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DISCRETE SPECTRUM OF MANY BODY

SCHRODINGER OPERATORS

WITH NON-CONSTANT MAGNETIC FIELDS II

TETSUYA HATTORI

1. Introduction

This paper is continuation from [10], in which we studied the discrete spec-

trum of atomic Hamiltonians with non-constant magnetic fields and, more precise-

ly, we showed that any atomic system has only finitely many bound states, corres-

ponding to the discrete energy levels, in a suitable magnetic field. In this paper we

show another phenomenon in non-constant magnetic fields that any atomic system

has infinitely many bound states in a suitable magnetic field.

We consider a following Schrόdinger operator of many particle system:

(1.1) HN>z{b) = Σ (τ,(6) 2 - -^-) + Σ , , 1 , ,
; = 1 \ \X \ l<i<J<N\χ — χ \

as a self-adjoint one in L2(R3N), where x = (x1,. . ., χN) e R3iV, x G R 3 (1 < j

< ΛO, Z is a positive constant, N e N, 6 e C (R ) , which is real-valued, and

T, = Tj(b) = - iVj - b(xJ) (l<j<N).

Here F ; denotes the gradient with respect to x (1 < j < ΛO. For a vector poten-

tial 6 ^ C^R 3 ) 3 , the vector field B(y) = V x 6(z/) is called the magnetic field.

This HNZ(b) is an energy operator corresponding to an atomic system with

Coulomb interactions, in a magnetic field V χ 6, with an infinitely heavy nucleus

of charge Z, and with Λf electrons of charge — 1.

Now our problem is to study the finiteness or the infiniteness of the discrete

spectrum of HNZ(b). This problem has been already studied both in the case with-

out magnetic fields and in the case of constant magnetic fields. As for the case

6 = 0, Zhislin showed in [23] that if Z > N — 1 then the number of the discrete

spectrum of HNz(b) is infinite, and thereafter in [24] that if Z < N — 1 then it is
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finite. Yafaef asserted in [21] without a proof that it is finite also in the case Z =

N — 1. Thereafter in [22] he proved this is true. We combine these results as fol-

lows.

THEOREM 0.1. The number of the discrete spectrum of HNZ(0) is finite if and

only if Z< N- 1.

Next let bc(^ C (R ) ) give a constant magnetic field, that is, V X bc is a

constant vector field. As for the case b — bc, Avron-Herbst-Simon [4] proved that

the discrete spectrum of HNZ(bc) is infinite if Z = N — 1. From this result we

naturally suggest that it is infinite also in the case Z > N — 1. This is true and

easily seen. On the other hand, VugaΓter-Zhislin [20] asserted (without proof) that

the above sufficient condition for the infiniteness is also necessary. This is cer-

tainly true and shown by the analogous method as in the non-magnetic case. We

combine these results as follows.

THEOREM 0.2. The number of the discrete spectrum of HNZ(bc) is finite if and

only if Z< N- 1.

We remark that the above result is independent of strength of magnetic fields

and that the difference between the presence and the absence of constant magnetic

fields appears only in the case Z — N — 1, which corresponds to once negatively

charged ions.

Now we are interested in the case of non-constant magnetic fields, which has

not been studied so deeply (Zhislin [25], [26] treated many body Schrόdinger oper-

ators with short range scalar potentials and with vector potentials decaying at in-

finity). In this case the finiteness or the infiniteness of the discrete spectrum of

HN z(b) depends not only on N and Z but also on magnetic fields. In fact we have

the following result in [10].

THEOREM 0.3 For any positive number ε there exists a vector potential bε €=

C (R ) , which is independent of N and Z, such that the number of the discrete spec-

trum of HNZ(b) is finite for Z > ε and N > 1.

Our main result of this paper is the following theorem, which is contrastive to

the above.
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THEOREM 1.1. There exists a vector potential b0 €= C (R ) , which gives a per-

turbed constant magnetic field and is independent of N and Z, such that the number of

the discrete spectrum of HNZ(b0) is infinite for any N and Z.

This is another evidence that the finiteness or the infiniteness of the discrete

spectrum of HNZ(b) depends on magnetic field. As stated first, any atomic system

has infinitely many bound states in a suitable magnetic fields, even if we add any

number of electrons to it.

Also it follows from Theorem 1.1 that the atomic Hamiltonian HNZ(b0) has

non-empty discrete spectrum, that is related to the problem of the presence or the

absence of the descrete spectrum. This problem has been already studied by Rus-

kai [16], [17], Sigal [18], Lieb [11] and others. Ruskai and Sigal proved that there

is no very negative ions, that is, for given Z, if N is sufficient large, then

HNZ(0) has no discrete spectrum, and further they studied sufficient conditions

for the absence of the discrete spectrum (see also Cycon et al. [7] Chap. 3). Lieb

[11] improved their results as follows.

THEOREM 0.4. If N > 2Z + 1, then HNZ(0) has no discrete spectrum.

As a consequence of the above theorem, the number of electrons that a nuc-

leus of charge Z can bind is less than 2Z + 1. Comparing Theorems 0.4 with 1.1,

we see that the existence of the discrete spectrum generically depends on magnetic

fields. Moreover, the maximal number of electrons that a nucleus can bind depends

not only on the charge of the nucleus but also on the magnetic field.

In §2 we prepare basic lemmas and Agmon's if-function by which we study

the bottom of the essential spectrum of HNZ(b). In §3 we show L -exponential de-

cay of eigenfunctions, that is due to Agmon [1] and [2]. In §4 we show an example

of the magnetic bottle with infinitely number of discrete spectrum. This vector

potential has the property of the main theorem, that is shown in §5.

2. Preliminaries

In this section we make some preparations for the later sections. The aim of

this section is to study the location of the infimum of the essential spectrum of

HNZ(b). First we denote the spectrum, the discrete spectrum, the essential spec-

trum of a self-adjoint operator H by σ(H), σd(H), σe(H), respectively, and the

cardinal number of a set Fby # Y. Also we put
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Λ(H) = inf σ{H) and Σ(H) = inf σβ

For two vector-valued functions F and G, we denote (Ff G)T2 = I F

Now we go on with the argument by restricting H — HNz(b). For the sake of con-

venience we denote HN = HNZ(b) when Z and b are fixed. Then recalling the

notation in §1, we define the quadratic form

QHNIΦ> Φ^ = Σ (Tjφ, Tj(p)L2 + (Vφ, ψ)L2, qHN[φ] = qHN[φ, φ]

for φ, φ e C^°(R ), where we put

N / 7 \

= Σ ( - J 4 Γ )

The infimum of the spectrum and that of the essential spectrum of HN can be ex-

pressed as follows (see also Persson [13] and Agmon [1] Theorem 3.2).

LEMMA 2.1.

Λ(HN) = mί{qffN[φ] φ e C0°°(R3"), || φ I* = 1},

Σ(HN) = sup infiqHNίφ] φ e C0°°(R3"\E),\\φ \\L2 = 1}.
incompact

One can show the above equalities in the same way as in the case without magne-

tic fields (see [1] Theorem 3.2, [2] Theorem 1.6). Next the following localization

formula holds as in the case without magnetic fields (see [7] Chap. 3, [8] Lemma

23).

