the 
i-th row precedes any place in the /-th row if i<j. If in the i-th row and 
(fc + l)-st column of the table of generators appears the integer c, then we say, 
that from the table of generators follows the equation i • ak = c. 

TABLE OF 
GENERATORS 

axa2- - an 

1 
2 
3 
4 
5 

We build one table of the semigroup S, by placing side by side the 
double-tables corresponding to the relations ut = vt i = 1, 2 , . . . , r. 

A.t the end of the table of the semigroup S we place the table of generators 
(see B. H. Neumann [8]). 

The process of coset enumeration is based on the principle of mutual 
adjustment of final columns in each double-table. Let i be the number 
("name") of some element seS. The equation i • t = j where te S denotes that 
the element s • t has number /. From equations i - uk=q and i • vk = z where 
uk - vk is the relation from ir, follows q = z since svk = suk in S (q is the 
number of suk while z is the number of svk). 

The above idea is exactly that of Neumann [8]. Let us formulate a proce­
dure, according to the above idea. 

2.1 If from the table of generators follows k • at = m and in the "i-column" 
of a{ in any double-table is entered the integer k while the "r-column" of at is 
the final one of this table, then we enter the integer m into both final columns 
of this table, in the same row. 

The process of coset enumeration of the semigroup S proceeds as follows: 
At the first unfilled place in the table of generators we enter the integer 2. 

This will yield the equation 1 • ax = 2. If in any double-table in the "/-column" 
of ax is entered the integer 1, then in "r-column" of ax we place the integer 2. 
Then we proceed according to (2.1). 

TABLE I 

ah "h"' aik «px ûft • • • tfp, 

1 1 
2 2 
3 3 
4 4 
5 5 
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2.2 Now, let us suppose that no rows of a double-table are completely filled. 
Then we enter into the first unfilled place of the table of generators the next 
integer i.e. 3. This will yield the equation 1 • a2 = 3 (or 2 • ax = 3 if there is one 
generator in IT only). We proceed as before, we enter the integer 3 into all 
appropriate places of the double-tables and we apply the principle (2.1). If the 
assumption (2.2) holds, then we continue the process for the integers 
4, 5 , . . . , i -1. The integer i is then entered into the first available place of the 
table of generators. This induces an equation fc • a, = i. Next we proceed as 
before: 

If in any double-table in the "/-column" of a; is entered the integer k, then 
in "r-column" of a,, in the same row we place the integer i. Then we proceed 
according to (2.1). 

At this stage two possible situations may be observed: 
1° No rows of the double-tables are completely filled, then at the first unfilled 
place of the table of generators we enter the integer i + 1 and we proceed as 
before. 
2° A certain row of a double-table is completely filled—we have a maybe new 
equation i • ax = d or r • a,-, = i. Then, in the first case the integer d is placed in 
the i-th row, in the (/ + l)-st column of the table of generators, while in the 
second case the integer i is placed in the r-th row, /-f 1-st column of the table 
of generators. If the place [i, / +1] in the first case or the place [r, / +1] of the 
table of generators in the second case, has been yet unfilled, then we say that 
creation occurs. These equations are entered in the double-tables as described 
above. If no new equations of type r • a^-, = i or i • ax = d are induced, then we 
proceed to the integer i + 1. 

There are two other situations in which one does not proceed to the integer 
i + 1. The first is the closure (see Mendelsohn [1]). Closure occurs if after all 
possible entries of the integer i and smaller integers the first i rows of the table 
of the semigroup S are completely filled. In this case, if the other case does not 
occur, we stop the process of coset enumeration. The second case is redun­
dancy. Redundancy may occur when proceeding as described in 2°. Then we 
may obtain a new equation j • ad = k (j < i) while from the table of generators 
follows that ; • ad = m and m ̂  fc. Suppose that m < fc. Then we replace every 
appearance of fc by m and we delete the fc-th row from the table of semigroup 
5. Next, every integer n which is greater than fc is replaced by (n-1) at all its 
appearances, and we fill the double-tables in accordance with the new equa­
tions. If new redundancy appears, we alter the table of the semigroup S 
accordingly. If there are no further redundancies or possible entries following 
from the table of generators and if closure results, we stop. If closure does not 
result, then we enter into the first available place in the table of generators the 
smallest integer which does not appear in any previous place and continue as 
before. 
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3. The proof of the finiteness of the enumeration process after a finite 
number of steps for a finite semigroup. One can easily observe that the first 
appearance of the integer m in the k-th row, (i + l)-st column of the table of 
generators implies k<m. Indeed, if k > m, then the first k - 1 rows of the table 
of generators are completely filled by integers smaller than m i.e. not greater 
than fc-1. It follows that the first k - 1 rows of each double-table are 
completely filled by integers not greater than k - 1 . Thus closure would appear 
before entering m. 

