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DISCRETE SPECTRUM OF MANY BODY
SCHRODINGER OPERATORS
WITH NON-CONSTANT MAGNETIC FIELDS II

TETSUYA HATTORI

1. Introduction

This paper is continuation from [10], in which we studied the discrete spec-
trum of atomic Hamiltonians with non-constant magnetic fields and, more precise-
ly, we showed that any atomic system has only finitely many bound states, corres-
ponding to the discrete energy levels, in a suitable magnetic field. In this paper we
show another phenomenon in non-constant magnetic fields that any atomic system
has infinitely many bound states in a suitable magnetic field.

We consider a following Schrodinger operator of many particle system:

N 2 Z 1
(1.1) Hy,® =3 (0 —-5-)+ £ ———

j=1 | 2’| 1<i<isy | ' — 27 |
as a self-adjoint one in L*(R™), wherez= (z',..., 2) e R¥, 2 e R’ (1 <j
< N), Z is a positive constant, N E N, b € C'(R%°® which is real-valued, and

T,=T,00) = —iV,— ba) A1<;<N).

Here V; denotes the gradient with respect to 2 1< j < N). For a vector poten-
tial b€ C'(R%® the vector field B(y) = V X b(y) is called the magnetic field.
This HN,Z(b) is an energy operator corresponding to an atomic system with
Coulomb interactions, in a magnetic field V X b, with an infinitely heavy nucleus
of charge Z, and with N electrons of charge — 1.

Now our problem is to study the finiteness or the infiniteness of the discrete
spectrum of Hy (). This problem has been already studied both in the case with-
out magnetic fields and in the case of constant magnetic fields. As for the case

= 0, Zhislin showed in {23] that if Z > N — 1 then the number of the discrete
spectrum of Hy ,(b) is infinite, and thereafter in [24] that if Z < N — 1 then it is
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finite. Yafaef asserted in [21] without a proof that it is finite also in the case Z =
N — 1. Thereafter in [22] he proved this is true. We combine these results as fol-
lows.

THEOREM 0.1. The number of the discrete spectrum of Hy ,(0) is finite if and
omlyif Z< N—1.

Next let b,(€ C'(R%)®) give a constant magnetic field, that is, V X b, is a
constant vector field. As for the case & = b,, Avron-Herbst-Simon [4] proved that
the discrete spectrum of Hy ;(b,) is infinite if Z = N — 1. From this result we
naturally suggest that it is infinite also in the case Z = N — 1. This is true and
easily seen. On the other hand, Vugal’'ter-Zhislin [20] asserted (without proof) that
the above sufficient condition for the infiniteness is also necessary. This is cer-
tainly true and shown by the analogous method as in the non-magnetic case. We
combine these results as follows.

THEOREM 0.2.  The number of the discrete spectrum of Hy ,(b,) is finite if and
onlyif Z< N—1.

We remark that the above result is independent of strength of magnetic fields
and that the difference between the presence and the absence of constant magnetic
fields appears only in the case Z = N — 1, which corresponds to once negatively
charged ions.

Now we are interested in the case of non-constant magnetic fields, which has
not been studied so deeply (Zhislin [25], [26] treated many body Schrodinger oper-
ators with short range scalar potentials and with vector potentials decaying at in-
finity). In this case the finiteness or the infiniteness of the discrete spectrum of
H, ,(b) depends not only on N and Z but also on magnetic fields. In fact we have
the following result in [10].

THEOREM 0.3 For amy positive number € there exists a vector potential b, €
C'(R®®, which is independent of N and Z, such that the number of the discrete spec-
trum of Hy ,(b) is finite for Z = € and N = 1.

Our main result of this paper is the following theorem, which is contrastive to
the above.
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TueoREM 1.1. There exists a vector potential by € C'(R®)®, which gives a per-
turbed constant magnetic field and is independent of N and Z, such that the number of
the discrete spectrum of Hy ,(by) is infinite for any N and Z.

This is another evidence that the finiteness or the infiniteness of the discrete
spectrum of Hy ,(b) depends on magnetic field. As stated first, any atomic system
has infinitely many bound states in a suitable magnetic fields, even if we add any
number of electrons to it.

