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EQUI-DISTRIBUTION OF VALUES FOR THE THIRD

AND THE FIFTH PAINLEVÉ TRANSCENDENTS

SHUN SHIMOMURA

Abstract. We show equi-distribution properties of values for the third and

the fifth Painlevé transcendents in a sectorial domain. For our purpose we

define a characteristic function of sectorial domain type by employing value

distribution theory in a half plane. Some special cases admit analogues of

Borel exceptional values. Similar results are obtained for modified versions of

these Painlevé transcendents, which are of infinite growth order.

§1. Introduction

For a meromorphic function f(z) in C, the proximity, the counting and

the characteristic functions are given by

m(r, f) :=
1

2π

∫ 2π

0
log+ |f(reiφ)| dφ,

N(r, f) :=

∫ r

0

1

t
(n(t, f) − n(0, f)) dt + n(0, f) log r,

T (r, f) := m(r, f) +N(r, f)

with log+ x := max{log x, 0} (x > 0), respectively, where n(t, f) denotes

the number of poles of f(z) in the disc |z| ≤ t, each counted according to

its multiplicity (see [2], [4], [5]). Moreover, for a ∈ C ∪ {∞}, we write

m(r, a, f) :=

{
m(r, 1/(f − a)) if a ∈ C,

m(r, f) if a = ∞,

and in like manner we use the notation N(r, a, f) denoting the counting

function. Such abbreviation is also used for the proximity and the counting

functions in a sectorial domain, which will be defined in Section 2. The
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growth order and the exponent of convergence for a-points (a ∈ C ∪ {∞})

are defined by

̺(f) := lim sup
r→∞

log T (r, f)

log r
, σ(a, f) := lim sup

r→∞

logN(r, a, f)

log r
,

respectively. Suppose that 0 < ̺(f) < ∞. Then, by the second main

theorem ([2], [4], [5], [21]), for any a ∈ C ∪ {∞} with possible two excep-

tions, we have σ(a, f) = ̺(f) implying equi-distribution of values. Such an

exceptional value a satisfying σ(a, f) < ̺(f) is called a Borel exceptional

value.

Let us consider Painlevé equations

w′′ = 6w2 + z,(I)

w′′ = 2w3 + zw + α,(II)

w′′ =
(w′)2

w
−
w′

z
+

1

z2
(αw2 + γw3) +

β

z
+
δ

w
,(III′)

w′′ =
(w′)2

2w
+

3

2
w3 + 4zw2 + 2(z2 − α)w +

β

w
,(IV)

w′′ =
( 1

2w
+

1

w − 1

)
(w′)2 −

w′

z
(V)

+
(w − 1)2

z2

(
αw +

β

w

)
+
γw

z
+
δw(w + 1)

w − 1

( ′ = d/dz), where α, β, γ, δ are complex parameters. All the solutions

of (I), (II) and (IV) (respectively, (III′) and (V)) are meromorphic in the

whole complex plane C (respectively, the universal covering of C \ {0}). In

(III′) and (V), replacing z by ez, we get modified versions of them:

w′′ =
(w′)2

w
+ αw2 + γw3 + βez +

δe2z

w
,(III′0)

w′′ =
( 1

2w
+

1

w − 1

)
(w′)2(V0)

+ (w − 1)2
(
αw +

β

w

)
+ γezw +

δe2zw(w + 1)

w − 1
,

whose solutions are meromorphic in C.

For solutions of (I), (II) and (IV), equi-distribution properties of values

immediately follow from the finiteness of their growth order ([1], [13], [14],

[19]). Each solution wI(z) of (I) is transcendental, and satisfies ̺(wI) = 5/2
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([7], [14], [15], [19]), which together with the well-known Clunie lemma

implies m(r, a, wI) = O(log r) for every a ∈ C ∪ {∞}. Observing that

logN(r, a, wI) − log T (r, wI) = log
(
1 −

m(r, a, wI) +O(1)

T (r, wI)

)
= o(1),

we have the following:

Theorem A. For every a ∈ C ∪ {∞}, each solution wI(z) of (I) sat-

isfies σ(a,wI) = ̺(wI) = 5/2, namely, wI(z) admits no Borel exceptional

values.

For (II) (respectively, (IV)) each transcendental solution wII(z) (respec-

tively, wIV(z)) satisfies 3/2 ≤ ̺(wII) ≤ 3 (respectively, 2 ≤ ̺(wIV) ≤ 4) ([3],

[14], [17], [19], [20]). Equation (IV) with β = 0 admits a family of solutions

V±
IV := {v±c (z) | c ∈ C} with

v±c (z) := exp(∓z2)

(
c±

∫ z

0
exp(∓τ2) dτ

)−1

satisfying w′ = ∓(w2 + 2zw) as well, if and only if α = ±1 ([18]). Using an

estimate for m(r, a, wII) (respectively, m(r, a, wIV)) ([1], [18]), we immedi-

ately obtain the following:

Theorem B. (i) Each transcendental solution of (II) admits no Borel

exceptional values.

(ii) Let wIV(z) be a transcendental solution of (IV). If wIV 6∈ V±
IV, then

wIV(z) admits no Borel exceptional values. If wIV ∈ V±
IV, then wIV(z) admits

the Borel exceptional value 0.

The purpose of this paper is to show equi-distribution properties of

values for the third and the fifth Painlevé transcendents. General solutions

of (III′) and (V) are not necessarily single-valued in C \ {0}, and should

be considered in a sector around z = ∞. To examine these solutions, we

define a characteristic function of sectorial domain type (see Section 2.2.1)

by employing value distribution theory in a half plane developed by [6],

[21], which is surveyed in [22]. All the solutions of (III′0) and (V0) are

meromorphic in C, but they are not necessarily of finite order. For them

we consider the iterative growth order. Our results are given under growth

condition (2.1) or (2.7) on solutions. For certain families of solutions, this
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condition is checked by using their asymptotic expressions along a line (see

Examples 2.1, 2.2 and 2.3).

