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Abstract

We investigated whether the feeding of high H,-generating dietary fibre and resistant starch (RS) could suppress hepatic ischaemia—
reperfusion (IR) injury, which results from oxidative stress, in rats fed a pectin (Pec) or high-amylose maize starch (HAS) diet. Male
Sprague—Dawley rats were fed a control (C) diet, with or without Pec (0-5% Pec) or HAS (0—30% HAS) supplementation for 7d.
Portal H, concentration showed a significant dose-dependent increase with the amount of Pec or HAS supplementation. Plasma alanine
and aspartate aminotransferase activities remarkably increased in the C rats (5% cellulose) due to IR treatment, while it decreased signifi-
cantly or showed tendencies to decrease in 5% Pec and 20 % HAS diet-fed rats. The hepatic oxidised glutathione (GSSG):total glutathione
ratio increased significantly in IR rats maintained on the C diet compared with sham-operated rats. On the other hand, reduced glutathione
(GSH):total glutathione and GSH:GSSG ratios decreased significantly. The GSSG:total glutathione ratio that increased due to IR treatment
decreased significantly on HAS and Pec intake, while GSH:total glutathione and GSH:GSSG ratios increased significantly. Hepatic sinusoids
of IR rats fed the C diet were occluded, but those of IR rats fed the Pec diet were similar to those in the sham-operated rats. In conclusion,
we found that Pec or HAS, which enhance H, generation in the large intestine, alleviated hepatic IR injury. The present study demonstrates
another physiological significance of dietary fibre and RS.
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The spread of diseases such as ischaemia—reperfusion (IR),
atherosclerosis and diabetes is a great concern for developed
countries. Oxidative stress has been suggested to be respon-
sible, at least partially, for the onset and progression of
these diseases'?. Alleviation of oxidative stress is therefore
considered an effective measure for the prevention of these
diseases. Many researchers have investigated the effectiveness
of various antioxidants, such as ascorbic acid, tocopherols,
polyphenols and carotenoids against these diseases.

Dietary fibre and resistant starch (RS), which are not
digested by digestive enzymes, are metabolised by intestinal
microbiota in the large intestine to form SCFA and gases
including H°>~. Rackis et al.'® previously reported that H,
accounts for 30% of the flatus for participants administered
soyabean oligosaccharides, raffinose and verbascose. Further-
more, breath H, excretion is known to increase when dietary
fibre and lactose are administered to healthy and lactose-
intolerant participants, respectively’ "', Change in breath
H, concentration has been used to determine the transit

time required for indigestible materials to reach the large
intestine as well as to diagnose lactose intolerance, although
the effect of H, in vivo is not known.

In a chemical reaction, H, acts as a strong reducing agent
under the co-existence of catalysts such as platinum, nickel
and palladium. It has long been said but never proved that
the redox potential of H, is considerably lower than that
of glutathione or ascorbic acid, and it has strong reducing
capability in wvivo. In 2007, Ohsawa et al™” found that
H, selectively eliminates reactive oxygen species (ROS),
especially those that are highly oxidative such as the hydroxyl
radical and peroxynitrite, in the brain of IR rats, and, conse-
quently reduces cerebral infarction. The present study is the
first to demonstrate the antioxidative effect of H, in wvivo.
Furthermore, antioxidative effects of H, on other organs
(e.g. heart™?, liver'™®, retina®® 510 4nd kidney“””)
have been observed in IR-treated rodents administered H, via

, intestine

the inhalation of H, gas or administration of H, water. It is
clear from these studies that H, is an effective antioxidant

Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; C, control; GSH, reduced glutathione; GSSG, oxidised glutathione; HAS, high
amylose maize starch; HG, high H,-generating; IR, ischaemia—reperfusion; Pec, pectin; ROS, reactive oxygen species; RS, resistant starch.
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in vivo. Therefore, we speculated that the H, formed during
large-bowel fermentation of dietary fibre can also effectively
eliminate ROS generated in vivo, and, consequently can con-
tribute in alleviating oxidative stress in vivo. We mention in the
present study that Neale"® had earlier proposed a similar
hypothesis; however, as far as we know, his hypothesis was
never proved. The present study proposes another function
for dietary fibre and RS in nutritional science.