Also it follows from Theorem 1.1 that the atomic Hamiltonian Hy ,(b,) has
non-empty discrete spectrum, that is related to the problem of the presence or the
absence of the descrete spectrum. This problem has been already studied by Rus-
kai [16], [17], Sigal [18], Lieb [11] and others. Ruskai and Sigal proved that there
is no very negative ions, that is, for given Z, if N is sufficient large, then
H, ,(0) has no discrete spectrum, and further they studied sufficient conditions
for the absence of the discrete spectrum (see also Cycon et al. [7] Chap. 3). Lieb
[11] improved their results as follows.

TueoreM 0.4. If N = 2Z + 1, then Hy, ,(0) has no discrete spectrum.

As a consequence of the above theorem, the number of electrons that a nuc-
leus of charge Z can bind is less than 2Z + 1. Comparing Theorems 0.4 with 1.1,
we see that the existence of the discrete spectrum generically depends on magnetic
fields. Moreover, the maximal number of electrons that a nucleus can bind depends
not only on the charge of the nucleus but also on the magnetic field.

In §2 we prepare basic lemmas and Agmon’s K-function by which we study
the bottom of the essential spectrum of Hy ,(b). In §3 we show L’-exponential de-
cay of eigenfunctions, that is due to Agmon [1] and [2]. In §4 we show an example
of the magnetic bottle with infinitely number of discrete spectrum. This vector
potential has the property of the main theorem, that is shown in §5.

2. Preliminaries

In this section we make some preparations for the later sections. The aim of
this section is to study the location of the infimum of the essential spectrum of
H, ,(b). First we denote the spectrum, the discrete spectrum, the essential spec-
trum of a self-adjoint operator H by o(H), o,(H), 0,(H), respectively, and the
cardinal number of a set ¥ by # Y. Also we put
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A(H) = inf 6(H) and 2 (H) = inf ¢,(H).
For two vector-valued functions F and G, we denote (F, G),2 = fSNF' Gdz.
R

Now we go on with the argument by restricting H = Hy ,(b). For the sake of con-
venience we denote Hy = Hy ,(b) when Z and b are fixed. Then recalling the
notation in §1, we define the quadratic form

N
QHN[¢» d)] = ]g:l (T/¢’ Tjgb)Lz + (V¢r ¢))L2’ qHN[¢] = qHN[¢! ¢]

for ¢, ¢ € Cy (R™), where we put

V(x)=§:<— Z>+ 2 1

j=1 | 2’| i<icisn | gt — 2|

The infimum of the spectrum and that of the essential spectrum of Hy can be ex-
pressed as follows (see also Persson [13] and Agmon [1] Theorem 3.2).

LEmMMA 2.1.

A(H,) = infigy, [$]; ¢ € CTR™), [ ¢l =1},
Z(Hy) = sup inflgy,[g];¢ € CTR\E), [ 4l =1}.

E:compact

One can show the above equalities in the same way as in the case without magne-
tic fields (see [1] Theorem 3.2, [2] Theorem 1.6). Next the following localization

formula holds as in the case without magnetic fields (see [7] Chap. 3, [8] Lemma
23).

Lemma 2.2 (IMS-localization formula). For a smooth partition of umity {J,},
such that X, J2(x) =1, the following equality holds:

Hy = S Hyl, — VI ) in the form sense.

Also we can extend the above two basic lemmas to the case of general scalar
potentials (see [10]). Now we define Agmon’s function which serves to study the
bottom of the essential spectrum of Hy (see {1] Chap. 2, [2] §5, [10)).

DEeFINITION (Agmon’s K-function). Let

Sl ={w= (..., ") € R";|w|=1).

3N-1

For a subset U C S (U # @) and for positive numbers R and J, we put
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U, = {w € $*; dist(w, U) < 8},

I, R) = xR ;z/|z| € U, |z| > R},

K(Uy, R ; Hy) = inflgy [¢]; 6 € Co (I (U, B, | ¢l = 13,
K(U ;Hy) = lim lim K(U;, R ; Hy).

GlORT =

(2.1)

One can show the following properties of K in the same way as in the case
that b = 0 ([1] Chap. 2, [2] §5 and [8]).