LEMMA 2.2 (IMS-localization formula). For a smooth partition of unity ija)a

such that ΣaJa(x) = 1, the following equality holds:

HN = Σ (JaHNJa — I VJa |
2) in the form sense.

a

Also we can extend the above two basic lemmas to the case of general scalar

potentials (see [10]). Now we define Agmon's function which serves to study the

bottom of the essential spectrum of HN (see [1] Chap. 2, [2] §5, [10]).

DEFINITION (Agmon's if-function). Let

a3N-l f /I N\ r- n3N I I Λ\

S = iω = (ω , . . . , ω ) e R | ω \ = 1}.

For a subset U c S (U Φ 0 ) and for positive numbers R and δ, we put
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Uδ = {ω €= S3""1 dist(ω, U) < δ),

ΠUδ,R) = {χ<ΞR3N;χ/\χ\ <Ξ Uδ, \x\ > R},

{2Λ) I K(Uδ, R;HN) = inίίqHκ[φ] φ e= C0°°(Γ(C/δ, i?)), || φ I* = 1},

K(U i ^ ) = lim lim K(Uδ, R;HN).

One can show the following properties of K in the same way as in the case

that b = 0 ([1] Chap. 2, [2] §5 and [8]).

LEMMA 2.3. The function K has the following properties.

(i) 77i0 t>αhi<? of K(U i?#) is ίfoe sαwe regardless of the order of the limits.

(ii) The function K(ω HN) is lower semi-continuous on S , where K(ω

HN) =K({ω};HN).

(iii)

general scalar potentials (see [10]). For b ̂  C (R ) , we now define the subsystem

We remark that Agmon's function is similarly treated also in the case of

ral scalar pot

of HN as follows.

DEFINITION. For α > = ( ω , . . . , ω ) ^ S , let

(2.2) (HN)ω = Σ T,(bΫ + Vω in L\R3N) and

(2.3) κωω = Σ ( - -4?) + *
ωy=0 X I X I

This operator (HN)ω is called the subsystem of HN with respect to α> ̂  3 (see

also [10]). Then the next lemma follows from the proof of Lemma 2.5 in [10].

LEMMA 2.4. K(ω HN) = ϋΓ(ω (HN)ω) for ω e S3^"1.

We consider only the case that

(2.4) δ(y) =f(r)(-y2,yv0),

where y — (ylf y2, y3) ̂  R , r = \ y |, / is real-valued function in C ([0, °°))

and/ r (0) = 0. We assume that

(2.5) fir) -B/2 = CQr~a (a > 0, r > > 1)

for some constant Co and some positive constant B. The constant Co is not neces-

sarily positive. We note this vector potential b gives a perturbed constant magne-
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tic field. The vector potentials presented later in §4 take the form of (2.4) and

satisfy the above assumption. Under the above situation, we study the bottom of

the essential spectrum of T(b) and HNZ(b). The case of a > 1 has been already

studied in [9] and [10].

THEOREM 2.5. If a > 1, then

(2.6) inίσe(T(b)2) = B and inf σe(HN>z(b)) = B + Λ(HN_ίtZ(b)).

Therefore we study only the case that 0 < a < 1.

First one can show the following theorem, of which we omit the proof, in the

same way as in [9] (Example 2).

THEOREM 2.6. 7/0 < a < 1, then

(2.7) infσβ(Γ(δ)2) =B.

Next we consider the bottom of the essential spectrum of atomic Hamiltonians

HNz(b) in the case 0 < a < 1. Then we want to show the following theorem.

THEOREM 2.7. Letn>2 and Hι = Hlz{b) (/ e N) for short. In the case 0 < a

< 1, suppose that

(2.8) Σ ( ^ ) = ΛiH^) + B (1 < / < n ~ 1),

where we define Hι=0 = 0. Then

(2.9) Σ(Hn) ^

In order to prove Theorem 2.7 we shall use the following inequality. This

appears in [9] and also follows from Theorem 2.9 in [3].

LEMMA 2.8. Let b(y) = F{y) ( - y2, yv 0), where y = (yv y2, y3) e R 3 and F

e C\R3). Also let p = (yίf y2) andp = \p\. Then

? d

(2.10) T(b) >2F + p-Q-Fin the form sense.

In particular, for the vector potential in (2.4), we have

2

(2.11) T(bΫ > 2/(r) +f'(r) ^ in the form sense.
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Proof of Theorem 2.7. By Lemma 2.4,

K(ω Hn) = K{ω (Hn)J for ω G S 3 "" 1 .

By the property of if-function (Lemma 2.3),

(2.12) Σ(Hn) = min K(ω;Hn)= min K(ω;(Hn)J.

ω e 5 3 n - i ωeS3*-1

Now we will show that

(2.13) min K(ω;(Hn)ω)> min (Λ(Hn_) + IB).

By the definition of subsystem, for ω = (a) , . . . ,αΛ) ^ S , without loss of

generality we can assume that

+ Σ ,
ω'=ωJΦ0,l<i<j<l \ x — X

=a n d ω ; > 0 (j = 1 , . . . , /), J= 0 (A: = / + 1, . . . , ή),

for some number / e {1, . . . , ^}. This implies

( i ϊ w ) ω > yKi/^,) + Σ η 2 in the form sense.

We now apply Lemma 2.8 to the vector potential b in (2.4) with the assumption

(2.5). If Co > 0 (Co is in (2.5)), then 2 / + f'(r)p2/r > B + C0(2 - a)r~a > B

when r is large. If Co < 0, then 2 / + fr(r)p/r >2f>B~{- 2C0)r~a when

r is large. Hence, if necessary, by exchanging the constant, we have by Lemma 2.8

(Γ/0, φ)L2 > B || φ fL2 — (positive constant) (| x \ aφ, φ)L2

for φ G C0°°(R3w). If x e Γ(ω 5 , /?), then | x ; ' | > (| ωj \ - δ) \ x\ for G {1,. . ., /}.

Let <5< ( m i n 1 < ; < J ω Ί ) / 2 = (51. Then U y | > δx U l > δxi? for G {1, . . . , /}.

Hence, for any ε > 0 there exists Rε > 0 (which is independent of δ) such that

Σ (Γ/0, 0)L2 > (/β - ε) || φ fL2 for φ G C0°°(Γ(ωδ, i?)),

which leads to

~ ε)} || φ fL2 for φ G C

if i? ^ i?ε, δ ^ δi. Hence by the definition of iί-function we have

K(ω, (Hn)ω) > Λ(HnJ + IB,
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which implies (2.13).

Now suppose (2.8), that is, Σ(H,) = Λ(Ht_d + B (1 < / < n - 1). Then

nB= (n- 1)5 + ΣiHj ^ (n - 1)B + Λ(Hγ)

= in- 2)B + Σ(H2) > (n- 2)B + Λ(H2)

) >B + Λ(Hn_λ).