While fermentation substrates are supplied, H, will continu-
ously be generated by large-bowel fermentation, and hence,
H, concentration in vivo will be maintained at a stationary
high level. We believe that consuming foods containing
fermentation substrates daily will relieve oxidative stress
in vivo. Our suggestion to supply the body with H, daily is
significant, since it is not easy to do so by conventional
means (i.e. via the inhalation of H, gas or the administration
of H, water) in a continuous manner.

In the present study, to determine the suppressive effect of
dietary fibre and RS on hepatic IR injury, we examined the
dose—response relationship between portal H, concentration
and the amount of pectin (Pec) or high-amylose maize
starch (HAS) supplementation. Simultaneously, we examined
the effects of Pec and HAS on liver damage in a rat hepatic
IR model.

Materials and methods
Samples

Pec (Z4A-618, non-sugar type) and HAS (Hi-maize 1043) were
kindly supplied by Taiyo Kagaku Company Limited (Mie,
Japan) and Nippon NSC Limited (Tokyo, Japan), respectively.

Animals and diets

The study was approved by the Nayoro City University Animal
Use Committee, and the animals were maintained in accord-
ance with the Guidelines for the Care and Use of Laboratory
Animals, Nayoro City University. Male Sprague—Dawley
rats (8 weeks old), weighing 260-280 g, were obtained from
Japan SLC (Haruno colony; Shizuoka, Japan). They were
housed in individual cages with screen bottoms made of
stainless steel in a room maintained at 23 = 1°C with humidity
ranging from 50 to 70% under lighting conditions with 12h
light—12h darkness (07.00—19.00 hours) daily. The rats were
acclimatised by feeding a 25% casein control (C) diet
(Table DY for 3d in Expts 1, 2 and 3 and a laboratory
chow diet (CE-2; Japan Clea, Tokyo, Japan) for 3-5d in
Expts 4 and 5 in order to select high H,-generating (HG)
rats before being subjected to the experiments. The compo-
sition of the chow diet was as follows: protein, 251 g/kg; fat,
48 g/kg; dietary fibre, 42g/kg; ash, 67 g/kg; N-free extract,
500 g/kg; moisture, 9-3 g/kg.

Expt 1

To determine the dose—response relationship between Pec
and H, generation in the large intestine, we examined the

Table 1. Composition of the control diet

Ingredient (g/kg) Control diet
Casein*® 250
Maize starcht 482.5
Sucroset 100
Soyabean oil§ 70
Mineral mix|| 35
Vitamin mix|| 10
Choline bitartrate 2.5
Cellulose** 50

* Acid casein purchased from Murray Goulburn Co-operative
Company (Melbourne, Australia).

1 Maize starch W purchased from Nihon Shokuhin Kako
Company Limited (Tokyo, Japan).

1 Supplied from Nippon Beet Sugar Manufacturing
Company Limited (Obihiro, Japan).

§ Purchased from Ajinomoto Company (Tokyo, Japan)

|| Mineral mixture and vitamin mixture are identical to
AIN-93G-MX and AIN-93-VX, as reported by Reeves
et al", respectively. These were purchased from Nihon
Nosan Kogyo Company (Tokyo, Japan).