In addition to the standard notation of value distribution theory, we

write ϕ(r) ≪ ψ(r) or ψ(r) ≫ ϕ(r) if ϕ(r) = O(ψ(r)) as r → ∞; and

ϕ(r) ≍ ψ(r) if ϕ(r) ≪ ψ(r) and ψ(r) ≪ ϕ(r) are simultaneously valid.

§2. Main results

If γ = δ = 0 (respectively, if β = δ = 0 or if α = γ = 0), then (V)

(respectively, (III′)) is solvable by quadrature ([11], [12]). In what follows,

we impose the conditions

(γ, δ) 6= (0, 0) on (V) and (V0);

(β, δ) 6= (0, 0) and (α, γ) 6= (0, 0) on (III′) and (III′0).

2.1. Equations (V0) and (III′0)

We call a solution w(z) of (V0) or (III′0) admissible, if

(2.1)
r

T (r, w)
→ 0 as r → ∞.

It is known that, under the condition

(2.2) α = 0, −4βδ + (γ ± (−2δ)1/2)2 = 0,

equation (V0) admits a family of solutions V0 := {χ0
±(γ, δ; c, z) | c ∈ C},

where

χ0
±(γ, δ; c, z) := exp(κ±z ∓ (−2δ)1/2ez)

×

(
c− κ±

∫ z

0
exp(−κ±τ ± (−2δ)1/2eτ ) dτ

)
,

κ± := 1 ± γ(−2δ)−1/2

([12, §2]). Furthermore, under the condition

(2.3) β = 0, 4αδ + (−γ ± (−2δ)1/2)2 = 0,

equation (V0) admits a family of solutions W0 := {1/χ0
±(−γ, δ; c, z) | c ∈

C}. It is easy to see that χ0
± and 1/χ0

± are admissible.
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Theorem 2.1. Let w(z) be an admissible solution of (V0). If w 6∈

V0 ∪ W0, then, for every a ∈ C ∪ {∞}, we have σ0(a,w) = ̺0(w) < ∞,

where

σ0(a,w) := lim sup
r→∞

log logN(r, a, w)

log r
, ̺0(w) := lim sup

r→∞

log log T (r, w)

log r
.

If w ∈ V0 (respectively, w ∈ W0), then σ0(a,w) = ̺0(w) < ∞ holds for

every a ∈ C (respectively, a ∈ C ∪ {∞} \ {0}), and w(z) admits no poles

(respectively, no zeros).

Theorem 2.2. Let w(z) be an admissible solution of (III′0). Then

σ0(a,w) = ̺0(w) <∞ holds for every a ∈ C ∪ {∞}.

Remark 2.1. If ̺0 = ̺0(w) > 0, then the relation σ0(a,w) = ̺0(w)

implies

∞∑

ν=1

exp(−|zν(a)|̺0−ε) = ∞ and
∞∑

ν=1

exp(−|zν(a)|
̺0+ε) <∞

for any ε > 0, where zν(a) (ν ∈ N) denote the a-points of w(z).

Remark 2.2. For w ∈ V0 (respectively, w ∈ W0), the value ∞ (respec-

tively, 0) may be regarded as a Borel exceptional value in a sense of iterative

growth order.

Example 2.1. Suppose that β = 0, δ > 0, α, γ ∈ R. Then (V0) admits

a two parameter family of solutions expressible in the form

ϕ0(R0,Θ0, z) = R0(1 + o(1))e−z cos2
(√

δ/2 ez − C(R0)z + Θ0 + o(1)
)
,

C(R0) = (γ/4)
√

2/δ −
√
δ/2R0, R0 > 0, Θ0 ∈ R

as z → ∞ along the positive real axis ([12]). This implies N(r, 1/ϕ0) ≫ er,

and hence ϕ0 is admissible. By this estimate and Lemma 3.2, we have

log T (r, ϕ0) ≍ r. If γ 6= 0, then ϕ0 6∈ V0 ∪W0, and σ0(a, ϕ0) = ̺0(ϕ0) = 1

for every a ∈ C ∪ {∞}.
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2.2. Equations (V) and (III′)

2.2.1. Notation

To state our results for (V) and (III′), we define the notation of value

distribution in a sectorial domain. Suppose that f(z) is meromorphic in a

domain containing the half plane Im z ≥ 0. Write for r > 1

mH(r, f) :=
1

2π

∫ π−arcsin(r−1)

arcsin(r−1)
log+

∣∣f(reiφ sinφ)
∣∣ dφ

r sin2 φ
,

NH(r, f) :=

∫ r

1

nH(t, f)

t2
dt,

TH(r, f) := mH(r, f) +NH(r, f),

where nH(t, f) denotes the number of poles of f(z) in the set

(2.4) Ω0(t) :=
{
z = τeiφ

∣∣ 0 < φ < π, 1 < τ ≤ t sinφ
}

([6], [21], [22]).

Remark 2.3. Suppose in addition that f(z) = O(|z|L) (L > 0) as |z| →

∞ in the half plane Im z ≥ 0. Then by definition TH(r, f) = O(log r) as

r → ∞.

Let w(z) be a solution of (V) or (III′) on the universal covering of C\{0}.

