ON INGHAM’S SUMMATION METHOD
S. L. SEGAL

Ingham (2) has defined the following summation method. A series 3" a, will

be called summable (I) to sif

lim Z 2 I:E]a,, = s,

Ty nKT n
where as usual [x] is the greatest integer <x. (An equivalent method was
described somewhat earlier by Wintner (7) ,who called it “an Eratosthenian
method”’; however, the notation (I) and the name “Ingham summability”
introduced by Hardy (1) seem to have become usual.)

Ingham has proved that although the method (I) is not comparable with
convergence (and so, in particular, not regular), for every §, 0 <8 < 1,
summability (C, —§) implies summability (I), and for every § > 0, sum-
mability (I) implies summability (C, 8), where (C, k) denotes the Cesdro mean
of order k. Pennington (4) and Rajagopal (5) have in fact given explicit con-
structions of convergent series whose Ingham sum is unbounded asx — «.

In the present paper we are mainly concerned with Tauberian converses of
the above results and the possibility or impossibility of inferring (I)-sum-
mability from Abel or (C, k)-summability for some £ > 0 under certain auxiliary
restrictions on {a,}. Other Tauberian theorems stated by Rajagopal (5) with
brief indications of proof connect generalized Lambert summability and
Pennington’s generalization of Ingham summability (4). A special case of one
of these results is that Lambert summability (and so a fortior: (C, k) sum-
mability) together with a Schmidt condition on I(f) (see below) implies the
convergenceof I(t)ast — .

The related question of “limitation” theorems for (I)-summability is also
discussed.

Throughout this paper all sequences are of real numbers. u(n) will denote
the Mobius function

M@) =3 i), Ne) = XA,

n<zr n<z
¢(n) is Euler’s ¢-function, [x] is the integral part of x, and {x} = x — [x].
> ain will denote a sum over the positive divisors of #. Given a series Y a,, it
will be convenient to denote the sum

e
<t Llnd™
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by I(t), so that the (I)-sum of " a, is equal to lim ., I(f) (if it exists). The
series Y a, will be called (I)-bounded if

— o < liminf I(¢) < lim sup I(t) < ».
Y]

Since no more than one series will be under consideration at any one time, the
notation 7(¢) (which depends implicitly on Y a,) should not lead to any con-
fusion. All other unexplained notation or terminology is asin (1).

THEOREM 1. Let 3 a, be a series of real numbers which is Abel-summable and
such that
2amdag = O(1) asn — ®,

Then Y a,1is summable (I).

Proof. We show first that it is sufficient to prove the theorem if Abel-
summability is replaced by summability (C, 1). Let >4/, da; = b,. Then

® o= 152

by Mébius inversion and

Ta-T T MRk SN = 5 YN/

n<r n<rodin a<r

(ford > r, the sum defining N (r/d) is void and N(r/d) = 0). And so

Zan

nr

o)

<3 Ld o)) < sup ol sup 35 5 NG/,

d=1

But the second factor is known to be bounded (6, correction) and b, is bounded
by hypothesis. Hence 3 a, is bounded, and so by a well-known Tauberian
theorem (1, Theorem 92), 3" a,is (C, 1) summable.

The condition Y41, das = O(1) also implies that

@ 10 -La[t] -1 S S - 0w,

n<t n<t din

and that fory > x,

1 1
I() = IG) = 5 2 2 dag — 2, 2 dag
Y w<y X n<z dln
1 1 1
={=-= dag + =~ d
<3’ X n<z dzln ta + yx<zn:<ydzl7; ta

—(L%)I () + o<y x) = o<y—§-’f) :

since I(x) = O(1) by (2). Hence I(y) — I(x) — 0 whenever x and y are such
that y > x and as x — «, y/x — 1. It follows that I(¢) is a slowly oscillating
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function defined on (0, =) in the sense of Schmidt. (There are two definitions
of slowly oscillating functions according as the function in question is defined
over (0, ©) or (— o, =). Here we use the definition appropriate to (0, ©); see
(1, pp. 124, 288).)

We could now appeal to Rajagopal’s result quoted above. However, a direct
proof based on the known result

3) J T vema =1 T - e,

n<z

(e.g. 1, p. 377) and using the Wiener-Pitt Tauberian theory is also possible and
is given below. For completeness, we give first a proof of (3) slightly different
from thatin (1).