9 Purchased from Wako Pure Chemical Industries Com-
pany (Tokyo, Japan).

** Purchased from Oriental Yeast Company (Tokyo, Japan).

changes that occurred in portal H, concentration in rats fed
a diet containing different amounts of Pec. After the acclima-
tisation period, thirty-six rats were assigned into six groups
(n 6) based on body weight and were given a diet sup-
plemented with or without 10, 20, 30, 40 and 50 g of Pec/kg
diet for 7d. The supplement of Pec was done by the replace-
ment of an equal weight of cellulose in the C diet. On the last
day of the experiment, portal H, concentration was measured
in rats after anaesthesia (pentobarbital 50 mg/kg body weight)
using a hydrogen sensor (H2-100; Unisense A/S, Aarhus,
Denmark) placed directly in the portal veins, and a picoam-
pere meter (PA2000; Unisense A/S) was used to measure the
current values. The sensor was calibrated using H, water
with H, concentration in a range of 0—30 pmol/l.

Expt 2

To determine the dose—response relationship between HAS
and H, generation in the large intestine, we examined the
changes that occurred in portal H, concentration in rats fed
a diet containing different amounts of HAS. After the acclima-
tisation period, thirty-six rats were assigned into six groups
(n 6) based on body weight and were given a diet sup-
plemented with or without 50, 100, 150, 200 and 300g of
HAS/kg diet for 7d. The supplement of HAS was done by
the replacement of an equal weight of maize starch in the C
diet. On the last day of the experiment, portal H, concen-
tration was measured as in Expt 1.

Expt 3

To determine whether Pec, which enhances H, production by
fermentation, can alleviate hepatic oxidative IR injury, we
examined the time course of change in plasma alanine amino-
transferase (ALT) and aspartate aminotransferase (AST) activi-
ties in IR-Pec (IR rats fed a diet containing Pec). After the
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acclimatisation period, twenty-one rats were assigned into
three groups (n 7) based on body weight. Of the three
groups, two were administered the C diet and the remaining
was administered the 5% Pec diet for 7d. On the last day of
the experiment, rats from one of the C diet groups and the
Pec diet group received IR treatment (mentioned later). The
rats from the remaining C diet group were sham operated.

Expt 4

To determine H, productivity and its alleviating effect on
hepatic IR injury with Pec supplementation, H, productivity,
plasma ALT and AST activities, and hepatic glutathione
redox status were examined in HG rats fed the Pec diet.
After the acclimatisation period, net H, excretion per 5min
was measured by placing the rats inside a sealed polypropy-
lene chamber for 5min. GC (Biogas analyser BAS-1000;
Mitleben, Osaka, Japan) was used to determine the total H,
excretion from expired air and flatus. A total of thirty-nine
rats with net H, excretion of more than 0-13 pmol/5 min
were considered as HG rats and were selected for the exper-
iment. These rats were further assigned into three groups
(n 13) based on net H, excretion and body weight. As in
Expt 3, two groups were administered the C diet and the
remaining group was administered the 5% Pec diet for 7d.
On the last day of the experiment, the rats from one of the
C diet groups and the Pec diet group underwent IR treatment
(mentioned later). Rats from the remaining C diet group were
sham operated.

Expt 5

To determine H, productivity and its alleviating effect on
hepatic IR injury with HAS supplementation, H, productivity,
plasma ALT and AST activities, and hepatic glutathione
redox status were examined in HG rats fed a diet containing
HAS. As in Expt 4, after the acclimatisation period, net H,
excretion/5 min was measured. A total of thirty rats with net
H, excretion of more than 0-14 wmol/5 min were considered
as HG rats and were selected for the experiment. These rats
were further assigned into four groups (n 7—8) based on net
H, excretion and body weight.
were administered the C diet and the remaining two were
administered the 20% HAS diet for 7d. On the last day of
the experiment, rats from one of each C and HAS diet
groups underwent IR treatment (mentioned later). Rats from
the remaining C and HAS diet groups were sham operated.