LeEmMmA 2.3.  The function K has the following properties.

(i) The value of K(U ; Hy) is the same regardless of the order of the limits.

(i) The function K(w; Hy) is lower semi-continuous on S where K(w;
H,) = K({w}; Hy).

(iti) 2(Hy) = min,cgon-1 K(w; Hy).

We remark that Agmon’s function is similarly treated also in the case of
general scalar potentials (see [10]). For b € C'(R%® we now define the subsystem
of Hy as follows.

DeFmviTion.  For @ = (0',..., @) € S 7' let
N
(2.2) (Hy), = 2 T,(0)* + V, in L’ R™) and
j=1
Z 1
2.3 % = —-——+ —_—
(2:3) M(x) wfz=:o < Ix] |> wizw’,léiqSN |xi -z l

This operator (Hy), is called the subsystem of H) with respect to w € 37 (see
also [10]). Then the next lemma follows from the proof of Lemma 2.5 in [10].

Lemma 2.4. K(w; Hy) = K(w;(Hy),) forw € S,
We consider only the case that
(2.4) b(@) = (N (= y, 41, 0),

where y = (y,, ¥, ¥s) € R’ r= |y, f is real-valued function in C'([0, =))
and f’(0) = 0. We assume that

(2.5) f® —B/2=Cyo " (@a>0,r>>1)

for some constant C, and some positive constant B. The constant C, is not neces-
sarily positive. We note this vector potential b gives a perturbed constant magne-
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tic field. The vector potentials presented later in §4 take the form of (2.4) and
satisfy the above assumption. Under the above situation, we study the bottom of
the essential spectrum of T(b)* and Hy, ;(b). The case of @ > 1 has been already
studied in [9] and [10].

THEOREM 2.5. Ifa > 1, then
(2.6) inf 6,(T(b)*) = B and inf 0,(H,, ,(b)) = B + A(Hy_, ,(b)).
Therefore we study only the case that 0 < a < 1.

First one can show the following theorem, of which we omit the proof, in the
same way as in [9] (Example 2).

THEOREM 2.6. If0 < a <1, then
(2.7) inf 0,(T(b)*) = B.

Next we consider the bottom of the essential spectrum of atomic Hamiltonians
Hy ,(b) in the case 0 < a < 1. Then we want to show the following theorem.

THEOREM 2.7. Letn 2 2 and H, = H,,(b) (I € N) for short. In the case 0 < ot
< 1, suppose that
(2.8) 2(H)=AH,_)+BALI<n—-1),
where we define H,_, = 0. Then
(2.9) S(H,) > A(H,_) + B.

In order to prove Theorem 2.7 we shall use the following inequality. This
appears in [9] and also follows from Theorem 2.9 in [3].

Lemma 2.8. Let b(y) = F(y) (— y,, 4y, 0), where y = (yy, ¥y, 45) € R’ and F
€ C'(RY). Also let § = (y,, 9) and o = | 3|. Then

(2.10) T(b)? > 2F + p—an*F in the form sense.

In particular, for the vector potential in (2.4), we have

2

(2.11) TB?=2f(» +f'(» 07 in the form sense.
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Proof of Theorem 2.7. By Lemma 2.4,
K(w; H) = K(w; (H,),) for w € $*7.
By the property of K-function (Lemma 2.3),
(2.12) >2(H,) = min K(w;H,) = min K(w;(H),).

wesdn1 wesn-1

Now we will show that

(2.13) min K(w; (H),) = min (A(H, ) + IB).
wes3n1 1<I<n
By the definition of subsystem, for @ = (o', . . .,0") € S*", without loss of

generality we can assume that

! 1
(H),=H,_ ", ., 2"+ X T/ + b —
j=1 wi=o'r01<i<i<t | ' — 2’|

andw #0 G=1,...,D0,0 =0 (k=1+1,...,n),

for some number I € {1,..., #}. This implies
!
(H),=AH,_) + 2 sz in the form sense.
j=1

We now apply Lemma 2.8 to the vector potential b in (2.4) with the assumption
(2.5). If C, =0 (C, is in (2.5)), then 2f + f'(No*/r =B+ C,2 —a)r “= B
when 7 is large. If C, <0, then 2f + f' (Do’ /r=2f > B — (— 2Cy)r™* when
7 is large. Hence, if necessary, by exchanging the constant, we have by Lemma 2.8