By (2.13) this implies

(2.14) min (Λ(Hn_t) + IB) > B + Λ (#„_,).
\<l<n

Combining (2.12), (213) with (2.14) we obtain (2.9). D

3. Decay of eigenfunctions

In this section we show the L -exponential decay of eigenfunctions in the case

of non-constant magnetic fields. We make use of this property in the proof of

Theorem 1.1. Since we need only the isotropic L -exponential estimate of eigen-

functions, we do not touch neither the non-isotropic estimate nor the pointwise

estimate (for example, see [5], [19]). In the case without magnetic fields. O'Conner

[12] and Combes-Thomas [6] showed the (isotropic) L -exponential decay of eigen-

functions for Schrόdinger operators under some restriction on the scalar poten-

tials. In [1] and [2] Agmon discussed this property for general Schrόdinger oper-

ators without magnetic fields. On the other hand, as for the case of constant

magnetic fields, Avron-Herbst-Simon [3] (§8) showed the pointwise estimate of

eigenfunctions of atomic Hamiltonians, which leads to the L -estimate of them. One

can show the similar result in the general magnetic case as in the case without

magnetic fields. We will make it sure in this section by the same method as in [1]

(Theorem 1.5 and Chap. 4) or [2] (§4).

First we state our desired theorem as follows.

THEOREM 3.1. Letting n > I and supposing that σd{Hy) Φ 0 , we pick up a nor-

malized eigenfunction u(x) corresponding to the ground state energy Λ(Hn). Then

there are some positive constants δQ and δ1 such that

(3.1) Γ I u(x) \2e2δ°lxldx < + oo and Σ Γ | TΛb)u(x) \2e2δllxldx < + oo,
JR3n j = 1 JR3n

where Tj (b) is defined in § 1.
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In view of the proof of Theorem 3.1 in this section, we shall see that it is

needless to require that u(x) is a ground state. Namely, we can replace u(x) in

Theorem 3.1 by the eigenfunctions corresponding to the discrete spectrum below

the essential spectrum.

In order to prove Theorem 3.1 we make some preparations. We now consider

the following operator:

H= ΣTi(bΫ+V(x)mL2(R3"),

where b e C\R3)3, V<Ξ L\0C(R3n) and V_ e # ( R 3 w ) , which are real-valued.

Here VΛx) = m a χ { - V(x)9 0} and tt(R3n) is Kato class (see [1] Chap. 0, [7]

Chap. 1), that is,

W) = \u €= L\0C(R3n) lim sup f \u(x) \\χ-χ° \2~3ndx = θ} .
1 rl0x°<zR3»J\x-x°\<r >

The atomic Hamiltonian HNZ(b), defined in §1, is a special case of the above H.

We remark that the functions in Kato class are Σ ; = 1 T} -form bounded with the

bound zero. Hence for any ε > 0 there is a positive constant Cε such that

(3.2) (V_φ, φ)L* < ε Σ II T,φ || I, + C61| ̂  &

for 0 ^ C^°(R ). For a self-adjoint operator P we denote the domain and the

form domain of P by D(P) and Q(P), respectively. We remark that

D(W = {u €= L2(R3W) 7 > , | F | 1 / 2^, i/w e L2(R3w) (1 < j < n)},

©(fl) = ίw €= L2(R3M) ΓyM, I V\1/2u G L2(R3M) (1 < y < w)}.

The following proposition will be essentially used for the proof of Theorem 3.1.

PROPOSITION 3.2. Let u e D(H) solve

(3.3) (H- μ)u = finL2(R3n),

where μ €= R, / ^ L (R ) which is complex-valued. Putting q— V — μ, we assume

that there is a positive constant λ such that

(3.4) Σ II Tfφ |£, + ( # , <^)i2 > λ || 0 |£, /or φ e C0"(R3").

Further let h(x) be a real-valued Lipschitz function in R satisfying
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(3.5) \Vh\2<λ a.e.

Then the following inequality holds.

/ o n\ Γ I / \ | 2 / ) I Γ7T |2\ 2h(x) j ^ Γ I £ ί \ 1 2 / ^ I ̂  r | 2 \ - 1 2h{χ) j(3.6) I I u(x) I u — I Vh | )e dx < I I fix) \ U — \Vh\) e dx.
JK3n JR3«

Now we prepare one more lemma as follows (see Agmon [2] Lemma 1.7).

LEMMA 3.3. Suppose that

(Hφ, φ)L2 > f c(x) I φ \2dx for φ G C ( R 3 W \ Ko),
JR3n\K0

where Ko is a compact set in R n and c(x) is a real-valued continuous function in R n.

Then there exists a non-negative function χ ^ Co (R ) such that

(Hχφ, φ)L2 > f c(x) I φ \2dxfor φ €= C0°°(R3M),

where Hχ = H + χ .

For a while admitting Proposition 3.2 and Lemma 3.3, we will show Theorem

3.1 from now on. The following proof is due to Agmon [2] (Theorem 4.3).

Proof of Theorem 3.1. Let μλ = Λ(H) ^ σd(H). Also let u(x) be an eigen-

function corresponding to Λ(H), namely,

(3.7) (H- β1)u = 0inL2(R3n).

For any E ^ (μv Σ(/0) there exists a positive number R such that

(Hφ, φ)L2 >E\\φ & for φ e Cζ(ΩR),

where ΩR = {x ^ R 3 n | x\ > R}. This follows from Lemma 2.1. By Lemma 3.3,

there exists a non-negative function χ ^ C^°(R n) such that

«HX - μjφ, φ)L, >(E- μj || φ t for φ e OR 3 "),

where Hχ = H + χ. We now pick up a function ζ e C^(Rn) satisfying 0 < ζ

< 1 and ζ = 1 if \x | < i? + 1 /2, ζ = 0 if | x | > R + 1. Using the above func-

tion ζ, we put

υ(x) = (1 - ζθr))ttθr) for x e R3w.
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We note that υ e HΪ0C(R3n) and

(3.8) v(x) = u(x) for \x \ > R + 1.

By using the relation that the commutator [Tjf 0] = — i(Vjφ) for 0 G C (R w ),

and by a straightforward manipulation, we have (by (3.7))

(3.9) (Hx - μjυ = 2ί Σ V,ζ 7> + (χ( l - ζ)

Let ^ = [the right-hand side of (3.9)]. Then the function υ satisfies

(3.10) (Hχ- μ1)v = ginL2(R3n).

Now we apply Proposition 3.2 with

(3.11) q=V+χ-μ1,f=g,λ = E-μ1andh= a~ε)/λ\x\ ( 0 < ε < l ) .

Note that the assumption of Proposition 3.2 is fulfilled in this case. Then we have

Γ I I 2 /1 I Γ7τ |2\ 2(l-ε)VT[.r! , ^ C \ I2( 1 I m l ^ " 1 2(l-ε)VT|x| ,

/ I t; I u — I Vh I ) 0 dx < I \ g\ (λ — \Vh\) e dx.

Since g is compactly supported and λ — \ Vh \ > ελ, we have

I z te) I e dx < + °°,

which implies by (3.8)

X I / \ |2 2(l-ε)V/7|x| , ^ i ^
I W(J :) I e dx < + oo.