Given θ0 ∈ R and λ > 0, we set

wθ0

λ (ζ) := w(eiθ0(e−πi/2(i+ ζ))λ) = w(e(θ0−λπ/2)i(i+ ζ)λ)

representing w(z) in

(2.5) Ω(θ0, λ) :=
{
z = e(θ0−λπ/2)i(i+ ζ)λ

∣∣ Im ζ ≥ 0, |ζ| > 1
}
,

where the branch of (e−πi/2(i+ζ))λ is taken so that arg((e−πi/2(i+xi))λ) = 0

for x ≥ 0. Note that, for any ε > 0, there exists a number ρε > 1 satisfying

{
z

∣∣ | arg z − θ0| < λπ/2 − ε, |z| > ρε

}
⊂ Ω(θ0, λ)

⊂
{
z

∣∣ | arg z − θ0| < λπ/2, |z| > 1
}
,

which implies that Ω(θ0, λ) is essentially equivalent to a sectorial domain.

Clearly w(z) is meromorphic in a domain containing Ω(θ0, λ). Note that the

arc ζ = r1/λeiφ sinφ, |ζ| > 1 (0 < φ < π) is mapped to a curve expressed
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as z = e(θ0−λπ/2)ireiλφ(sinλ φ+O(r−1/λ)) in Ω(θ0, λ) for a sufficiently large

number r. Taking these facts into account, we define, for r > 1, the prox-

imity, the counting and the characteristic functions in Ω(θ0, λ) by

mθ0

λ (r, w) := mH(r1/λ, wθ0

λ )

=
1

2π

∫ π−arcsin(r−1/λ)

arcsin(r−1/λ)
log+

∣∣wθ0

λ (r1/λeiφ sinφ)
∣∣ dφ

r1/λ sin2 φ

=
1

2π

∫ π−arcsin(r−1/λ)

arcsin(r−1/λ)
log+

∣∣w(e(θ0−λπ/2)i(i+ r1/λeiφ sinφ)λ)
∣∣ dφ

r1/λ sin2 φ
,

N θ0

λ (r, w) := NH(r1/λ, wθ0

λ ) =

∫ r1/λ

1

nH(t, wθ0

λ )

t2
dt =

1

λ

∫ r

1

nθ0

λ (t, w)

t1+1/λ
dt,

T θ0

λ (r, w) := mθ0

λ (r, w) +N θ0

λ (r, w),

where nθ0

λ (t, w) denotes the number of poles of w(z) in the set

(2.6) Ω(θ0, λ, t) :=
{
z = e(θ0−λπ/2)i(i+ ζ)λ

∣∣ ζ ∈ Ω0(t
1/λ)

}
.

Remark 2.4. Our characteristic function T θ0

λ (r, f) of sectorial domain

type is somewhat different from that of [22]. Our sector has the vertex

eθ0i 6= 0, and no restriction is imposed on the opening angle λπ/2.

2.2.2. Statement of results

We call a solution w(z) of (V) or (III′) admissible in Ω(θ0, λ), if

(2.7)
log r

T θ0

λ (r, w)
→ 0 as r → ∞.

Under condition (2.2) (respectively, (2.3)), equation (V) admits a family

of solutions V := {χ±(γ, δ; c, z) | c ∈ C} (respectively, W := {1/χ±(−γ, δ;

c, z) | c ∈ C}) with

χ±(γ, δ; c, z) := zκ± exp(∓(−2δ)1/2z)

×

(
c− κ±

∫ z

1
τ−1−κ± exp(±(−2δ)1/2τ) dτ

)
,

κ± = 1 ± γ(−2δ)−1/2.
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Theorem 2.3. Suppose that a solution w(z) of (V) is admissible in

Ω(θ0, λ) for some θ0 ∈ R and λ > 0. If w 6∈ V ∪ W, then, for every

a ∈ C ∪ {∞}, we have σθ0

λ (a,w) = ̺θ0

λ (w) <∞, where

σθ0

λ (a,w) := lim sup
r→∞

logN θ0

λ (r, a, w)

log r
, ̺θ0

λ (w) := lim sup
r→∞

log T θ0

λ (r, w)

log r
.

If w ∈ V (respectively, w ∈ W), then σθ0

λ (a,w) = ̺θ0

λ (w) < ∞ holds for

every a ∈ C (respectively, a ∈ C ∪ {∞} \ {0}), and w(z) admits no poles

(respectively, no zeros) in Ω(θ0, λ).

Theorem 2.4. Suppose that a solution w(z) of (III′) is admissible in

Ω(θ0, λ) for some θ0 ∈ R and λ > 0. Then σθ0

λ (a,w) = ̺θ0

λ (w) < ∞ holds

for every a ∈ C ∪ {∞}.

Remark 2.5. If nθ0

λ (t, w) ≫ t1/λ+ε0 for some ε0 > 0, then ̺θ0

λ =

̺θ0

λ (w) > 0. Then the relation σθ0

λ (a,w) = ̺θ0

λ (w) implies, for any ε > 0,

∑

Ω(θ0,λ)

|zν(a)|
−̺

θ0
λ +ε = ∞ and

∑

Ω(θ0,λ)

|zν(a)|−̺
θ0
λ −ε <∞.

Here zν(a) (ν ∈ N) denote the a-points in Ω(θ0, λ), and the summation∑
Ω(θ0,λ) := limr→∞

∑
Ω(θ0,λ,r) ranges over the interior of Ω(θ0, λ).

Remark 2.6. For w ∈ V (respectively, w ∈ W), the value ∞ (respec-

tively, 0) may be regarded as an analogue of Borel exceptional value.

Example 2.2. Under the condition β = 0, δ > 0, α, γ ∈ R, equation

(V) admits a two parameter family of solutions expressible in the form

ψ0(R0,Θ0, z) = R0(1 + o(1))z−1 cos2
(√

δ/2 z − C(R0) log z + Θ0 + o(1)
)

as z → ∞ along the positive real axis (cf. Example 2.1, [10, Theorem I]).