(TJ.2¢, #p=B|¢ |l,2_z — (positive constant) (| x’ ™, }) 2

for ¢ € C;(R™). If € I'(w,, R), then | 2’| > ('] — 0) || for jE {1,.. ., 1.
Let 0 < (min,.,o,| @' ) /2 =6, Then |2’| 2 6,|z| 2 6,R for j€{1,. .., 1.
Hence, for any € > 0 there exists R, > 0 (which is independent of §) such that

le (T2, $)pz = UB— &) | ¢ I for ¢ € C(I(w,, B)),

which leads to
(H, 9, )2 = (AH,_) + 1B — &)} | ¢l for ¢ € C; (I w;, B),
it R = R,, 0 < 0,. Hence by the definition of K-function we have

K(a), (Hn)w) = A(Hn—l) + le
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which implies (2.13).
Now suppose (2.8), that is, 22 (H)) = A(H,_;)) + B 1 <[ <#n —1). Then
nB=m—1DB+ 2(H) = m—-1B+ A(H)
=m—2B+ 2(H,) = (n—2)B+ A(H,)

=B+ 2(H, ) 2B+ A(H,_).

By (2.13) this implies

(2.14) min (A(H,_) +IB) 2 B+ A(H,_)).
1<I<n
Combining (2.12), (2.13) with (2.14) we obtain (2.9). tl

3. Decay of eigenfunctions

In this section we show the Lz—exponential decay of eigenfunctions in the case
of non-constant magnetic fields. We make use of this property in the proof of
Theorem 1.1. Since we need only the isotropic Lz—exponential estimate of eigen-
functions, we do not touch neither the non-isotropic estimate nor the pointwise
estimate (for example, see [5], [19]). In the case without magnetic fields. O’Conner
[12] and Combes-Thomas [6] showed the (isotropic) Lz—exponential decay of eigen-
functions for Schrodinger operators under some restriction on the scalar poten-
tials. In [1] and [2] Agmon discussed this property for general Schrodinger oper-
ators without magnetic fields. On the other hand, as for the case of constant
magnetic fields, Avron-Herbst-Simon [3] (88) showed the pointwise estimate of
eigenfunctions of atomic Hamiltonians, which leads to the L’-estimate of them. One
can show the similar result in the general magnetic case as in the case without
magnetic fields. We will make it sure in this section by the same method as in [1]
(Theorem 1.5 and Chap. 4) or [2] (§4).

First we state our desired theorem as follows.

THEOREM 3.1. Letting n = 1 and supposing that 0,(H,) * @, we pick up a nor-

malized eigenfunction u(x) corresponding to the ground state emergy A(H,). Then
there are some positive constants 0, and 0, such that

(3.1) f | u(@) [2e**dx < + o0 and 53 f | T;(b)u(z) ¥ gx < 4 oo,
R3" j=1 JRn

where T;(b) is defined in §1.
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In view of the proof of Theorem 3.1 in this section, we shall see that it is
needless to require that #(z) is a ground state. Namely, we can replace #(x) in
Theorem 3.1 by the eigenfunctions corresponding to the discrete spectrum below
the essential spectrum.

In order to prove Theorem 3.1 we make some preparations. We now consider
the following operator:

H=3 T, + V@ in LR™),

where b€ C'R%®, Ve L (R™ and V_ € #(R™), which are real-valued.
Here V_(z) = max{— V(z), 0} and ¥ (R™) is Kato class (see [1] Chap. 0, [7]
Chap. 1), that is,

KR = {u e L, (R™ ;lim sup lu(@) ||z — 2° P Vdx = 0}.

710 2%eR3 YIz-20 <7

The atomic Hamiltonian HN,Z(b), defined in §1, is a special case of the above H.
We remark that the functions in Kato class are XI,_, T,z-form bounded with the
bound zero. Hence for any € > 0 there is a positive constant C, such that

(3.2) Vg, $)p<e z | T,60% + C.ll ¢ Iz

for ¢ € C:(RBN). For a self-adjoint operator P we denote the domain and the
form domain of P by D(P) and Q(P), respectively. We remark that

DH) = {u € ’R™ ; Tu, | VI"?u, Hu € ’R™) Q1 <j < n)),
QUH) = ue 'R™; Tu, | VI "u e 'R A <j< ).