Hence letting δ0 = (1 — ε)\/J we have

(3.12) Γ U W \2e2δ°lxldx< + oo.

Next we show the second part of (3.1). We pick up a function χ 2 €=

C0°°(R3w) such that O ^ χ ^ l , and Z I C F ) = 1 (\x\ < 1), Xl(x) =0 (\x\>2).

Letting χm(x) = χ^x/m) and a = 1 — 2ε (ε is in (3.11)), we define functions

vm e L 2 (R 3 W ) by

(3.13) t ; m ω = χ m ω 2 ^ ω ^ α v / 7 | x l (m e N).

We remark that υm e QCί/) (the form domain of H). Since (H — μλ)u = 0 in

L 2(R 3 n),
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(3.14) Σ (7>, 7>Ji«

;=i

By a simple computation,

( 7 > , 7>w)La = I χ m £ I 7 > | ώr + tayjλ {TjU, χmuγ—j

Hence we have by (3.14)

(3.15) Σ Γ χ2

mea λlxl \ TjU \2dx = ^ ( w , O z 2 ~ (Vu, vJL2

- ia4λ Σ (TjU, χ2

m

By using (3.12), it is easy to see that the first, third, fourth term of the right-hand

side of (3.15) are uniformly bounded in m. As for the second term of (3.14), by

the assumption V_ e # ( R 3 w ) and (3.2),

Σ(3.16) - (Vu, υJL, < (V_vm, u)L> < j Σ || T,(ueaVλ m/2χm) & + 0(1)

12

TM I dx + 0(1).< | Σ / R 3

Here we have used the first part of (3.1) which we have already shown. Combin-

ing (3.15) with (3.16) yields

Γ Xmea/Ilxl I 2> |2d.r = 0(1) (1 < < n),

which is uniformly in m. Letting m —* °° we have

Γ ^ ^ I Γ;« |2ΛF = 0(1) (1 <j<n).
J R 3 «

We have only to put δι = αv /J/2. •

To complete the proof of Theorem 3.1 we prove Proposition 3.2 and Lemma

3.3. These proofs are due to Agmon [1] (Theorem 1.5) and [2] (Lemma 1.7).

Proof of Lemma 3.3. Pick up non-negative functions ξ0 ^ C^°(R ) and ξ1 ^
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C°°(R n) such that ξλ = 0 in a neighbourhood of Ko and ξ0 + ξx = 1 on R n. By

IMS-localization formula (Lemma 2.2) and by the hypothesis we have, for φ €=

C;(R3 B) ,

(Hφ, φ)L> = Σ (Hξ}φ, ξsφ)L2 - ((I Vξ01
2 + I Vξ, \2)φ, φ)L>

> (c(x)ξίφf ξxφ)L2 + Λ(fl) || ξoφ Wl* - ((I Ff 0 1 2 + I F £ | 2 ) 0 , φ)L>

= {cx{x)φ9 φ)L*,

where we set

Clω = ξx(xγc(x) + Λ(H)ξ0ω
2 - (I vξ0 Γ + 1 vξ, ι2).

Since cx(x) = cte) when | x \ is sufficiently large, it is easy to see that there is a

non-negative function χ e C^(R3w) such that cx(x) + χ(x) ^ c(x) on R w. This

completes the proof. CH

Proof of Proposition 3.2. First, by the assumption,

(3.17) Σ ( 7 >

f o r 0 G C0°°(R3w). Let

Y= L~0(R3n) Π {u 7 > e L 2(R 3 w), 1 < < n} c L 2(R 3 w).

By using a mollifier and by taking the limit, (3.17) holds also for φ ^ Y.

Let 0 be real-valued Lipschitz function with compact support and uε = u/(l

+ ε I u I ) (ε is an arbitrary positive number). As is easily seen, u£φ ^ Y. We

note that

(3.18) uε~+ u in ϋΓl0C, and TjUε—+ TjU in Lioc as ε i 0.

By substituting φ = uεφ into (3.17), we have

(3.19) Σ ( 7 > , Tj(uεφ
2))L2 + (qu, uεφ

2)L2 = (/, wε0
2)L2.

Rewrite u — uε + (w — Mε) and take the real part of the both sides in (3.19).

Then

(3.20) Re Σ ( 7 > ε , T^φ2)^ + (quε, uεφ
2)L2 = Is + Re(f, uεψ

2)Lh

where
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2)Iε = — Re Σ (Tj(u — uε), TjUεφ )L2 — (q(u — uε), uεφ )L2.

Since — q(u — uε)uε < q_(u — uε)uε (q_(x) = maχ{— q(x), 0}),

(3.21) /, < Σ II Tjiu - ut) \\LHΩ) || T,(uΛφΊ \\LHΏ)

+ (qΛu - uε)φ, (u ~ u^φΫ^

where Ω = supp φ and we have used Schwarz inequality. As is easily seen by

(3.18), the first term of the right-hand side of (3.20) converges to zero as ε tends

down to zero. We notice that q_ ̂  # ( R n) is Σ;- Tj relatively form bounded with

the bound zero, and that

^ J8OII Γ ^ I I ^ + j

for φ — uε or φ = u — uε. Here β0 and β1 are some positive constants. Hence

(q_uεφ, uεφ)L2 < Σ || TjUεφ |£2 + Cλ || uεφ ||̂ 2

< βQ Σ II TjUε ftfu) + (nβγ + sup I φ{x) I) II uε |£ 2 ( f i )

1 β

for some positive constant Cv which is independent of ε < 1. Hence by using the

same method as above we have

[the second term of (3.21)] < β3 [ Σ {|| Tj(u - uε) | £ , ω ) +\\u~uε fL2(Ω)}γ/2

;=i

for some positive constant β3. By (3.18) again it follows that the second term of

(3.21) converges to zero as ε tends down to zero. Hence we have

(3.22) limsup/ε<0.
e j o

In view of the identity

Re Γ TjV T,(φ2v)dx = [ i\ T,(<pv) Γ - \v |21 V,φ \2)dx for v e D(H),

by using (3.22) and (3.20) we have

lim sup {Σ || Tjφuε ||'2 + (qutφ, uεφ)L2 - || uεVφ |£a - Re(/, urf2)?} < 0.
l o i
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By (3.18) and the assumption (3.4),

(3.23) λ || φu ||*2 - || uVφ ||*2 < Re(f, uφ2)L2.

Now let g and χ be real-valued Lipschitz functions such that χ is compactly

supported, 0 < χ < 1 on R w and | Vg | < λ a.e. Then we can put φ — egχ in

(3.23). Using Schwarz inequality for

</, ue"χ\> = (u(λ - I Vg lYVχJiλ - \ Vg \2Y1/2egχ)^

we have by (3.23)

Jχufe^U - \Vg\2)dx<

/ | 2e 2 ί( | Fχ | 2 + 2χ I Vg- Vχ \)dx.

In view of the fact that

a < \fa\fb + c (a, δ, c > 0) implies α < i + 2ί:,

we have

(3.24) Γ |χM | 2^α-|^Γ)dx< Γ l/χlV^/i-I^Γ)-1^

+ 2 jΓ3J u\2χ2e2g(\ Vχ \2 + 2χ\Vχ Vg\)ώc.