In the sequel, we shall use the notation u = v to denote the fact that words u 
and v are identical, i.e. identical expressions. 

Let 7T = (a1? a 2 , . . . , an ; ux = vu u2 = v2, • . . , ur = vr) where uh vh (i = 
1, 2 , . . . , r) are words in the generators au . . . , an be a presentation of a 
semigroup S. The notation |— w = u means that there exists a finite sequence of 
words w = C0Xn-.,Ck = u such that C^X^Y, Ci+1 = XRtY, i = 0, 
1 , . . . , k - 1, where X, Y are words in the generators au . . . , an or empty 
words, while Tt = Rt or JRJ = Tt is a defining relation from TT. The moment of 
placing the k-th entry (regular or not) into the table of generators will be 
subsequently called the k-th step of the process. 

For the fc-th step of the process we define below partial functions N and if/, 
which depend implicitly on k. 

N maps the set of all words in generators au a2,..., an into the of all 
positive integers, as follows: 

1° N(A)= 1 ( A - empty word) 
2° If from the table of generators follows k • a{ — s and for a word w 

N(w) = k, then N(wat) = s. 
It is clear, that if w = ah ah • • • aim, u is a word in generators au a 2 , . . . , an or 

the empty word and N(w),, N(uw) are defined, then N(uw) = 
( • • • ((N(u) • ah) • ah) • • • ) • aim. (If p is an integer and aik is a generator then 
p - aik denotes the integer which is placed in the p-th row, (ik + l)-st column of 
the table of generators, while p • w denotes the integer 
( • • • ((p • ah) • ai2) • • • • ) • aim). 

From this definition follows that if N is defined for the word w == ah ah • • • aim 

then N is also defined for the words ah ah • • • ait for any t such that 1 < t < m. 
The integer JV(w) will be called the number of the word w. 

Let the partial function if/ map integers into words in generators 
au a 2 , . . . , an or the empty word as follows: 

1° iMl)sA 
2° If the first entry of s appears in the k-th row, (i + l)-st column of the 

table of generators and ^(k) is defined, then 

From this definition follows that if i// is defined for the integer s then if/ is 
defined for all the integers t where 1 < t < s. 
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COROLLARY 1. If the function N is defined for the word w = ah ah • • • aim then 
the function \\t is defined for the integers 1 , 2 , . . . , s where s = 

max {N.(ah • • • ait)}. 
l < t < m 

Note that for given integers m and s, if the number of the completely filled 
rows in the table of generators is sufficiently large, then for words of length not 
greater than ra, the values of N are defined and all the words 
^(1), iM2), . . . , <Ks) are defined. 

LEMMA 1. If \—w = u and a sufficiently large number (which depends on w 
and u) of rows of the table of the semigroup S are completely filled i.e. the 
number fc of the step of the process is sufficiently large (see Lemma 4) then 
N(w) = N(u). 

Proof. If |— w = u then there exists a finite sequence of words 
Co,Cl9...9Ck such that w^C0, u = Ck, Q^XTtY, Ci+1 = XRtYi = 0, 
1 , . . . , fc - 1 and Tj = Rt or Rt = Tt is a defining relation from TT. For the proof, 
we need to consider a transition \—XTY=XRY where T=ah ah • • • ait, R = 
ah ah - - - ajr and T = R is a defining relation from TT. 