Suppose that λ > 1. Then we have n0
λ(r, 1/ψ0) ≫ r implying T 0

λ (r, ψ0) ≥

N0
λ(r, 1/ψ0)+O(1) ≫ r1−1/λ (cf. Lemma 4.2), and hence ψ0 is admissible in

Ω(0, λ). Using Proposition 5.4, for some Λ < ∞, we have T 0
λ (r, ψ0) ≪ rΛ.

If γ 6= 0, then ψ0 6∈ V ∪ W, and 0 < 1 − 1/λ ≤ σ0
λ(a, ψ0) = ̺0

λ(ψ0) < ∞

holds for every a ∈ C∪{∞}. This implies equi-distribution of all values for

ψ0 in Ω(0, λ) if λ > 1.
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Example 2.3. Under the condition β = δ = 0, γ < 0, α ∈ R, equation

(V) admits a two parameter family of solutions expressible in the form

ψ∗
0(R0,Θ0, z) = R0(1 + o(1))z−1/2

× cos2
(√

−2γ z1/2 +
√

−γ/32R0 log z + Θ0 + o(1)
)

as z → ∞ along the positive real axis ([10, Theorem II]). This expression

implies n0
λ(r, 1/ψ∗

0) ≫ r1/2. Note that ψ∗
0 6∈ V ∪ W. If λ > 2, then ψ∗

0 is

admissible in Ω(0, λ), and satisfies 0 < 1/2−1/λ ≤ σ0
λ(a, ψ∗

0) = ̺0
λ(ψ∗

0) <∞

for every a ∈ C ∪ {∞} implying equi-distribution of all values for ψ∗
0 in

Ω(0, λ) with λ > 2.

§3. Proofs of Theorems 2.1 and 2.2

Let f(z) be a meromorphic function in C. Then

(3.1) m(r, f ′/f) ≪ log T (2r, f) + log r

as r → ∞ ([2, Lemma 2.3], [4, Satz 9.3]). This fact implies that the error

term S0(r, φ) in [12, Theorem 2.1] may be replaced by O(log T (2r, φ)+log r).

Hence we immediately obtain the following:

Lemma 3.1. Let w(z) be a solution of (V0) such that w 6∈ V0 ∪ W0.

Then, for every a ∈ C ∪ {∞}, we have

(3.2) m(r, a, w) ≤ (1/2)T (r, w) +O(log T (2r, w) + log r)

as r → ∞. If w ∈ V0 (respectively, w ∈ W0), then (3.2) holds for every

a ∈ C (respectively, a ∈ C ∪ {∞} \ {0}).

Furthermore, we note the following ([16, Theorem 1.1]):

Lemma 3.2. Let w(z) be a solution of (V0) or (III′0). Then T (r, w) =

O(eΛr), where Λ = Λα,β,γ,δ is a positive number independent of w(z).

Suppose that w 6∈ V0 ∪ W0 is admissible, and that a ∈ C ∪ {∞}.

Then using these lemmas and (2.1), we have m(r, a, w)/T (r, w) ≤ 1/2 +
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O(r/T (r, w)) = 1/2 + o(1), and hence

log logN(r, a, w)

log r
=

1

log r
log log

(
T (r, w) −m(r, a, w) +O(1)

)

=
1

log r
log

(
log T (r, w) + log

(
1 −

m(r, a, w) +O(1)

T (r, w)

))

=
1

log r
log

(
log T (r, w) +O(1)

)

=
log log T (r, w)

log r
+O

( 1

log r

)

as r → ∞, which implies σ0(a,w) = ̺0(w). In this way we obtain Theo-

rem 2.1.

Theorem 2.2 is proved by using the following lemma, which is obtained

from (3.1) and [11, Theorem 2.1].

Lemma 3.3. Let w(z) be a solution of (III′0). Then, for every a ∈

C ∪ {∞}, we have m(r, a, w) ≪ log T (2r, w) + log r.

§4. Value distribution in a half plane

We review several facts on value distribution theory in a half plane ([6],

[21], [22]). In what follows suppose that f(z) is meromorphic in a domain

containing the half plane Im z ≥ 0. A Poisson-Jensen type formula for the

half plane ([6, p. 331], [22, Theorem 2.1.2]) is given by

Lemma 4.1. We have for r > 1

NH(r, 1/f) −NH(r, f) =
1

2π

∫ π−arcsin(r−1)

arcsin(r−1)
log |f(reiφ sin φ)|

dφ

r sin2 φ
+Cf,r

with

|Cf,r| ≤
1

2π

∫ π

0

(∣∣log |f(eiφ)|
∣∣ +

∣∣arg f(eiφ)
∣∣) dφ.

From this lemma the first main theorem follows ([6, (12)], [22, Theo-

rem 2.1.4]):

Lemma 4.2. For every a ∈ C, TH(r, 1/(f − a)) = TH(r, f) +O(1).
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For each θ ∈ [0, 2π], applying Lemma 4.1 to f(z) − eiθ, we have

NH(r, eiθ , f) −NH(r, f)

−
1

2π

∫ π−arcsin(r−1)

arcsin(r−1)
log

∣∣f(reiφ sinφ) − eiθ
∣∣ dφ

r sin2 φ
= h(θ),

with

|h(θ)| ≤
1

2π

∫ π

0

(∣∣log |f(eiφ) − eiθ|
∣∣ +

∣∣arg(f(eiφ) − eiθ)
∣∣) dφ.

Integrating from θ = 0 to 2π, and observing that

1

2π

∫ 2π

0
log |a− eiθ| dθ = log+ |a| (a ∈ C),

we have

1

2π

∫ 2π

0
NH(r, eiθ, f) dθ −NH(r, f)

−
1

2π

∫ π−arcsin(r−1)

arcsin(r−1)
log+

∣∣f(reiφ sin φ)
∣∣ dφ

r sin2 φ

=
1

2π

∫ 2π

0
NH(r, eiθ , f) dθ − TH(r, f) =

1

2π

∫ 2π

0
h(θ) dθ.