The following proposition will be essentially used for the proof of Theorem 3.1.

PropoSITION 3.2. Let u € D(H) solve
(3.3) (H—pu=fin ’R"),

where 1t € R, f € LAR™) which is complex-valued. Putting ¢ = V — p, we assume
that there is a positive constant A such that

(3.4) Z 176 1+ (ad, e = 2] ¢ for 6 € CTR™.

Further let h(x) be a real-valued Lipschitz function in R satisfying
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(3.5) VAP < 2 ae

Then the following inequality holds.

(3.6) ./1;3,.' w@ P — |Vh D@ dr < jl;s,,lf(‘r) PG — |V D e dr.

Now we prepare one more lemma as follows (see Agmon [2] Lemma 1.7).
LemmaA 3.3.  Suppose that
(Hp, §)y: > fR oy €@ 8 l'dz jor ¢ € CTR™\KD,
0

where K, is a compact set in R™ and ¢(x) is a real-valued continuous function in R,
Then there exists a non-negative function x € Cy R™) such that

(Hp, $)p2 = f c@ | ¢ IPdx for g € CTR™,
RSn
where H, = H + .

For a while admitting Proposition 3.2 and Lemma 3.3, we will show Theorem
3.1 from now on. The following proof is due to Agmon [2] (Theorem 4.3).

Proof of Theorem 3.1. Let p, = A(H) € o,(H). Also let u(x) be an eigen-
function corresponding to A(H), namely,
(3.7) (H— p)u=0in L*(R™).
For any E € (y,, 22(H)) there exists a positive number R such that
(H$, )12 2 El ¢ [l for ¢ € C7'(2y),

where 2, = {x € R™;| x| > R}. This follows from Lemma 2.1. By Lemma 3.3,
there exists a non-negative function x € C:(R3") such that

((Hx - ﬂ1)¢9 ¢)L2 = (E - ,lll) " ¢ "12_2 for ¢ € C:(Ran),

where H, = H+ x. We now pick up a function { € C:(RS") satisfying 0 < (
<land {=1if|x] <R+1/2,{=01if|x| = R + 1. Using the above func-
tion {, we put

v = 1A — {@)u@) for x € R™.
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We note that » € H,, (R*) and

(3.8) v(@) = u(@) for || 2 R + 1.

By using the relation that the commutator [T}, ¢] = — i(V,¢) for ¢ € C'(R™),
and by a straightforward manipulation, we have (by (3.7))

(3.9) (H,—p)o=2i 2V,(- Tu+ (xA — O + 40u.
1=1

Let g = [the right-hand side of (3.9)]. Then the function v satisfies

(3.10) (H, — 1,)v = g in L’(R™).

Now we apply Proposition 3.2 with

(311) q=V+yx—pu,f=g,A=E—p,and h= 10—y |z| 0<e<1).

Note that the assumption of Proposition 3.2 is fulfilled in this case. Then we have
f o2 = |Vh lz)em-s)«/z—lzldx < f | g PG — |Vh |2)~1e2(1—s)«/x—|zldx.
R3n R3n
Since g is compactly supported and 2 — | VA > > ex, we have
f3 |U(.Z‘) |2e2(1-—e)~/;izldx < + oo,
R n
which implies by (3.8)

f [ u(x) [ZBZ(I—E)ﬁ’IIdx < + 00,

Qr+41

Hence letting , = (1 — €)y/A we have
(3.12) f3 | u(z) P dx < + o0,
R "

Next we show the second part of (3.1). We pick up a function x; €
Cy(R™) such that 0<%, <1, and x, (@ =1 (2| <D, 3, @ =0 (2| =2).
Letting x,,(2) = x,(x/m) and @« =1 — 2¢ (¢ is in (3.11)), we define functions
v,, € L'(R™) by

(3.13) 0,(@) = 1, %@ (m e N).