Let N(X) = p. Since in p-th of the double-table corresponding to the relation 
T = J R the same integer is entered in the final columns, let this integer be z, 
therefore ( • • • ((p • ah) • ai2) ) • ait = ( • • • ((p • ah) • ah) ) • ajr = z. If 
Y=ahah" • aly then 

N(XTY) = ( • . . ( ( ( . . . ((p • o j • ai2) . . . . ) • ait) • a,) • • • • ) ' aIy = 
= ( • • • ( (* • ah) • at2) ) • aIy = 
= ( • " ( ( ( • • • ( ( ? • %) * ah) - • • - ) - au) • ah) ) • % = 

= N(XRY). 

Thus N(Q) = N(Ci+1) for i = 0, 1 , . . . , fc - 1. Hence N(w) = N(w). 
Creation occurs, if after entering the integer s (which corresponds to the 

equation k'at = s) into the table of generators in the k-th row, (i + l)-st 
column, from double-tables follows the equation r • a]? = s or s • ax - d and this 
equation has not been entered into the table of generators. Redundancy occurs 
when in the table of generators the equation k • ax = s is entered while from the 
double-tables follows an equation k • at = t and s ¥• t. Entering equations which 
are obtained by creation (r • a^, = s or s • at = d) into the table of generators as 
well as the substition of the integer t by s, if t > s (and 5 by t otherwise) in case 
of redundancy, will be called non-regular entering. 

LEMMA 2. Every non-regular entering into the table of generators follows from 
the presentation TT of the semigroup S i.e. 

1° If equation k • at = s induces a new equation r • a; = s then |— ^(r) a, = 
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2° If equation k • at = s induces a new equation s • a{ - d then |— i^(s) ax = 

3° 1/ equations k - at = s and k * at = t appear, and s^ t then |— i/f(s) = *jt(t) 
moreover, if N(w) = s then |— w = i/^(s). 

Proof. In proceeding with the enumeration process we enter non-regular 
enterings into the table of generators in some order. The proof is by induction 
on the succession of non-regular enterings. 

Let us note that as long as non-regular enterings do not appear, each 
equation k- at = s corresponds to the identity i//(k)af = «A(s). 

The induction step. A non-regular entering occurs. Assume that the lemma 
holds for the previous enterings. 

1° In some double-table in the p-th row we have: 

( * • ' ((p • aa) • % ) • • • • ) * ay = k, ( • • • ((p • a€) • a j • • • • ) • a„ = r 

where the relation aaap • • • ayat = a^an • • • a^ belongs to ir. This case corre­
sponds to creation which induces a new equation of the type r • ay = s. Since 
previous non-regular enterings follow from the presentation ir, therefore 
|— ilKp)a^ari "• aai = i/r(r), |— p{p)aaa^ • • • ay = ^(k) and if N(u) = r then 
|— u = \jf(r). Now, we enter into the table of generators the equation fc • at = s. 
Since the previous non-regular enterings follow from the presentation ir, 
therefore |— i/Kk)^ = *lf(s). A new equation r • at = s is induced. Since 
|— iKp)%^ • • • a^a, = ifr(p)aaap • • • ayat therefore |— 0(0 a,- = $0*)^. Hence 
|— iKr)̂ j•< = *l*(s)- Since N(uaj) = s and |— uaj = \lf(r)ap therefore |—ttay = i^(s). 

2° In some double-table in the p-th row we have: 

( • • • ((p • aa) • ap) ) • ay = k, p • u(A) = d, 

where u(A) is a word in generators ax,..., an and the relation 
aa

ap ' ' ' GLyCka\ = w(A) belongs to ir. This case corresponds to creation which 
induces a new equation of the type s - ai=d. Since previous non-regular 
enterings follow from the presentation ir, therefore |— ^p)aaa^ • • • ay = i//(fc), 
|—i//(p)u(A) = i/f(d). Now, we enter into the table of generators the equation 
k - at = s. Since the previous non-regular enterings follow from the presenta­
tion ir, therefore \— ijj(k)ai = IJJ(S) and if N(w) = s then |—w = i/r(s). A new 
equation s - at = d is induced. Since f-̂. ^{p)aaa^ • • • a^a^ = i/f(p)w(A) there­
fore \^ril/(s)al = il/(d). Since N(waI) = d and f-̂  wat = ^{s)a{ therefore 
h? wo, - f/r(d). 