Of the four groups, two

Ischaemia-reperfusion treatment

Under pentobarbital sodium anaesthesia (70 mg/kg intraperi-
toneal), a midline laparotomy incision was performed. Next,
the hepatic artery and portal vein to the left lateral and
median lobe was occluded (70 % of the liver) using a bulldog
clamp to interrupt blood supply to the liver for 30 min while
allowing blood flow through the remaining sections. The
clamps were removed 30min after ischaemia, and hepatic
reperfusion was initiated. The rats were killed at 60 (Expt 3)

or 45min (Expts 4 and 5) after reperfusion for sampling.
Sham-operated rats were prepared in a similar manner
except without vascular occlusion. During surgery, the
abdominal incision site was wrapped in a plastic wrap to pre-
vent tissues from drying out. The rats were placed over an iso-
thermal pad (with a layer of cloth between the animal and
pad) to maintain their body temperature at 37°C.

Sampling

In Expt 3, 100 pl of blood from the tail vein of the rats under
anaesthesia was collected into heparin tubes at the following
times: before ischaemia, 30 min after ischaemia, and 15, 30,
45 and 60min after reperfusion. In Expts 4 and 5, 1ml of
blood from the portal vein was successively collected into
sealed heparin vials and microtubes for H, analysis and
plasma preparation. A 1 ml sample of the gaseous phase was
withdrawn using a gas-tight syringe, and H, concentration
was determined with GC (Biogas analyser BAS-1000;
Mitleben). The remaining blood sample was separated by
centrifugation (1200 g for 20 min at 4°C), and plasma samples
were stored at —80°C until ALT and AST analyses. The liver
was perfused immediately after blood withdrawal with 12 ml
cold saline at 4°C via the portal vein. Immediately after per-
fusion, the median lobe (ischaemic area) was removed and
a portion was rapidly frozen in liquid N,, and the samples
were stored at —80°C until ALT and AST analyses. The remain-
ing tissue was fixed with 4% paraformaldehyde in 0-1mol/l
phosphate buffer at pH 7-4 and then embedded in paraffin
for histological evaluation.

Assessment of oxidative stress in the liver

Hepatic reduced glutathione (GSH) and oxidised glutath-
ione (GSSG) levels were determined by the method of
Anderson®”. Briefly, 1 volume of liver tissue was homogen-
ised in 9 volumes of 5% 5-sulfosalicylic acid and centrifuged
(10000g for 5min at 4°C). The supernatant was used for
the 5,5'-dithiobis(2-nitrobenzoic acid)-glutathione reductase
recycling assay®” to determine the total glutathione and
GSSG concentrations. GSH concentration was calculated
from the difference between total glutathione and GSSG.
Malondialdehyde concentration in the liver was measured
according to the procedure of Ohkawa et al®V. In brief,
1 volume of liver tissue was homogenised in 9 volume of
1-15% KCl, and the homogenate was used to measure
malondialdehyde concentration.

Qualitative and quantitative assessment of liver injury

Plasma ALT and AST activities were measured using a
commercial kit, Transaminase ClI-test (Wako Pure Chemical
Industries, Tokyo, Japan). Haematoxylin—eosin-stained liver
sections (4 wm) were used for histological evaluation of liver
injury. The liver sections were evaluated for the presence
of congestion, cellular degenerative changes, cytoplasmic
vacuolisation and leucocyte infiltration.
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Statistical analysis

Values obtained from the experiments were expressed as
means with their standard errors. Data were subjected to
Bartlett’s test for homogeneity of variances, and unequal var-
iances were stabilised by log transformation. For samples
with equal variances, one-way ANOVA was used, followed
by the Tukey—Kramer post hoc test for multiple comparisons
between individual group means. If sample variances were
still unequal after log transformation, we used the Steel-
Dwass test (plasma ALT and AST activities, net H, excretion
and portal H, concentration). Furthermore, to examine the
possible role of caecal H, in alleviating oxidative stress, we
used Student’s f test using only IR rat data for plasma ALT
and AST activity analyses. The Tukey—Kramer test and Stu-
dent’s t test were performed using SAS JMP software (version
8.0.1; SAS Institute, Tokyo, Japan), and the Steel-Dwass test
was performed using KyPlot software (version 5.0; KyensLab,
Inc., Tokyo, Japan). Significance was defined as P<0-05.