This implies the identity of Cartan type:

Lemma 4.3. We have

TH(r, f) =
1

2π

∫ 2π

0
NH(r, eiθ, f) dθ + C∗

f,r ,

where C∗
f,r = O(1) as r → ∞.

The logarithmic derivative of f(z) is estimated as follows ([6, p. 332],

[22, Theorem 2.1.7]):

Lemma 4.4. For each k ∈ N, mH(r, f (k)/f) ≪ log+ TH(r, f) + log r

as r → ∞ outside a possible exceptional set of finite linear measure. In

particular, if TH(r, f) = O(rρ0) for some ρ0 < ∞, then mH(r, f (k)/f) =

O(log r) as r → ∞.
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The following two lemmas are regarded as half plane versions of results

due to Clunie and Mohon’ko-Mohon’ko, respectively, for the whole complex

plane ([1, Lemmas B.11 and B.12], [5, Lemma 2.4.2 and Proposition 9.2.3]).

Lemma 4.5. Suppose that f(z)q+1 = Q(z, f(z)) (q ∈ N), where Q(z, u)

is a polynomial in u and its derivatives whose coefficients aµ(z) (µ ∈ M)

are meromorphic in a domain containing the half plane Im z ≥ 0. Suppose

that the total degree with respect to u and its derivatives does not exceed q.

Then

(4.1) mH(r, f) ≪
∑

µ∈M

mH(r, aµ) + log+ TH(r, f) + log r

as r → ∞ outside a possible exceptional set of finite linear measure. More-

over if TH(r, f) = O(rρ0) (ρ0 < ∞), then the right hand member of (4.1)

may be replaced by
∑

µ∈M mH(r, aµ) + log r as r → ∞.

Proof. We write Q(z, u) =
∑

µ∈M aµ(z)uµ0(u′)µ1 · · · (u(l))µl , where

each µ = (µ0, µ1, . . . , µl) ∈ (N ∪ {0})l+1 satisfies
∑l

j=0 µj ≤ q. Put

I0(r) =
{
φ ∈ [arcsin(r−1), π − arcsin(r−1)]

∣∣ |f(reiφ sinφ)| ≥ 1
}
.

Then we have, uniformly for φ ∈ I0(r),

log+
∣∣f(reiφ sinφ)

∣∣ = log+ |f−qQ(z, f)|

≤ log+
( ∑

µ∈M

|aµ|
∣∣∣
f ′

f

∣∣∣
µ1

· · ·
∣∣∣
f (l)

f

∣∣∣
µl

)
≪

∑

µ∈M

log+ |aµ| +

l∑

j=1

log+
∣∣∣
f (j)

f

∣∣∣.

Substituting this into

mH(r, f) =
1

2π

∫

I0(r)
log+ |f(reiφ sinφ)|

dφ

r sin2 φ

and using Lemma 4.4, we obtain (4.1).

Lemma 4.6. Let F (z, u) be a polynomial in u and its derivatives whose

coefficients bν(z) (ν ∈ N) are meromorphic in a domain containing the half

plane Im z ≥ 0. Suppose that F (z, f(z)) = 0, and let a be a complex number

such that F (z, a) 6≡ 0. Then

(4.2) mH(r, a, f) ≪
∑

ν∈N

TH(r, bν) + log+ TH(r, f) + log r
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as r → ∞ outside a possible exceptional set of finite linear measure. More-

over if TH(r, f) = O(rρ0) (ρ0 < ∞), then the right hand member of (4.2)

may be replaced by
∑

ν∈N TH(r, bν) + log r as r → ∞.

Proof. Since g := f − a satisfies F (z, g + a) = 0, we may write

−F (z, a) = F (z, g + a) − F (z, a) =
∑

1≤|ι|≤d0

b̃ι(z)g
ι0(g′)ι1 · · · (g(l))ιl

(ι = (ι0, ι1, . . . , ιl), |ι| =
∑l

j=0 ιj) for some d0 ∈ N, where b̃ι (ι ∈ N ′) are

polynomials in bν such that log+ |b̃ι| ≪
∑

ν∈N log+ |bν |. Set

I∗0 (r) =
{
φ ∈ [arcsin(r−1), π − arcsin(r−1)]

∣∣ |g(reiφ sinφ)| ≤ 1
}
.

If φ ∈ I∗0 (r), then

log+ |1/g(reiφ sin φ)| ≪ log+ |F (z, a)−1| +
∑

ν∈N

log+ |bν | +
l∑

j=1

log+
∣∣∣
g(j)

g

∣∣∣.

Substituting this into

mH(r, 1/g) =
1

2π

∫

I∗
0
(r)

log+ |1/g(reiθ sinφ)|
dφ

r sin2 φ

and using mH(r, 1/F (z, a)) ≪
∑

ν∈N TH(r, bν) + log r, we obtain (4.2).

§5. Proofs of Theorems 2.3 and 2.4

Theorems 2.3 and 2.4 immediately follow from the propositions:

Proposition 5.1. Let θ0 and λ be numbers satisfying θ0 ∈ R and λ >

0. Let w(z) (6≡ const.) be a solution of (V). Then, for every a ∈ C ∪ {∞},

we have mθ0

λ (r, a, w) = O(log r) except in the cases below :

(1) if α = 0, w 6∈ V, then mθ0

λ (r, w) ≤ (1/2)T θ0

λ (r, w) +O(log r);

(2) if β = 0, w 6∈ W, then mθ0

λ (r, 1/w) ≤ (1/2)T θ0

λ (r, w) +O(log r);

(3) if α + β = 0, γ = 0, δ 6= 0, then mθ0

λ (r,−1, w) ≤ (1/2)T θ0

λ (r, w) +

O(log r);

(4) if w ∈ V (respectively, w ∈ W), then mθ0

λ (r, w) = T θ0

λ (r, w) (respec-

tively, mθ0

λ (r, 1/w) = T θ0

λ (r, w) +O(1)).