Sincefort < 1, N() = Oand I(¢) = 0, we have

f: I(t)A;(x/t) o= f IO sy dt = flzwx/z) S da [ ]

a<it

=£dad f ML—J dz:«dad fl N(u)[-;—d]du

z/kd

= Zdad > N(u) du

a<z k<z /d 1

= % 2 dag 2 1k g Ve /kd) — M(x/kd)}
-1 T - da

on letting x/t = u and using the fact that by partial summation

N — M) =X ED 5 @) = [T Noa
a<z d a<z 1

and that, asis easily verified,
1
> i N@/k) =3 Mx/k) =
k<z k<z

But as noted above, Y. a, is (C, 1)-summable to 4, say, under the conditions
of the theorem. Hence writing G(t) = (1/t)N(1/f), we have, by (3),

4) liml f I()G(t/x) dt = lim f I(‘)N( /t)dt

x—)m T

= lim = Z(x——d)ad—A

T30 X i<z

Also, by a classical result of Landau, |N(x)| = O(e=*1°¢ %) for some & > 0, and
N(u) = 0for0 < u < 1;hence |N(u)|/uisintegrablein (0, «) and

K= J;ml"N—fft)"du = f:% IN(1/1)|dt = f:’ G(t))| dt,
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on setting ¢ = 1/u. Furthermore, by partial summation, we have, by classical
results of Landau,

) J:DG(t)dt _ fo %N(l/t) dt = fﬂiﬂdu
~ lim <N(k)logk -z ’%’5—4) .

Hence by (5), (4) may be written as

©) 1im}c fom IO)G(/x) dt = A f:’ G() dt.
If

f Gt ™dt =0

0

for any real y, it will then follow by a theorem of Pitt (1, Theorem 233) that
lim I(¢) = 4,

>0

which will prove the theorem. But this last condition is readily verified, since
for y = Oitiscontained in (5), while for real y # 0 we have

[ee] 1 -
f G(If)t_iy dt = f N(l/;)t—l—iy dt = J‘ N(u)u—H—iu du
0 0 L

. (R*N@GE) 1 ,;(d)) 1
= l <.— - _Ti_ = — = . O
o \ 1y 1y d% a" e —iy)

(where ¢ (s) is the Riemann zeta-function). Hence the theorem follows.

Remarks. If the assumption that ) a, is Abel-summable is replaced by the
stronger hypothesis of (C, 1)-summability, then the hypothesis 34, da, = 0(1)
can be altered to the weaker pair of conditions

(1) Xain daqg > — K for some constant K,

(ii) X a,is (I)-bounded,
and again we may deduce that 3 a, is (I)-summable since I (x) can then be
shown exactly as above to be slowly decreasing in the sense of Schmidt, the
remainder of the proof going through as before. In fact, using (1, Theorem 94)
instead of (1, Theorem 92) we may assume Abel summability. However,
(C, 1)-summability and condition (ii) alone are not sufficient to imply (I)-sum-
mability as the explicit example of Theorem 2 below shows. (It will be noted
that the examples of Pennington and Rajagopal of convergent series that are not
(I)-summable are not (I)-bounded. On the other hand, the example below,
although it is (I)-bounded and (C, 1)-summable, is not convergent.)

Also, under the assumption of (C, 1)-summability of Y a, and condition (i),
if we replace (ii) by the weaker condition that

1 z
; fl I(t)dt = 0(1),
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we may deduce the weaker conclusion:

lim = J‘ I(t) dt

I—\oo

exists. For it is easily verified that under these conditions,

S() =3—1C fl 10) dt

is slowly decreasing in the sense of Schmidt, and it then follows by an argument
of Hardy (1, p. 304) that

f%(‘—)zv(x/t)dz —Ad+o(l) asx— o,

the remainder of the proof being the same as in Theorem 1.

THEOREM 2. There exists a series Y a, that is (I)-bounded and (C, 1)-summable
but not (I)-summable.

Proof. Let
— Z ﬂ(d) ( l)n/d

din
That X a,is (I)-bounded is almost trivial since by M&bius inversion

Zdln dag = n(“l)n
and hence

10 -% -1 Sdo -1 2 n(-y

a<'t n<t din n<t

S e - oqy;

but does not converge as t— o. Hence ) a, is (I)-bounded but not
(I)-summable.
To show that 3 a,is (C, 1) summable, consider first the function

F(n) = 4;,; ¢(3d).

Then

F(n) = 43 ¢(k) = 2n, if » is even.

klln

30, if # is odd,

Hence

n(=1)"=F@n) —n= 4%% 6 (3d) -—dzw; 6(d).