Results
Expts 1 and 2

Body weight gain and food intake did not differ among the
groups (data not shown). Portal H, concentration dose-depen-
dently increased with the amount of Pec or HAS sup-
plemented, and reached a plateau at 2% Pec and a peak at
209% HAS (Fig. 1).

Expt 3

Body weight gain and food intake did not differ among the
groups (data not shown). Both plasma ALT and AST activities
in the IR-C group (IR rats fed the C diet) increased with time
after reperfusion and was six-fold higher after 60 min (Fig. 2).
Values remained at low levels at all times in sham-operated
rats. For the IR-Pec group, values increased by 50 % compared
with the IR-C group. Among the IR rat groups, plasma ALT
activity after 15min and plasma AST activity after 30 min of
reperfusion were significantly lower in the IR-Pec group
than in the IR-C group. Liver histology (Fig. 3) revealed
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Fig. 1. (A) Dose-response of pectin (Pec) and (B) high-amylose maize
starch (HAS) for portal H, concentration in rats. Values are means, with their
standard errors represented by vertical bars, (n 6). aPMean values with
unlike letters were significantly different (P<0-05). C, control.
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Fig. 2. (A) Time course of plasma alanine aminotransferase (ALT) and
(B) aspartate aminotransferase (AST) activities in ischaemia—reperfusion
(IR) and sham-operated rats fed the control (C) and pectin (Pec) diets.
Values are means, with their standard errors represented by vertical bars,
(n 6 or 7). ®*Mean values with unlike letters were significantly different
(P<0-05). Sham-C, sham-operated rats fed the C diet; IR-C, IR rats fed the
C diet; IR-Pec, IR rats fed the 5% Pec diet.

hepatic sinusoids that had a normal appearance in the sham
group, while a degree of occlusion was observed in the IR-C
group. Samples from the IR-Pec group were similar to those
in the sham group.

Expt 4

Body weight gain and food intake did not differ among the
groups (data not shown). Net H, excretion per 5min and
portal H, concentration in the IR-Pec group were 20- and
3-5-fold higher than those in the IR-C group, respectively
(Table 2). Plasma ALT and AST activities in the IR-C group
were significantly higher than those in the sham group.
Among the IR rat groups, plasma ALT activity in the IR-Pec
group was significantly lower than that in the IR-C group.
Furthermore, compared with the IR-C group, liver GSSG
concentration did not differ in the IR-Pec group (Table 2).
However, total glutathione and GSH concentrations and the
GSH:GSSG ratio in the IR-Pec group were significantly
higher than those in the IR-C group. Liver malondialdehyde
concentration did not differ among the groups.

Expt 5

Body weight gain and food intake did not differ among the
groups (data not shown). Net H, excretion per Smin and
portal H, concentration in the IR-HAS group (IR rats fed the
HAS diet) were twenty-four- and thirteen-fold higher than
those in the IR-C group, respectively (Table 3). Plasma ALT
and AST activities were significantly higher in the IR-C
group compared with the sham group. Within the IR groups,
plasma ALT and AST activities in the IR-HAS group showed
tendencies to decrease compared with the IR-C group. More-
over, liver GSSG concentration in IR rats was significantly
higher than that in sham rats (Table 3). Regardless of whether
the IR treatment was performed, rats fed the HAS diet had
significantly decreased liver GSSG concentration and GSSG:
total glutathione ratio compared with the C diet groups, but
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Fig. 3. Protective effect of pectin (Pec) on hepatic injury in ischaemia—reper-
fusion (IR) rats. Representative liver sections on sinusoids (original magnifi-
cation X 100 and X 200; bars indicate 200 and 50 um, respectively) from
sham-operated rats fed the control (C) diet (Sham-C), IR rats fed the C diet
(IR-C) and IR rats fed the 5% Pec diet (IR-Pec) rats are illustrated. The rats
were subjected to 30min of ischaemia followed by 60 min of reperfusion.
After reperfusion, the livers were perfused with 12ml cold saline to remove
blood and fixed with 4 % paraformaldehyde in 0-1 mol/l phosphate buffer at
pH 7-4.

significantly increased GSH:GSSG and GSH:total glutathione
ratios. Liver malondialdehyde concentration did not differ
among the groups.