Proposition 5.2. Let θ0 and λ be numbers as in Proposition 5.1. Let

w(z) (6≡ const.) be a solution of (III′). Then, for every a ∈ C ∪ {∞}, we

have mθ0

λ (r, a, w) = O(log r).
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5.1. Proof of Proposition 5.1

Note that w(z) (6≡ const.) is meromorphic in a domain containing

Ω(θ0, λ), and that wθ0

λ (ζ) = w(e(θ0−λπ/2)i(i + ζ)λ) is meromorphic in a do-

main H0 containing the half plane Im ζ ≥ 0. Substitution of z = e(θ0−λπ/2)i

(i+ ζ)λ and w = 1 − 1/v into (V) yields the following:

Lemma 5.3. In H0, u = wθ0

λ (ζ) and v = 1/(1 − wθ0

λ (ζ)) satisfy

(5.1)

2u(u− 1)uζζ − (3u− 1)(uζ)
2 +

2u(u− 1)uζ

i+ ζ
−

2λ2(u− 1)3

(i+ ζ)2
(αu2 + β)

−
2γλ2e(θ0−λπ/2)i

(i+ ζ)2−λ
u2(u− 1) −

2δλ2e2(θ0−λπ/2)i

(i+ ζ)2−2λ
u2(u+ 1) = 0

( ζ = d/dζ), and

(5.2) 2(v − 1)(2(vζ)
2 − vvζζ) − (2v − 3)(vζ)

2 −
2v(v − 1)vζ

i+ ζ

+
2λ2

(i+ ζ)2
(α(v − 1)2 + βv2) +

2γλ2e(θ0−λπ/2)i

(i+ ζ)2−λ
v2(v − 1)2

−
2δλ2e2(θ0−λπ/2)i

(i+ ζ)2−2λ
v2(v − 1)2(2v − 1) = 0,

respectively.

Note that w̃(s) = w(es) is a solution of (V0), and that

{
es

∣∣ log(1/2) ≤ Re s ≤ log(2t), | Im s− θ0| ≤ λπ/2
}

⊃
{
z

∣∣ 1 ≤ |z| ≤ 2t, | arg z − θ0| ≤ λπ/2
}
⊃ Ω(θ0, λ, t).

From Lemma 3.2 it follows that

(5.3) N θ0

λ (r, 1, w) =
1

λ

∫ r

1

nθ0

λ (t, 1, w)

t1+1/λ
dt≪

∫ r

1

n(log t+ 1 + λπ, 1, w̃)

t1+1/λ
dt

≪

∫ log r+1+λπ

1+λπ

n(ρ, 1, w̃)

eρ/λ
dρ≪ N(log r + 1 + λπ, 1, w̃) + 1

≪ T (log r + 1 + λπ, w̃) + 1 ≪ rΛ.
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We remark that the constant Λ in (5.3) can be chosen so that it is indepen-

dent of α, β, γ, δ, because (5.3) is considered in the sector ([8], [9]).

Since (γ, δ) 6= (0, 0), using Remark 2.3, Lemma 4.5 and (5.2), we have

mθ0

λ (r, 1, w) = mH(r1/λ, 1, wθ0

λ )

≪ log r + log+ TH(r1/λ, wθ0

λ ) ≪ log r + log+ T θ0

λ (r, w)

as r → ∞ outside an exceptional set E0 whose linear measure |E0| is finite.

Observing Lemma 4.2 and (5.3), we have

(5.4) T θ0

λ (r, w) = N θ0

λ (r, 1, w) +mθ0

λ (r, 1, w) +O(1) ≪ rΛ + log+ T θ0

λ (r, w)

as r → ∞ outside E0. Suppose that T θ0

λ (r, w) is unbounded. Then Lemma

4.3 implies T θ0

λ (r, w) → ∞ as r → ∞, and hence by (5.4) we have T θ0

λ (r, w) ≤

K0r
Λ for r 6∈ E0, where K0 is some positive number independent of r. For

each r > 1 we may choose r∗ 6∈ E0 such that r < r∗ < r + 2|E0|. By

Lemma 4.3 again,

T θ0

λ (r, w) ≤ T θ0

λ (r∗, w) +K1 ≤ K0r
Λ
∗ +K1 ≤ K0(r + 2|E0|)

Λ +K1 ≪ rΛ

for r > 1, where K1 is some positive number independent of r. Thus we

obtain

Proposition 5.4. Under the same supposition as in Proposition 5.1,

we have T θ0

λ (r, w) = O(rΛ) as r → ∞.

Using Lemmas 4.5, 4.6, 5.3 and Proposition 5.4, by the same argument

as in the proofs of [12, Propositions 4.1 and 4.3], we conclude the following:

Proposition 5.5. (i) If α 6= 0, then mθ0

λ (r, w) = O(log r) as r → ∞.

(ii) For every a ∈ C, we have mθ0

λ (r, a, w) = O(log r) as r → ∞ except

in the cases below :

(a) a = −1, β 6= 0, α+ β = 0, γ = 0, δ 6= 0;

(b) a = 0, β = 0, (α, γ) 6= (0, 0);

(c) a = −1, 0, α = β = γ = 0, δ 6= 0.