3° An equation k • a{ = s is entered into the table of generators. In some 
double-table in the p-th row we have: 

(• - - ((p - aa) - ap) • • - -) - ay = k, p - u(A) = t where u{A) is a word in 
generators ax,..., an and the relation aaa^ • • • aya{ = u(A) belongs to ir. This 
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case corresponds to redundancy. Since the previous non-regular enterings 
follow from TT therefore |— \\i{p)aaa^ • • • ay = ij/(k), |— i//(p)w(A) = i/f(r), 
|— ^ik)at = ij/(s) i.e. |— ifj(p)aaafi • • • aya{ = ijf(s). We obtain the equation 
k • ai = t as a result of the adjustment of final columns of the double-table. 
Since |— ilKp)aaap • • • ayax = ij/(p)u(A) therefore |— ^s)= t/>(0-

Suppose that s < t. In effect of a redundancy we delete the f-th row and we 
replace any integer greater than t by t-1. Now, we modify the function N and 
$ for the next step. 

N(w) if N(w)<r 

s if N(w) = t 

N(w)-1 if N(w)>t 

ijj(x) ifx<t 

ijt(x + 1) if x > t 

N(w) = 

*(*) = { 
It is clear that any of the equations k • at = s entered into the table of 

generators implies at present |— iKk)at = if/(s) and if N(w) = s then |— w = i)/(s). 

LEMMA 3. If N(u) = N(w) then |-^w = w. 

Proof. By lemma 2 N(u) = s implies |—i* = «Ks) and if N(w) = s then 
|—w = i/f(s). Hence \—u = w. 

LEMMA 4. (Mendelsohn [la]). After a finite number of steps the first r rows of 
the table of the semigroup S are stabilized i.e. none of the entries are further 
altered because of redundancy. 

Proof. Use induction on the row number. For i = 1 in the first row of the 
table of the semigroup S there is only a finite number of places and each is to 
be occupied by a positive integer. The effect of a redundancy is to replace some 
of these entries by some smaller positive integer and this can happen only 
finitely often. Hence, after a finite number of steps the first row becomes 
stable. 

If closure does not result for the first k rows then suppose that the first k 
rows are stabilized after a finite number of steps. Since the first appearance of 
k + 1 is somewhere in the first k rows beyond this point no redundancy 
involves the replacement of fc + 1 by a smaller integer. The k + 1 row will not 
be deleted. 

The argument used for the first row is now valid for the (k + l)-st. 
This proof is an exact copy of the proof of Mendelsohn. 
If the process is finite for s rows, then the function N, which enumerates the 

cosets of S and maps the set of all words in the generators al9..., an onto the 
set{l, 2 , . . . , s} as well as the function ip leading from { 1 , 2 , . . . , 5} into the set 
of all words, are defined. 
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If the process continues indefinitely without closure then these functions are 
also defined. The function N maps the set of all words onto the set of all 
positive integers while the function ij/ maps the set of all positive integers into 
the set of words. In such a case these functions, of course, need not be defined 
effectively. By lemma 1, 2, and 3 we obtain the following 

THEOREM. The function N enumerates the "cosets" of a semigroup i.e. 
N(u) = N(w) iff |—u = w. The set i/f(l), <Jr(2), • • • is a right-sided "Schreier 
system" for IT i.e. if ^(j) = ah • • • ax. then ah • • • ai._l=\if{k) for some integer 
k<j. The mapping <f)u : i —> N(ij/(i) • u) is an embedding of a semigroup TT in 
the semigroup of transformations of the set of all integers. 

COROLLARY 2. A semigroup S is finite iff the process of its coset enumera­
tion stops after a finite number of steps. 

REMARK. In this paper, the role of an algorithmic set described by Mendel­
sohn in [1] is played by the table of generators. Note that each generator at 

induces a mapping of the set of all positive integers into itself, since we fill all 
the unfilled places of the table of generators. 