From now on we will show (3.6) by using (3.24) and by taking the limit. Let-

ting Ωj — ix <Ξ R3w I x I < ;}, we define functions ϊ](f) and χ ;Cr) by

" / ί e α ' 1 3 ^ ) , a n d χ ^ ω = ^ ( ^ d i s t ( x ^ fl/»

Then χ ; is a Lipschitz function and

Xj(y) \ < \[λ \ x - y \ and | Vχj(x) \ < \[λ a.e.

We define the function hk(x) by hk(x) = min{h(x), k}(k ̂  N). Then hk is a

Lipschitz function and (by (3.5)) | Vhk \ < λ a.e. Hence we can put g = hk and

χ = Xj in (3.24):

(3.25) Γ | χ ^ | V Λ A U - | F / z J 2 ) ά r < Γ |/χ ; |V
Λ*Q - I Vhk\

2)dx
JR3n JR3n

2 + 2Xi\Vhk- VXi\)dx.

https://doi.org/10.1017/S0027763000006115 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000006115


84 TETSUYA HATTORI

Since χ y —>1, F χ ; — * 0 and hk-+ h, Vhk-+ Vh in pointwise sense, letting first

j — • °° and next k—* °° in (3.25), we obtain

Γ | « | V * U - |F/*|2)dχ< Γ |/|V*U — \Vh\*)dx. D
JR3« JR3«

4. Magnetic bottle

In this section we show an example of the magnetic bottle, which will be used

for the proof of Theorem 1.1. Here a vector potential b ^ C (R ) is called a

magnetic bottle of the first (respectively second) [respectively third] kind if and

only if T(b) has some non-zero eigenvalue (respectively T(b) has pure point

spectrum) [respectively T(b) has compact resolvent] (see [3] §1 and §2), where

T(b) = — iVy — b{y) (y e R 3 ). Throughout this section we denote y = (ylf y2, z)

e R 3 , β = ( y v y 2 ) , r = I y \ , p = \ β \ .

Now we want to show the following theorem.

THEOREM 4.1. There exists a vector potential b0 e C ^ R 3 ) 3 such that

#σd(T(bQ)2) = + oo,

that is, b0 is a magnetic bottle of the first and second kind.

This magnetic bottle b0 will be constructed as a perturbation of bc(y), which

appears in §1 and gives a constant magnetic field. Therefore this b0 is not a

magnetic bottle of the third kind. We notice that the previous step of this theorem

appears in [9] Example 4. By min-max principle and Rayleigh-Ritz method (see

[14] XIII), we have only to prove the following proposition, which plays an impor-

tant role in the proof of Theorem 1.1.

PROPOSITION 4.2. There exist a positive constant ε0, a vector potential b0 €=

C (R ) and a sequence of functions iψm}m

 c C (R ) Π Q(T ) such that

(4.1) (φi9 0 P L a ( R 3 ) = <50 and \\ Tφm | |* 2 ( R 3 ) < B - ε 0 m " 1 / 4 (m > > 1),

where Q(T ) denotes the form domain of T , B = inf σe(T ) and ε0 is independent of

rn. Moreover, there is a subsequence of {ψm}m, denoted by {φm}Jf satisfying

(4.2) (Tψmι, Tφ

We start the proof of Proposition 4.2. Pick up a real-valued function η0
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Co°° (1 < z < 2), which is normalized as || η0 ||L2(R) = 1. Letting

(4.3) c0 = || η'o ||*ί(R) and B > 2 + ψ c09

we define the function /(ζ) by

(4.4)
ζ(2 ~ 0

8/2
(1 < ζ < 2),

L 2 8/2

Then / e C'ίtO, °°)),/'(ζ) > 0 and / is real-valued. By using this function

/(ζ), we define the vector potential bo(y) by

K(y) =f(r)(-y2lyv0) ( ? eR J ).

We note that bo(y) gives a perturbed constant magnetic field. We will show this

vector potential b0 is desired one.

Remark 4.3. We want to make c0 as small as possible. By the min-max prin-

ciple for the operator — d / dt in L (0,1) with the Dirichlet boundary condition,

we can take c0 ~ π2. Hence we can take B > 2 + 64π2/9 ~ 72.2.

LEMMA 4.4. Let Gf(y) —2f{r) +f'(r)p2/r. Then the following inequality

holds:

(4.5) Gλy) < B +

IB-

(2r2 - 3r - 8)
(1 < r<2),

< r< 1).

DEFINITION. Using the cylindrical coordinate ((p, θ), z), we define

(4.6) φjp, z) = βm(z)e<mθpmexp{- F(p, z)}

= βjz) (y, + ιy2)
mexp{- F(p, z)} (m e N),

where
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F(p9z) = Γ f(Jt2 + z2)tdt

and βm(z) is the normalizing constant in L (R ), namely,

(4.7) βm(z)2 = [2π J V w + 1 e x p { - 2F(p, *)}dp] * (m e N).

Also letting

(4.8) ηs(z) = 5"1/2ry0U/5) (5 > 1)

for the above ηQ ^ C~(l < £ < 2), we define the function 0^(#) by

(4.9) φs

m(y) = ηs(z)φm(p, z) (s > 1, m e N).

We shall get the desired sequence of functions in the above form (4.9).

LEMMA 4.5. These functions φs

m and φm have the following properties.

(i) φs

m e C (R ) Π Q(T(b0) ) , where Q(T(b0) ) denotes the form domain of

Πbf.
(ii) [T(b0)

2 - ( - 9 2 / 3 / ) ] 0 w = Gf(y)φm, and so [T(b0)
2 - ( - 9 2 /3* 2 )]^4

— Gf(y)φm, where Gf(y) is defined in Lemma 4.4.

(iii) (0W, 0mOL2(R2) = flmm,, 50 II 0^ ||L2(R3) = 1, (0^, 0S)L 2 (R3) = 0ifmΦm'.

Proof of Lemma 4.5. (iii) is easily obtained. In view of the form domain of

Q(T(b0Ϋ) = {u e L2(R3) Γ(ί»0)M e L 2(R 3)},

one can easily obtain (i). By using the equality

T(b0)
2 - ( - d2/dz2) = - 9 2 /% 2 - 92/%2

2 + 2ifto V + f(div δ0) + | fc01
2

= - 9 2 /% 2 - 92/9?/2

2 + 2ιV ί7 + I *o I'

and

9P0W = (m/p - f(r)p)φm, dθφm = imφm (m e N),

it is easy to show (ii) by a straightforward calculation. •

LEMMA 4.6. For any R > 0 there exists a positive constant CB(R) such that

βjz)2 < CB(R)R~2m~ι {uniformly inz;rn<ΞN).
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Proof Since /(ζ) < B/2, we have by (4.7)

n / \ — 2 ^ / 2m+l —2F(p,z) τ ^ n / 2 w + l —Bp2/2 r ^ r» τ-»2m+l / —Bp2/2 τβ̂ Cε) = 2ττ I p £ dρ>2π \ p e dρ> 2πR I e dp.
JQ JR JR

Putting CB(R) = \2π I e~Bp ndp) , we have the desired inequality. D
\ JR I

6 / ^ / »\ | - l l / 8 , , ,s(m,k) ΛTΛI

— /-D ί7f , 5 = sym, k) — k m and Φm — Φm . Then weLet A

II dΦm II 2

can estimate —^— as follows. This estimation serves to estimate the
II oz III2 ( R 3 )

quadratic form of T(b0) .