To prove Proposition 5.1, we treat the following exceptional cases:

(A) α = 0 or β = 0; (B) α+ β = 0, γ = 0, δ 6= 0.
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5.1.1. Case (A)

Suppose that α = 0. Then (V) is written in the form

(zw′)2

w(w − 1)
+

2β(w − 1)

w
+

2δz2w

w − 1

= (w − 1)

[
U0 −

2γz

w − 1
+ 2

∫ z

z0

( γ

w(t) − 1
+

2δtw(t)

(w(t) − 1)2

)
dt

]

(U0 6= ∞, z0 ∈ Ω(θ0, λ)) (cf. [12, (4.1), (4.2)]). Hence, wθ0

λ (ζ) (ζ ∈ H0)

satisfies

Φ(ζ) =
(i+ ζ)2((wθ0

λ )ζ)
2

λ2wθ0

λ (wθ0

λ − 1)
+

2β(wθ0

λ − 1)

wθ0

λ

+
2δe2(θ0−λπ/2)i(i+ ζ)2λwθ0

λ

wθ0

λ − 1

(5.5)

= e(θ0−λπ/2)i(wθ0

λ − 1)

[
U∗

0 −
2γ(i+ ζ)λ

wθ0

λ − 1

(5.6)

+ 2

∫ ζ

ζ0

( γ

wθ0

λ (τ) − 1
+

2δe(θ0−λπ/2)i(i+ τ)λwθ0

λ (τ)

(wθ0

λ (τ) − 1)2

)
λ(i+ τ)λ−1 dτ

]

(U∗
0 6= ∞, Im ζ0 ≥ 0). We note the following ([12, Lemma 3.3]):

Lemma 5.6. If wθ0

λ (ζ1) = 1, then, around ζ = ζ1,

wθ0

λ (ζ) =

{
1 ± (−2δ)1/2λe(θ0−λπ/2)i(i+ ζ1)

λ−1(ζ − ζ1) + · · · if δ 6= 0,

1 − (γ/2)λ2e(θ0−λπ/2)i(i+ ζ1)
λ−2(ζ − ζ1)

2 + · · · if δ = 0.

Suppose that α = 0, δ 6= 0. We put Ψ(ζ) := z−1Φ(ζ) = e−(θ0−λπ/2)i(i+

ζ)−λΦ(ζ). Let ζ1 satisfy wθ0

λ (ζ1) = 1. By Lemma 5.6 and (5.6) which is

meromorphic at ζ1, we have Ψ(ζ1) = a±0 = −2(γ ± (−2δ)1/2). Suppose that

(5.7) Ψ(ζ) 6≡ a±0 .

Then

(5.8) N θ0

λ (r, 1, w) = NH(r1/λ, 1, wθ0

λ )

≤ NH(r1/λ, a−0 ,Ψ) +NH(r1/λ, a+
0 ,Ψ) ≤ 2TH(r1/λ,Ψ) +O(1).
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Note that (5.6) is holomorphic at every zero of wθ0

λ (ζ) as well. Every pole

of Ψ(ζ) must be a pole of wθ0

λ (ζ), whose multiplicity is not less than that of

Ψ(ζ). Hence

(5.9) TH(r1/λ,Ψ) = NH(r1/λ,Ψ) +mH(r1/λ,Ψ)

≤ NH(r1/λ, wθ0

λ ) +mH(r1/λ,Ψ) = N θ0

λ (r, w) +mH(r1/λ,Ψ).

By (5.5), Lemma 4.4, Propositions 5.4 and 5.5, we have

(5.10) mH(r1/λ,Ψ) ≤ mH(r1/λ, 1, wθ0

λ ) +mH(r1/λ, β/wθ0

λ ) +O(log r)

= mθ0

λ (r, 1, w) +mθ0

λ (r, β/w) +O(log r) = O(log r).

Note that N θ0

λ (r, 1, w) = T θ0

λ (r, w) + O(log r). Combining (5.8), (5.9) and

(5.10), we obtain

(5.11) mθ0

λ (r, w) ≤ (1/2)T θ0

λ (r, w) +O(log r)

under condition (5.7).

Suppose that α = δ = 0, γ 6= 0. Then

Φ(ζ) =
(i+ ζ)2((wθ0

λ )ζ)
2

λ2wθ0

λ (wθ0

λ − 1)
+

2β(wθ0

λ − 1)

wθ0

λ

= e(θ0−λπ/2)i(wθ0

λ − 1)

[
U∗

0 −
2γ(i + ζ)λ

wθ0

λ − 1
+ 2

∫ ζ

ζ0

γλ(i+ τ)λ−1

wθ0

λ (τ) − 1
dτ

]
.

For every 1-point ζ = ζ1 of wθ0

λ (ζ), which is double (cf. Lemma 5.6), we

have Ψ(ζ1) = −2γ. If Ψ(ζ) ≡ −2γ, then

U∗
0 + 2

∫ ζ

ζ0

γλ(i+ τ)λ−1

wθ0

λ (τ) − 1
dτ ≡ 0,

implying wθ0

λ (ζ) ≡ ∞, which is a contradiction. Hence

(5.12) Ψ(ζ) 6≡ −2γ.

Then

N θ0

λ (r, 1, w) = NH(r1/λ, 1, wθ0

λ ) ≤ 2NH(r1/λ,−2γ,Ψ) ≤ 2TH(r1/λ,Ψ)+O(1).

By the same argument as above, we derive (5.11) under condition (5.12).
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Finally, under the condition α = 0, δ 6= 0, suppose the contrary to (5.7),

namely

(5.13) Ψ(ζ) ≡ a±0 = −2(γ ± (−2δ)1/2).

Then

(5.14)
a±0 (i+ ζ)λ

wθ0

λ − 1
= U∗

0 −
2γ(i+ ζ)λ

wθ0

λ − 1

+ 2

∫ ζ

ζ0

( γ

wθ0

λ (τ) − 1
+

2δe(θ0−λπ/2)i(i+ τ)λwθ0

λ (τ)

(wθ0

λ (τ) − 1)2

)
λ(i+ τ)λ−1 dτ,

and

(5.15)
(i+ ζ)2((wθ0

λ )ζ)
2

λ2wθ0

λ (wθ0

λ − 1)
+

2β(wθ0

λ − 1)

wθ0

λ

+
2δe2(θ0−λπ/2)i(i+ ζ)2λwθ0

λ

wθ0

λ − 1
= a±0 e

(θ0−λπ/2)i(i+ ζ)λ.