We remark that v, € Q(H) (the form domain of H). Since (H — g)u =0 in
LZ(Rsn),
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(3.14) 2 (Tu, Tiv,) . + (Vu, v,) 2 = p,(u, v,) ;2 (m € N).
i-1

By a simple computation,

X ava |zl

(Tu, Tv,)p = LB” anea/im | Tou"dx + i/ (Tyu, xfnum e )2
+ —2”—: (Tu, ue™ Xm(Vix) (x/m))
Hence we have by (3.14)
(3.15) é LS”xfne"ﬁ'z' | Tyu"dx = p,(u, v,)2 — (Vu, v,) 2
— a1 5 (T, by 1 - % S (T, e, (T ) /)

By using (3.12), it is easy to see that the first, third, fourth term of the right-hand
side of (3.15) are uniformly bounded in #m. As for the second term of (3.14), by
the assumption V_ € # (R™) and (3.2),

avalzi/z

(3.16) — (Vu, v,) 2 < (V_v,, )2 < I T, (ue A Iz + 0Q)

3>
<3

NI"" 4>|

f 2 25| oy Pdz + 0Q1).
R3”

Here we have used the first part of (3.1) which we have already shown. Combin-
ing (3.15) with (3.16) yields

Lgnxf,,e"«/ﬂzl | Tou fdz=0Q1) QA <j<n,
which is uniformly in m. Letting m — ©© we have
fRs,, | T fdz = 001) A <j< ).
We have only to put 8, = a/A /2. O

To complete the proof of Theorem 3.1 we prove Proposition 3.2 and Lemma
3.3. These proofs are due to Agmon [1] (Theorem 1.5) and [2] (Lemma 1.7).

Proof of Lemma 3.3. Pick up non-negative functions & € Cy (R™) and &, €
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C”(R™) such that & = 0 in a neighbourhood of K, and & + & =1 on R™. By
IMS-localization formula (Lemma 2.2) and by the hypothesis we have, for ¢ €
Co (R™),
1
(Hp, $)2 = % (HEY, §0)2 = (V& + V)9, 9),
-

> (c@&9, £+ AED | &8 7 — (AVE +VE DS, @)
= (@9, P,

where we set
@ = £@’°c@) + AHE @ — (V&P + Ve ).

Since ¢,(x) = ¢(x) when | x| is sufficiently large, it is easy to see that there is a
non-negative function x € Cy (R™) such that ¢,(x) + x(z) = c(x) on R”. This
completes the proof. Ul

Proof of Proposition 3.2. First, by the assumption,
(3.17) 2 (T, T;9) 2 + (qu, §) 2 = (f, ¢) 12
j=1

for ¢ € Cg (R™). Let
Y=L;R™ N {u; Tuc ’R"),1<j<n < L'(R™).

By using a mollifier and by taking the limit, (3.17) holds also for ¢ € Y.

Let ¢ be real-valued Lipschitz function with compact support and #, = u/ (1
+ ¢ ulz) (e is an arbitrary positive number). As is easily seen, uegbz €Y We
note that

(3.18) u,— win Hy,, and Tu,— Tuin Ll as e | 0.

By substituting ¢ = uegl)z into (3.17), we have
(3.19) > (T, T, ™) e+ (qu, 9”2 = (f, w9
1=1

Rewrite # = u, + (4 — u,) and take the real part of the both sides in (3.19).
Then

(3.20)  Re X (Tyu,, Tju,¢")p + (qu,, u.d’) 2 = I, + Re(f, ued”) s,
j=1

where
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I.= —Re {é (T, (u — u), Tyu.¢") 2 — (qlu — u,), u %) .
Since — q(u — u)u, < q_(u — u)u, (¢_(x) = max{— q(x), 0}),

3.21) I < 21 I Ti(“ = u,) "thm g Tj(us(/)z) "LZ(.Q)
=
+ (q_ (u - u£)¢’ (u - ue) d));‘ngSrA) ¢ (q_uegb, usgb)}‘;?Ran),

where £ = supp ¢ and we have used Schwarz inequality. As is easily seen by
(3.18), the first term of the right-hand side of (3.20) converges to zero as € tends
down to zero. We notice that ¢_ € # (R™) is X, T} relatively form bounded with
the bound zero, and that

| Tip¢ I < 201 9Ty I + 1 (7,06 [122)
< .Bo " T;¢ "iz(m + .81 " ¢ "iz(m

for ¢ = u, or ¢ = u — u,. Here B, and B, are some positive constants. Hence
u 2 2
(q—ue(pr ue¢)L2 < Zl l‘ Tjue¢ "L2 =+ Cl ” ue¢ "L2
i=