Hence by M&bius inversion,
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_ no e _ ) —¢(n), if # is odd,
iin = %; #(@) a (=D = {4¢(%n) — ¢(n), if nis even.

Now by a well-known elementary theorem of Mertens,

2 ¢(n) = ~x + R(x),

n<r

where R(x) = O(x log x). Hence,

lI

M Tma= =T 60 + 4T 6(n) = — Hx'— R@) + 4T o)

n<z n<z n<z n<iz
n even

4R (3%) — R(x),
and also by partial summation,

1) _ z 17y _
- > 4, = OO =RE) | (*4RGD = RO,
1
(where R(t) = —38¢/#* for 0 < ¢ < 1). Equations (7) and (8) give for the
(C,1)-mean of 3 a,

® 1Y w-ma - [ R TR,
_ J‘”R(t) f R(t)dt —3/x

"R 4

1

n<z

It remains to show that

converges as x — . We have on the one hand, by partial summation,

10 3t D KDLy [T

n<T n

and, on the other,

ay Ty sl _sudis] 15 g x[x]
1

- gd@#}i + 52 #@) [3]2 2xd<z”(d){ }2
i TS ST H

21x 2 4@ {4}2
= Zx 4 T o) — 5 T @ {§}2+o<1>
=L BB o,
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since

) [3] -1, D ooam,  Ta@ {3} — o).

i<z a<z

(This last can be deduced from ‘‘Axer’s Theorem” (1, pp. 378, 386).)
Comparing (10) and (11), we have that

z
lim f RW 4 - 3,
o0 Y1 F T
and hence by (9) that 3 a, is (C, 1)-summable to 0, which proves the result.
Remarks. It is obvious that, as mentioned above, 3 a, is not convergent,
sinceif p isany odd prime, a, = (1/p) — land hencea, # o(1)asn — .

Pennington (4, p. 79) and Hardy (1, Theorem 266) independently noted the
following ‘““limitation’’ theorem for (I)-summability:

If 3 a, is (I)-summable, then a, = o(log log n).
A limitation theorem of a somewhat different sort is:
If 3 a,is (I)-summable, then
2 a4, =o(x")
n<zr
for everyd > 0.

This latter is a corollary of Ingham’s result that (I)-summability implies
(C, 8)-summability for every 6 > 0 and a well-known theorem on Cesaro means
(1, Theorem 46). This latter result can be improved to:

THEOREM 3. If 3 a, is (I)-summable, then

> a, = o(log x).
n<z

Proof. By altering a,, if necessary, we need only consider the case where
> a,issummable (I) to 0. For m a non-negative integer, let

m .
K(m)=%m[(m)—;,.dadl:d]_n\;n;,,;dad ifm>1,
0 if m = 0.

Then K(m) = o(m)asm — =,
Subtracting and using M&bius inversion gives

i = 2 X wn/)K@ K@ - 1) = ¥ HORO-RE=D)
alm

ar=m

and hence
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12) Y oY EOK@D-K@-1) K@ -K@=1 ..

m<z dar<z r d <z d
<K@ ,(Nx/d) NE/d+ 1>)>
B dé: a @ < d ~  d+1

since K(0) = 0and N(x/[x] + 1) = 0.
Since K (m) = o(m) as m — =, the required result will follow by a simple
Abelian argument, provided we can prove that

(13) dzgd N(Z/d) — N(x£<i_}1— 1) = O(log x) asx — o

and, for any fixed D > 1,

(14) d;)d N(a;/d) - N(xg(j_-il_ D) =0(1) asx — ©,

But the left-hand sides of (13) and (14) are maximized by

(15) S IN(/d) — NGe/(@ + 1) + 3 H&L@E DI
a<v d<v + 1

withy = xand v = D respectively.
Butsince |u(m)| < 1,

>IN/ - Ne/@+ 1) =| T 3 )

a<v d<v z/(@+H<m<z/a M

<> X o> Lo 40w

d<v z/(@+1)<m<z/a M z/([o)+1)<m<z M
and since | N (x)| < 1,

|N(x/(d + 1)) 1 _
aZ@ d+1 <d<vd+l—0(l+]ogv).
Takingv = xand v = D > 1 (D fixed) we obtain (13) and (14) respectively,
and so the theorem.
If 3 a,is (I)-bounded, then K (m) = O(m) and the same proof gives
Z ap = O(lOg x)’

. . n<z
immediately.

Remark. By Rubel’s result quoted above, the second sum in (15) is in fact
O(1) forv = xalso.
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