LEMMA 4.7. For any ε > 0, the following inequality holds:

1 90 II2 r 2 2 / 2 Ί _i/4 _i

-g— I < ( l + ε)|co/c H—~ I β _ 2 j ( ^ + D + c(B, k)rn
/ 2 \ 1 / 4

= 2(1 + ε)v/2c^ ( o _ r>) (m + 1)~1 / 4 + c(B, k)m~ι

when m is sufficiently large, where c(B, k) is some positive constant depending on B

and k, and c0 appears in (4.3).

To prove Lemma 4.7 we prepare several lemmas as follows.

LEMMA 4.8. The normalizing constant βm(z) satisfies the following equality.

(4.11) β'Jz) = 2πβm(z)3z Γ (fir) - / ( | z \))p2m+1e~2FMdp.

JQ

LEMMA 4.9. Let g(Q = / ( ζ ) — B/2. Then the following equality holds.

(4.12)

V = U I2 [2πβjzf £ g(r)Ym+ίe-2FMdp

-{2πβJzΫ f

LEMMA 4.10. The first term of the right-hand side of (4.12) is estimated as fol-

lows.
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ΛOO

/ A A o\ o n / \ 2 I / \ 2 2m + l —2F(p,z) Ί ^ / r> /o -1/2
(4.13) 2πβm(z) I g(r) p e dp < y/B/2m

LEMMA 4.11. Let s = k m . Then the second term of the right-hand side of

(4.12) is estimated as follows.

/ A Λ Λ \ o n / \2 Γ / / \\ 2m+l -2F(p,z) j

(4.14) 2πβm(z) I ( - g(r))ρ e dp

9 \ 1/4

(m + 1)~1 / 4 — qCB, k)m~λ

for m > 1, s < z < 2s, tf/ierβ c^B, /c) is somg positive constant depending on B and

k.

Admitting Lemmas 4.8-11 for the moment, we prove Lemma 4.7.

Proof of Lemma 4.7. By a simple calculation,

(A 1 C^\ 11 — I Y)^ ff\ o o ~τ~ 9\\ f* I Y7 Ύ) if) I ~r~ Ύ)
V / II Λ II ISrΪΪI ιιL (R, ) u i v c i 'js Jsrtny 7^** I is 7^v *

II OZ I IL 2 (R 3 ) \ ^ ^ / L 2 ( R 3 ) II σ 2 Hi2(R3)

The first term of the right-hand side of (4.15) is equal to cos . By differentiating

in z the both-sides of the equality || φm ||JL2(R2) = 1, we have

2Re J R 2 φm(β, z) -jg- (p, z)dp = 0.

Hence the second term of the right-hand side of (4.15) vanishes. So we have

(4.16) ^m = c0s~2 + I I Ϊ]S(Z) | 2 ( I I —^ (p, z) \2dp)dz.
II OZ II ^ R 1 R 2

Now we estimate the second term of the right-hand side of (4.16). By Lemmas 4.9,

4.10 and 4.11, and by putting s = k~ m ,

ί

S i n c e s u p p 7 ? , . c { ^ e R s ^ z ^ 2 s } ,

[the second term of (4.16)) < 4s2{ ,2(B- W ( w + ^'^i1 + ^ ) + O(m~5M)}
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p

Let ε be an arbitrary positive number. Then for m > -^-

(4.17) [the second term of (4.16)] < (1 + ε) -^ / D ^ 9 (m + 1)" 1 / 4 + 0{m~ι).

Hence by substituting s — k~ m into (4.16) and by (4.17) we obtain the first

Γ 2 / 2 1 1 / 4

inequality of (4.10). Also recalling the definition k = j — / /? — ? I • w e °btain

the second equality of (4.10). •

By using Lemmas 4.7 and 4.11 we now proceed to prove Proposition 4.2.

Proof of Proposition 4.2. The sequence of functions {φm} constructed as be-

fore satisfies (φif ΦJ)L2CR3) = ^a Ŷ Lemma 4.5. By Lemma 4.5 again,

/ A Λ r>\ II τ« i 112

(4.18) lφm r2(T?3) =
\ / ii T Ύϊl >>L, vxv /

Since k will be determined to be independent of m later in this proof, we can

assume s(rn, k) > 2 if m is sufficiently large. By (4.5) (if s(m, k) > 2),

3
<ΛΛ2(R3) ^ B + 2" (g(r)φm, 0m)L2 ( R 3 ),

where ^(r) = fir) — B/2. By Lemma.4.11,

so we have

3 / P _ 9\i/4

{ m

Using Lemma 4.7, we have for any ε > 0

\\TφJLHR3)£B-{^\
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when m is sufficiently large. By the definition of B (in (4.3)),

3 (B-2\^ ^ - / 2 \ 1 / 4 3 (B - 2\"V 8

) y 2 )
2 \1/4 _ 3 (B - 2\"V 8
=2) ~ 2 VΎ~) V ~ 3 B - 2

where ε1 depends only on c0 and B. Hence we have

/ τ> o \ 1/4

( / τ> o \ 1/4 / o \ l/4-i

ελ(—g—) -2ε/2^(^gir^) }(m + 1)"1/4 + OCm"1)(m» 1).

Since ε is arbitrary, we can put e = -5- / . Then
o V £0

o \ 1/4

^ )
c \ 1/4

II T0OT |£ 2 ( R 3 ) < B - I ( ^ y ^ ) OH + I)"" 4 +
c 1 D 9 \ 1/4

when m is sufficiently large. Moreover, we can choose a subsequence of

iφm} (denoted by the same notation) with mutually disjoint supports. Then the

sequence of functions {φm} satisfies (Tφ{, 7ty;)L2(R3) = 0 if i Φ j . •

To complete the proof of Proposition 4.2 we prove Lemmas 4.8-11.

Proof of Lemma 4.8. By the definition of βm(z),

(4.19) 2πβm(z)2 Γ p2m+1e~2F{p'z)dp = 1.

By differentiating in z the both-sides of (4.19),

(4.20) 2πβm(z)β'Jz) £p2m+1

e-
2Fip z)dp = 2πβm{zΫ£p2m"e'2^^ (p, z)dp.

By multiplying the both-sides of (4.20) by βm(z) and by using (4.19),

n / / \ o r> / \3 § 2m + l —2F(p,z) @Γ / \ j

β'm(z) = 2πβjz) Jo p e -^ (p, z)dp.

dF
We compute -^— as follows.
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(4.21)
dF_
dz ( P , Z ) =

tz

dt
• = Z(/(r)-/(|z|).

Thus we have (4.11). D

Proof of Lemma 4.9. As is easily seen,

(4.22) ^ 05, z) = ^ - " " ' ( f t W - βmU)z(f(r) - / ( | z I))}.