< Bo Z:l " Tjue "iZ(m + (nB, + Sug | ¢(x) ‘) " U ”22(9)
= Ie
<+

for some positive constant C,, which is independent of ¢ < 1. Hence by using the
same method as above we have

172

[the second term of (3.21)] < B, [ {" Tj(u — ) "12,2(9) + " U— U, "i%m}]
=1

for some positive constant B, By (3.18) again it follows that the second term of
(3.21) converges to zero as € tends down to zero. Hence we have

(3.22) lim sup I, < 0.

elo

In view of the identity
Re | Tw- T,($*v)dx = T, P~ v | V,¢ [Pdx for v € DH),
fRS,, 0+ T, 0)dx fmnﬂ (o) [ = | 0P|V, [ da for v € DD
by using (3.22) and (3.20) we have

im sup (SN Tgu, s + (qug, u.d) s — V7922 — Re(f, ug) ) < 0.
elo 71=1
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By (3.18) and the assumption (3.4),
(3.23) Al gulls — 1uv g I < Re(f, ug?),.

Now let g and x be real-valued Lipschitz functions such that x is compactly
supported, 0 < x <1 on R” and |Vg| < A ae. Then we can put ¢ = e’y in
(3.23). Using Schwarz inequality for

(f, ue*x") = @ — Vg )" ex, fA — Vg )7 e ) 2,

we have by (3.23)
2 2 2 2 2 2 2 2 2y-1 vz
LG = 17gPae < { [ 1l G~ vghaz) ([ 15 le G ~Ivgh az)
+ [lule*qvy P+ 2x Ve Vy Dae.

In view of the fact that
a<yayb +c (a, b, c>0) implies a < b + 2c,
we have

(3.24) ng,,“C”lzezgu —IVglz)dxéjl;gnlfx Fe* (1 —|Vg)dx
+ 2f lulPx*e*(Vx P+ 2x |V Vgl dx.
RSn

From now on we will show (3.6) by using (3.24) and by taking the limit. Let-
ting 2, = {x € R ;| z| < j}, we define functions 1(# and %, (1) by

0= {“f te 0.1, and x,(2) = (/2 dist(z, £))).

lift€ (1, ),

Then Jx; is a Lipschitz function and

lx; @ —x,@ | <VAlz—yland |Vy,;@) | < VA ae
We define the function 4,(x) by h,(x) = min{h(x), k}(k € N). Then h, is a
Lipschitz function and (by (3.5)) |Vh, |2 < A ae. Hence we can put g = h, and
X = x;in (3.24):
(3.25) f |yl e™ (2 —|Vh, Iz)dr.<_f | fx, e (2 — |Vh,[)dx

R3» R3"

+jl;3ﬂ|u|2xfe2h"(| Vo, I?+2x,|Vh, Vx,)dzx.
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Since x;— 1, Vx;,— 0 and h,— h, Vh,— Vh in pointwise sense, letting first
j— o and next k— o0 in (3.25), we obtain

f lulPe™ (A ~ |V |2)dxsf | FPe (G — | Vh Pdz. O
R3n Rsn

4. Magnetic bottle

In this section we show an example of the magnetic bottle, which will be used
for the proof of Theorem 1.1. Here a vector potential b € C'R%? is called a
magnetic bottle of the first (respectively second) [respectively third] kind if and
only if T(b)* has some non-zero eigenvalue (respectively 7(b)* has pure point
spectrum) [respectively T(b)* has compact resolvent] (see [3] §1 and §2), where
TW) =—iV,— by (e R®). Throughout this section we denote y = (¥,, ¥,, 2)
ER’, 6=, v, r=lylo=15l

Now we want to show the following theorem.

THEOREM 4.1.  There exists a vector potential by € C'(R)® such that
#0,(T(b)") = + o,
that is, b, is a magnetic bottle of the first and second kind.