Discussion

IR injury in tissues is associated with ROS production and
reactive nitrogen species, especially hydroxyl radical and per-
oxynitrite(zz). Hydroxyl radicals have a high redox potential
and are capable of oxidising tissue components such as
lipids, proteins and DNA. Ohsawa et al'" have recently
shown that an inhalation of 2—4% H, gas induces selective
removal of hydroxyl radicals and peroxynitrite from the
brain of the IR rats, and consequently reduces cerebral infarc-
tion. They were the first to show the ability of H, to suppress
oxidation in vivo. Studies demonstrating the antioxidative
effect of inhaled H, in organs such as liver™®, retina®?,
heart’? and intestine’” followed the research of Ohsawa
et al. Furthermore, a similar effect was shown for the myocar-
dium and the intestine®®*® via the administration of H,-rich
saline. In these studies, blood H, concentration in H,-adminis-
tered rats and mice reached 5-10 wmol/l in vivo. There is
a high possibility that H, may exhibit a role in alleviating
oxidative stress.

In the present experiments, we observed high portal H,
concentrations (4-5—11 wmol/D) in rats fed an IR-Pec or IR-
HAS diet. These concentrations are comparable with those
that were shown to relieve oxidative stress in rats inhaling
H, gas"'". To our knowledge, few studies have directly exam-
ined portal H, concentrations in animals fed dietary fibre and
RS. Pec and HAS feedings result in the delivery of a large
amount of carbohydrate to the large intestine, which then
potentiates H, production. As Levitt'®> reported, 14% of H,

Table 2. Effect of pectin (Pec) on net H, excretion, portal H, concentration and plasma alanine aminotransferase
(ALT) and aspartate aminotransferase (AST) activities in ischaemia—reperfusion (IR)-treated and sham-operated ratst

(Mean values with their standard errors, n 13)

Sham-Ct IR-Ct IR-Pect
Mean SEM Mean SEM Mean SEM
Net H, excretion (wmol/min) 0-059 0-027 0-042 0-015 0-915 0-237
Portal Hy (mol/l) 0-976 0-162 1.36 0-41 4.73 0-67
Plasma ALT (pkat/)§ 0-291° 0-023 8.73? 1.51 5.16%* 0-68
Plasma AST (ukat/l) 1.93° 0-12 30-62 4.9 21.28 33
Liver glutathione
Total (umol/g tissue) 6-40%° 0-13 6-28° 0-11 6-95° 0-25
GSH (wmol/g tissue) 6-26%° 0-13 6-07° 0-11 6-77% 0-25
GSSG (umol/g tissue) 0-142° 0-004 0-2082 0-010 0-1822 0-010
GSH:GSSG 44.8° 2.2 30-1° 1.6 39.12 3.2
GSH:total 0-9782 0-001 0-967° 0-002 0-973% 0-002
GSSG:total 0-022° 0-001 0-0332 0-002 0-027° 0-002
MDA (nmol/mg protein) 0-649 0-062 0-508 0-037 0-608 0-045

Sham-C, sham-operated rats fed the control (C) diet; IR-C, IR rats fed the C diet; IR-Pec, IR rats fed the 5% Pec diet; GSH, reduced

glutathione; GSSG, oxidised glutathione; MDA, malondialdehyde.