Here we have used (4.21). Hence

(4.23)
dz

(p, z) "^iβ'Jz)2 - 2βm(z)β'Jz)z(f(r) - /(UD)

\ 2 I _ | 2 / r / . Λ r / l _ l \ \ 2 ϊ /
+ j 8 m ( * ) Ί * f ( / M -f(\z\))Ί (= (J,) + (J2) + (/3)).

By use of Lemma 4.8 and (4.19),

X
00 ( ΛOO >J 2 z OO

/ r \ J / o n / \3 \2) I 2m+l -2F{ρ,z) / r f \ r/\ | \\ t / 2w+l -2F(p,z) ,
(Jι)pdp = (2πβm(z) z) I p e (/(r) ~ / ( U I ) ) φ \ p e dp

Γ Γ°° Ί 2

= 2πβm(z)41 -2:|2|J p2m+1e~2Fip'z\f(r) — f(\z\))dp\ ,

J~ {J2)pdp= - 4πβjz)4\z\2{f~p2m+1e~2F{()'z)(f(r) - f(\ z\))dp}2.

Now letting ^(ζ) = / ( ζ ) — B/2 ( < 0) and summing up, we have

J 2 ~W^9'^ dP= ~ ^πβm^2\z\)\j p2m+1e~2F{p'z)(g(r) —g(\z\))dpj

i o n / \ 2 | |2 Γ 2W + 1 -2F(p,z) / / \ /I | \ \ 2 ,

+ 2πβm0ε) 1*1 I p β (g(r) - ^ ( | * | ) ) dp

** 0

I l 2 ί / o n / \ 2 2 w + l - 2 F ( ρ , z ) / \ 2 , / / o n / \ 2 2 w + l -2F(p,z) / \ , \ 1

= | * | (J 2πβm(z) p e g(r) dp - (J 2πβm(z) p e gWdp) j .

Here we have used (4.19) for this calculation. D

Proof of Lemma 4.10. In view that

(4.24) I g(r) I < I g(p) I < p'ιn (0 < p < + oo)

and by using (4.19) we have

[the left-hand side of (4.13)]
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-2F(p,z) 2m-l -2F{p,z)

p e

<2πβJz)2Γp2r

^ I o n ί \ 2 / zm + L —ztΛp,z) Δ i j o n / \ z / zm—i —ZPΛP.Z) •, i

< [2πβm{z) J P e dp\ \2πβm{z) J^ p e dp\

ίo n ί \ 2 Γ°° 2 m - ! ~2F(p,z) i \ ( f/τ\\1/2\

2πβm(z) J p e dp] (= {(I)} ).

Now we estimate (I). It follows from (4.24) that 2F(p, z) —* + °° as

Hence by integration by parts,

-2F(p,z)/τ\ o n / \2 -1 Γ /-/ \ 2m+l -2F(p,z) i

(I) = 2πβm(z) m \ f(r)p e dp

< (B/2)nΓι 2πβm(z)2 Γ p2m+ιe~2F^z)dp
J0

= (B/2)m'\

Here we have used (4.19) and the fact that/(r) < B/2. Summing up we get

[the left-hand side of (4.13)] < v / 5 7 I m~ι/\ D

Proof of Lemma 4.11. We divide the left-hand side of (4.14) as follows.

[the left-hand side of (4.14)] = 2πβjz)2 Γ ( - g(r) + g(p))p2m+ίe'2F(β'z)dp
Jo

+ 2πβJzΫ Γ ( - g(p))p2m+1e-2FU> z)dp = (I) + (II).

First we estimate (I). For p > 2.

0 < g(r) - g(p) = JJ t2)
dt

dt =

Z Γ / A~2 , 72~\ -5/2 ,. / 1 2 -5/2

if / (V P + t ) dt<-κ z p

+ g(p) > - \z2p~5/2 for p > 2.

Ip + Γ
-Λ

so we have

A similar method as above with (4.24) yields this inequality also for p > 0. By

this inequality and by Holder's one,

2

 Γ ~
/ τ \ \ ^ o n / \ 2 / 2m-3/2 -2F(p,2) ,
(I) > —-Fr2πβm\z) \ p e dp

Δ m Jo
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1/4~2 / / °° \ 1/4 / /*«> \ 3/4
>> Z o Π ( \2( I 2m-3 -2F(p,z) , \ ί 2m-l -2F(p,z) , \

> -γ2πβm(z) [J^ p e dp) ' [JQ P e dp) .

By integration by parts and by the fact that/(r) < B/2 we have

X OO ΛOO

2m-3 -2F(ρ,z) i / -, x —1 I 2m-\ r / \ -2F(p,z) ,
p e dp = (m - 1) I ^ /(r)^ dp

< (B/2)(m - I ) " 1 Γp2m-1e-'F(")dp.

Hence by use of the estimation of (I) in the proof of Lemma 4.10 we have

ΛOO

/τ\ -\ ί rt /r»\l/4/ i\—1/4/ 2 /o\r» n / \2 / 2W-1 —2F(p,z) Ί(I) > - CB/2) (m - 1) U /2)2πβm(z) \ p e dp

> - (B/4)m'1(B/2)1/\m-iy1/4z2

>-Bs2m-ι(B/2)ι/\m-irι/i

for s < z < 2s. By putting 5 = k"ιmι/i,

(4.25) (I) > - Bk~m{B/2Y/\m_ J > - Cx(Bf k)m~ι

for some positive constant Cλ{B, k) depending on B and k.

Next we estimate (II). By the definition g(p) = f(p) — B/2 and (4.4),

/ττ\ o n / \ 2 ί Γ 2m+l/2 -2F(p,z) , ι Γ / / \ 2w + l 2w+l/2N -2F(ρ,z) , 1

(II) = 2ττ)Sw(z) | J p ^ φ + J (-g(ρ)ρ -p )e dp]

\ o D ί \ 2 \ C 2tn+l/2 -2F(p,z) -j n f 2m -2F(p,z) , 1

>2τr i8wU)[J p g dp-C2J p e dp],

2
0<p<2

Λ2

/

estimate

where C2 = sup (| ̂ (p) | p + p ). By use of Lemma 4.6 with R = 4 and the

Λ2

/ 2w -2F(p,z) T ^ ^2w + l ,

\ p e dp S z , we have

(II) >2πβm(z)2J p2m+1/2e-2F(p z)dp

(4.26) °
"^ r» o / \2 / 2m+l/2 -2F(ρ,z) j ^ / i->\ - 1

> 2πβm(z) j p e dp — C3(B)m

for some positive constant C3(B). We now estimate the first term of the

right-hand side of (4.26). By use of (4.19) and Schwarz inequality,

\i /o n ( \ 2 \ 2 / Γ°° 2m+l -2F(p,z) i \

1 = (2πβm(z) ) {Jo P e dp)

<-" (O O ( \2\2 Γ°° 2W+1/2 -2F(p,z) , Γ°° 2W+3/2 -2F(/o,2) ,

< {2πβm{z) ) I p e dp I p e dp.
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Furthermore by using Holder s inequality and by using (4.19) again, we have