From (5.14), we have

(5.16) ∓2(−2δ)1/2zw′ = −4δzw + a±0 (w − 1)

with z = e(θ0−λπ/2)i(i + ζ)λ, which is compatible with (5.15) if and only if

(2.2) and α = 0 hold. Conversely, under condition (2.2) with α = 0, if w(z)

satisfies (5.16), then wθ0

λ (ζ) satisfies (5.13). Solving (5.16) under (2.2), we

obtain the family of solutions V. Thus we have

Proposition 5.7. If α = 0, and if w 6∈ V, then mθ0

λ (r, w) ≤ (1/2)

T θ0

λ (r, w) +O(log r).

Observing that W (z) = 1/w(z) satisfies (V) with (−β,−α,−γ, δ), we

have

Proposition 5.8. If β = 0, and if w 6∈ W, then mθ0

λ (r, 1/w) ≤ (1/2)

T θ0

λ (r, w) +O(log r).
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5.1.2. Case (B)

Under the condition α+ β = 0, γ = 0, δ 6= 0, we have for ζ ∈ H0

Φ̃(ζ) =
(i+ ζ)2((wθ0

λ )ζ)
2

λ2wθ0

λ (wθ0

λ + 1)(wθ0

λ − 1)
(5.17)

−
2α((wθ0

λ )2 − 1)

wθ0

λ

+
δe2(θ0−λπ/2)i(i+ ζ)2λ(wθ0

λ + 1)

2(wθ0

λ − 1)

=
wθ0

λ − 1

wθ0

λ + 1

[
U0 − 4α+

δ

2
e2(θ0−λπ/2)i(i+ ζ)2λ(5.18)

+ 4δ

∫ ζ

ζ0

λe2(θ0−λπ/2)i(i+ τ)2λ−1wθ0

λ (τ)

(wθ0

λ (τ) − 1)2
dτ

]

(cf. [12, (4.14), (4.15)]). By Lemma 5.6, if wθ0

λ (ζ1) = 1, then the func-

tion Ψ̃(ζ) := e−(θ0−λπ/2)i(i + ζ)−λΦ̃(ζ) satisfies Ψ̃(ζ1) = b± = ±(−2δ)1/2.

Suppose that

(5.19) Ψ̃(ζ) 6≡ b± .

Then

N θ0

λ (r, 1, w) = NH(r1/λ, 1, wθ0

λ )

≤ NH(r1/λ, b−, Ψ̃) +NH(r1/λ, b+, Ψ̃) ≤ 2TH(r1/λ, Ψ̃) +O(1).

From (5.17) it follows that

mH(r1/λ, Ψ̃) ≤ mH(r1/λ, αwθ0

λ ) +mH(r1/λ, β/wθ0

λ )

+mH(r1/λ, 1, wθ0

λ ) +O(log r) = O(log r).

Note that wθ0

λ (ζ2) = −1 implies (wθ0

λ )ζ(ζ2) 6= 0, since α + β = γ = 0. By

(5.18), every pole of Ψ̃ is a (−1)-point of wθ0

λ , and is simple. Then we have

NH(r1/λ, Ψ̃) ≤ NH(r1/λ,−1, wθ0

λ ), and hence

(5.20) mθ0

λ (r,−1, w) ≤ (1/2)T θ0

λ (r, w) +O(log r)

under condition (5.19). In case Ψ̃(ζ) ≡ b±, from (5.17) and (5.18), we obtain

a cubic relation with respect to wθ0

λ +1 expressed as f((i+ζ)λ, wθ0

λ +1) = 0,

f(X,Y ) ∈ C[X,Y ], degY f = 3 (cf. [12, §4.3]). At any rate this case also

implies (5.20). In this way we have

Proposition 5.9. If α + β = 0, γ = 0, δ 6= 0, then mθ0

λ (r,−1, w) ≤

(1/2)T θ0

λ (r, w) +O(log r).
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5.1.3. Completion of the proof

Since each exceptional case in Proposition 5.5 is included in Proposi-

tions 5.7, 5.8 and 5.9, we obtain Proposition 5.1.

5.2. Proof of Proposition 5.2

For a solution w(z) of (III′), the function wθ0

λ (ζ) (ζ ∈ H0) satisfies

uζζ =
(uζ)

2

u
−

uζ

i+ ζ
+

λ2

(i+ ζ)2
(αu2 + γu3)(5.21)

+
βλ2e(θ0−λπ/2)i

(i+ ζ)2−λ
+
δλ2e2(θ0−λπ/2)i

(i+ ζ)2−2λu
.

From this equation, we obtain mθ0

λ (r, w) ≪ log r + log+ T θ0

λ (r, w) outside a

possible exceptional set of finite linear measure. Using

T θ0

λ (r, w) = mθ0

λ (r, w) +N θ0

λ (r, w) ≪ rΛ + log+ T θ0

λ (r, w)

instead of (5.4), we similarly derive T θ0

λ (r, w) = O(rΛ) and mθ0

λ (r, w) =

O(log r) as r → ∞. Since u ≡ a (6= 0) is not a solution of (5.21), by Lem-

ma 4.6 we have mθ0

λ (r, a, w) = O(log r) as r → ∞ for every a ∈ C \ {0}.

Using the equation with respect to W (z) = z/w(z), we obtain mθ0

λ (r, 1/w) =

O(log r) (cf. [11, §4]). This completes the proof of Proposition 5.2.
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