2P Mean values within a row with unlike superscript letters were significantly different (P<0-05).
* Mean values were significantly different from those of IR-C groups (P<0-05).
1 Data were analysed with one-way ANOVA and the Tukey—Kramer post hoc test, or non-parametric multiple test (Steel-Dwass

test). High Ho-generating rats, which we selected, were used.

1 After 30 min of ischaemia, 45 min of reperfusion was performed in IR rats.
§ Values of plasma ALT activities in both IR groups were analysed by Student’s t test as variances were too different between

sham-operated and |IR-treated groups.
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observed. Also, an appropriate carbohydrate:N ratio is
required to promote fermentation by bacteria®”. Therefore,
H; does not increase simply proportionally to the amount of
fermentation substrate entered into the caecum as observed
in rats fed a 30% HAS diet. On the other hand, fermentation
is affected not only by substrates but also by the intestinal
microbiota. Since the microbiota of laboratory animals differ
among breeders and breeding colonies®"
patterns may vary even with the administration of the same
fermentation substrate. During our preliminary experiments,
we came across rats whose portal H, concentration increased
only slightly, even after the administration of Pec and HAS.
These rats were assumed to be low H, generators. With
these rats, we could not obtain clear H, effects on hepatic
injury (data not shown). In Expts 4 and 5, we preferentially
selected HG rats. These HG rats were better able to show
the suppressive ability of generated H, on hepatic IR injury
due to the production of sufficient amounts of H,. However,
in our studies, portal H, concentrations in Expts 4 and 5
were lower than in Expts 1 and 2; this discrepancy is due to
the different apparatus applied.

Glutathione, an antioxidant, helps protect cells against ROS
such as free radicals and peroxides®®, and hepatic IR treat-
ment decreases GSH and increases hepatic GSSG concen-
trations in the liver, resulting in high oxidative stress®®.
In the present study, we observed statistically higher GSSG:
total glutathione ratios and lower GSH:total glutathione
ratios in IR-C rat livers. In IR-Pec and IR-HAS livers, these
ratios turned out to be similar to sham groups. Because the
condition (short reperfusion) of hepatic IR in the present
study is milder than that in many studies, the difference in glu-
tathione level between the control and test groups, although
statistically ~ significant, [(13:33:39)
Although it remains unclear whether the changes in these
ratios have biological significance, a higher level of GSH
helps, in part, to alleviate oxidative stress. Therefore, even if
the differences are small, the long-term accumulated effect is
large. Because the redox potential of H, is approximately
twice as low as that of GSH™®| it would take precedence
over GSH in the reduction of ROS, if sufficient quantities
are available.

Inhalation of H, gas and administration of H, water are
tools to introduce H, into the body; however, the former
requires an adequate hospital and costly medical facilities,
and the latter requires the preservation of highly concentrated
H; in its stable state for a long time, which is difficult from a
packaging point of view. Furthermore, it is not easy to
supply a large amount of highly concentrated H, into our
bodies in a continuous manner using these tools in everyday
situations. On the other hand, H, production via large-bowel
fermentation is a much more continuous means of supplying
H, in vivo. As expired air and flatus are the only excretion
routes for H, produced in the large intestine, this may limit
the organs in which H, is capable of exerting an antioxidative
effect to the intestine and the liver. The products of fermen-
tation are various, therefore further investigation is required
to evaluate the unique role of H, derived from dietary fibre
and RS.

, their fermentation

appears relatively smal

We found in the present study that portal H, concentration
increased by Pec or HAS administration and hepatic IR injuries
were suppressed. This may be due to the antioxidative effect
of H,. This would represent further insight into the biological
functions of dietary fibre and RS. The onset and progression of
many diseases are attributed to oxidative stress, and these diet-
ary components are believed to provide therapeutic and pre-
ventive effects against common diseases. Establishing better
conditions for colonic fermentation by the selection of fer-
mentation substrates, appropriate microbiota, eating habits,
etc., will give us more means to protect against and cure var-
ious oxidative disorders.
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