(o n / \ 2 Γ°° 2W+1/2 -2F(p,z) i \
2πβm(z) p e dp)

^ o n ί \2 Γ°° 2m+3/2 -2F(p,z) i

< 2πβm(z) \ p e dp

o n ( \2( Γ°° 2*n+3 -2F(p,z) , \

2πβm(z) \J p e dp)

(
/•oo \ 1/4

o n / \2 I 2m+3 -2F(p,z) , \
Δπpm\z) \ p e dp)

Jn I

(4 27)
V ' / / Λ M v 1/4 / ΛOO v 3/4

< o _ n /_\2/ / Λ2m+3^-2F(/o,Z) jΛ\ / / Jm+1 _-2F(p,z) .
\J0 ' ' /

v 1/4

Using the fact that β/2 - 1 < f(r) < 5/2(0 < r < + °°) and integrating by

parts, we have

2m+3 -2F(p,z)X OO ΛOO

2m+3 -2F(p,z) Ί ^ I /r, /fΛ - i \ - l
p g dp < \ (5/2 — 1)

Xoo - / 2F(,o,z)\

2w+2 O^V^ / ,
p dp dp

Λ O O

r» / i -iWn o \ - l / 2m + l -2F(p,z) •,

= 2{m + 1 ) ( 5 — 2) I p β φ .

Hence we have by (4.27), (4.28) and (4.19)

X
oo / D O \ 1/2

2m+l/2 -2F(p,z) , ^ / -D Z\ . n\-l/4

p e dρ> y—g—j 0» + 1)
Combining (4.25) with (4.26), (4.29) we obtain (4.14). D

5. Proof of Theorem 1.1

In this section, using propositions and lemmas in previous sections we prove

Theorem 1.1. At first we show the following proposition.

PROPOSITION 5.1. We recall the vector potential b0 defined in §4 and suppose that

(5.1) σd(HN_LZ(b0)) Φ 0 .

Then there exists a sequence of functions iΦm} c Q(HN z(b0)) such that

(5.2) qHlf[Φi9 Φj] = 0 ifiΦjand

https://doi.org/10.1017/S0027763000006115 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000006115


DISCRETE SPECTRUM OF SCHRODINGER OPERATORS II 9 5

where HN = HNZ(b0) and Q(HN) denotes the form domain of HN.

Proof of Proposition 5.1. Let x = (x\ x ) e R , .r' = (.r , . . . , .r ~ ) e

R and pick up a normalized eigenfunction η(x') corresponding to the ground

state energy Λ(HN_1). We note that in view of (5.1) the ground state energy be-

longs to the discrete spectrum of HN_V Using the sequence of functions iφm}m in

Proposition 4.2, we define the sequence of functions {Φm)m

 c Q(HN) by

(5.3) Φm(x) = η(x')ψm(χN) (m e N).

These functions satisfy

(Φ,, Φj)L2{R3N) = δu (i, j e N)

because of the orthonormal property of iψm}m. Now using the equality:

4 " 1
(5.4) H = HNιZ(b0) = HN_hZ(b0) + T2

N- - 4
I x

we have by dropping the third term of (5.4)

(5.5)

- ε 0 m" 1 / 4 + Σ? (, y

 1

 N. ΦM, Φ
> 1 V | X X I

when m is sufficiently large. Here we have used Proposition 4.2.

In order to estimate the last term of the right-hand side of (5.5), we divide it

into two parts as follows.

Φ tfi>ixiJ I x' - X

N

= (I) + (ID.

-X

N\ Φ°" mUHR^ U*>I<L»I/2 Jtfi>ix»iJ I x' - X

N

F i r s t w e c o n s i d e r ( I ) . S i n c e \ χ ι — x 3 \ > \ x | / 2 o n t h e i n t e g r a l r e g i o n o f ( I ) ,

(I) <2f^^^~-\0m(x) \2dx < 2(\χN\-1Φm, ΦJLHR3N) < 2{p-N'φm, φm)LHR3),

. N / N N N\ , f / N\ 2 I / N\ 2Λ 1/2 ^ . . . ,

where x = κx1 , x2 , x3) and pN = \κXι ) "r \X2) i By the estimation in the

proof of Lemma 4.10 we have

(5.6) (I) <2y/2Bm~ι/2.
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N e x t w e c o n s i d e r (II) . S i n c e | x J | >\xN \ / 2 ,

^ Γ ί Γ •*• / A—/—A δMl j λ -δo\xN\/2 I / N\ \2 i J
(II) S I j I — : — in \x ) in (x ) e ax \ e \ Φm\X ) \ dx

J R 3 U/R3(W-1) I γJ γN I J

χ

N I H L 2 ( R 3 W - 1 ) )

-501x^1/2 1 , / iVN |2 j iV

H L 2 ( R 3 W - 1 ) )

Here δ0 is in Theorem 3.1, which states L -exponential decay of eigenfunctions, so

for some positive constant Cv By the uncertainty principle lemma (see [10] Lemma

4.7, [14] p.169) we have

I 77- 17 (ΛΓO I < 2 || Tjt] ||Z2(R3W-i)) = C2 < + oo.

Summing up we have

/ττ\ ^ r^ r^ C -δo\xN\/2 I . / ΛΓx

(II) < Q Q I e ° I 0 w ( x )
^ R 3

2 , N

In view that supp φm c {x e R | ^ | > A;" m } (A: is defined the proof of

Proposition 2),

(5.7) (II) < CxC2e ° J 31 0 W I dx = OU ).

Combining (5.6) with (5.7) yields

hence by going back to (5.5) we obtain

qHN[ΦJ < ΛiH^) + B -^nΓι/i < Λ(HN^) + B

when m is sufficient large.

In addition, by the same reason as in the proof of Proposition 4.2, there is a

subsequence of (Φm}m (denoted by the same notation) satisfying QHN[Φif Φ}λ
 = 0

if i Φ j . Hence {Φjm satisfies (5.2). D

We now prove the main theorem by using Rayleigh-Ritz method.
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Proof of Theorem 1.1. Let b = b0 in §4. This b0 is independent of N and Z.

We show that the vector potential bQ satisfies the statement of Theorem 1.1, by

using an induction with respect to N when Z is fixed. For the sake of convenience

we denote HNZ(b0) by HN.

First we consider the case N = 1. From Theorems 2.1 and 2.6 it follows that
χ

Σ(Hλ) — B. Here we have used the fact that — i—r decays at infinity (see also

[9] §2). By Theorem 4.1 and by the fact that 7\2 < Hv we have # σd(HJ = + °°.

Next suppose that

ΣCfiΓ,) = ΛiH^) + B (1 < / < N- 1) and #σd{HN_x) = + «>.

Then by Theorem 2.8 we have

(5.8) Σίfly) ^ΛθW+5.

By (5.8), Proposition 5.1 and Rayleigh-Ritz method, we have

# { ^ w n ( - oo, Σ(HN))} = + oo.

Also it follows that ΣCH*) = B + Λ{HN^. We remark that σe(HN) = [Σ(HN),

°°) by the same method as in [10]. This completes the proof of Theorem 1.1. D
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