4. EXAMPLES. TO illustrate the enumeration process we consider the semi­
group ir = (a,b; ab2=b2, b2a = a). It is a particular case of a semigroup 
investigated by Neumann [8]. We build the table of the semigroup S and we fill 
the rows of the table until redundancy appears. 

abb 

1 2 5 7 
2 4 7 
3 6 
4 
5 
6 
7 2 

b b 

1 3 7 
2 5 7 
3 7 
4 
5 7 
6 
7 

b b a 

1 3 7 
2 5 7 
3 7 
4 
5 7 
6 
7 

2 

J 
6 

2 

a 

1 2 
2 4 
3 6 
4 
5 
6 
7 2 

a b 

1 2 3 
2 4 5 
3 6 7 
4 
5 7 
6 
7 2 

Two equations 5 • b = 1 and 7 • a = 2 follow from the double-tables. These 
equations are entered into the table of generators and then all appropriate 
places in the double-tables are filled. We obtain redundancy. In the double-
table the part underlined induces a new equation 7 • a = 4. Since from the table 
of generators follows 7 • a = 2, therefore we delete the 4-th. Next, we replace 
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every appearance of 4 by 2 and we replace the numbers of the rows 5 , 6 , 7 , . . . 
by 4, 5 , 6 , . . . respectively. We have now obtained the altered table. 

abb b b b b a a a b 

1 2 4 6 
2 2 4 6 
3 5 
4 
5 
6 2 
7 

1 3 6 
2 4 6 
3 6 
4 6 
5 
6 
7 

1 3 
2 4 
•3 6 
4 6 
5 
6 
7 

6 
6 

2 
2 
5 

2 

1 2 
2 2 
3 5 
4 
5 
6 2 
7 

1 2 3 
2 2 4 
3 5 6 
4 6 
5 
6 2 
7 

We then continue according to the previously described method and we have 
the following situation: 

abb 

1 2 4 6 
2 2 4 6 
3 5 7 8 
4 5 7 8 
5 5 7 8 
6 2 4 6 
7 2 4 6 
8 5 7 8 

b b 

1 3 6 
2 4 6 
3 6 8 
4 6 8 
5 7 8 
6 8 6 
7 8 6 
8 6 8 

b b a 

1 3 6 2 
2 4 6 2 
3 6 8 5 
4 6 8 5 
5 7 8 5 
6 8 6 2 
7 8 6 2 
8 6 8 5 

a 

1 2 
2 2 
3 5 
4 5 
5 5 
6 2 
7 2 
8 5 

a b 

1 2 3 
2 2 4 
3 5 6 
4 5 6 
5 5 7 
6 2 8 
7 2 8 
8 5 6 

Closure occurs since 8 rows of the table of the semigroup S are completely 
filled with the integers which are not-greater than 8. We stop the enumeration 
process. 

The semigroup S is isomorphic with the semigroup Ps of transformations of 
the set {1, 2 , . . . , 8} generated by two transformations </>a, <\>b such that 

/ l 2 3 4 5 6 7 8\ 
^ \2 2 5 5 5 2 2 5/ 

/ l 2 3 4 5 6 7 8\ 

^ " 1 3 4 6 6 7 8 8 6/ 
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Moreover, we find the set of coset representatives 

<K6) s *>*>> *(7) = bab, i/f(8) s fcbft. 

2° The cyclic semigroup S = (a; an = a) is isomorphic with the semigroup Ps 

of transformations, generated by <j>a such that 

fk + 1 

- u 
..v . for k = l , 2 , . . . , n - l 

<Mfc) = 1 ^ - f 
for fc = rc 

3° The free semigroup on n generators au..., an is isomorphic with the 
semigroup Ps generated by the transformations <\>ax,..., <\>an such that 

<l>al(k) = (k-l)n + (i + l) for i = l , 2 , . . . , n and fc = l , 2 , . . . 

4° Our method allows to enumerate the cosets of a semigroup with identity 
represented by the empty word A. 

Let 77 = (a, b, A; ab2 = A, a2 = b3, ba = b2a) where A denote the empty word. 
We assign the number 1 to A. We then continue the enumeration in a well 
known fashion and we obtain the following results N(a) = N(b) = N(A) = l. 
Thus IT is the presentation of the trivial semigroup. 
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