This magnetic bottle b, will be constructed as a perturbation of b,(y), which
appears in §1 and gives a constant magnetic field. Therefore this b, is not a
magnetic bottle of the third kind. We notice that the previous step of this theorem
appears in [9] Example 4. By min-max principle and Rayleigh-Ritz method (see

[14] X1III), we have only to prove the following proposition, which plays an impor-
tant role in the proof of Theorem 1.1.

ProPOSITION 4.2. There exist a positive constant €, a vector potential by €
C'R®?® and a sequence of functions {p,,},, < C'R®) N QT?) such that

(4.1) (@ O)pgs = 0 and || T, [rags < B — egn™"* (m >> 1),

where Q(T?) denotes the form domain of T°, B = inf 0,(T”) and ¢, is independent of
m. Moreover, there is a subsequence of {{,,},,, denoted by {</’m,} 5 satisfying

(4.2) (T, Tp) g = 0 if i # J.

We start the proof of Proposition 4.2. Pick up a real-valued function 7, €
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Cy (1 <2< 2), which is normalized as || 9, ||z, = 1. Letting

64

(4.3) ¢ = 115l and B> 2 + <,

we define the function f(§) by
Sz,

(.4 O = g—%—%—éoaqm),
-5 0<C<D,

Then f € C'([0, )), f/(0) =0 and f is real-valued. By using this function
f(0), we define the vector potential b,(y) by

b = fF(D (= y, 4, 0 (y €R).
We note that b,(y) gives a perturbed constant magnetic field. We will show this

vector potential b, is desired one.

Remark 4.3. We want to make ¢, as small as possible. By the min-max prin-
ciple for the operator — d”/dt’ in L?(0,1) with the Dirichlet boundary condition,
we can take ¢, ~ 7°. Hence we can take B = 2 + 647°/9 ~ 72.2.

Lemma 4.4, Let G,(y) = 2f() + £ ()0’ /r. Then the following inequality

holds:
-1/2
B - 372 (7’ Z 2)r
(4.5) G,y < B+ (ZL;\?_”_—S) 1<r<2),
B — 4\/— O<r<).

DerFmiTioN.  Using the cylindrical coordinate ((p, 6), 2), we define

(4.6) $,,(5, 2) = B,,(2)e™ p"exp{— F(p, 2)}
= B,,(2) (y, + iy,) "exp{— F(o, 2} (m € N),

where
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Fo, 2) = fopf(,/tz + )t dt

and S,,(2) is the normalizing constant in L*(RY, namely,
2 ® am+1 -
(4.7) B2 = [Zn'f 0" exp{— 2F(p, z)}dp] (m € N).
0

Also letting
(4.8) n:(2) = s"n,(z/5) (s> 1)
for the above 1, € C, (1 < z < 2), we define the function ¢, (y) by
(4.9) In@®) =129, (, 2 (s>1, mEN).
We shall get the desired sequence of functions in the above form (4.9).
LEMMA 4.5. These functions (/)f,, and ¢,, have the following properties.
() ¢5, € C'RY N QT (b)), where Q(T(by)?) denotes the form domain of
T(by)".
(i) [T(b* — (= 3°/02)1by = G, @) by and so [T(b)" — (— 3° /329195,

= G,y P, where G,(y) is defined in Lemma 4.4.
(i) (Bor ) 2D = Opamrs 50 | O l2mey = 1, ( By B 2y = 0 if m # mt'.

Proof of Lemma 4.5. (iii) is easily obtained. In view of the form domain of
T(b)":
Q(T(b,)") = {u € L)(R) ; T(b)u € L*(RY)},
one can easily obtain (i). By using the equality

T(b)® — (— 8°/02") = — 8*/ay? — 3°/oy; + 2ib," V + i(div b) + | b, |°
= —9%/0y’ — 0°/0y> + 2ib, V + | b, |°

and
aﬂ¢m = (M/p —f(r)p)gbm’ 60¢m = lm¢m (m € N)y

it is easy to show (ii) by a straightforward calculation. O

LEMMA 4.6.  For any R > 0 there exists a positive constant Cz(R) such that

B, (2" < Co(RYR™™ ™" (uniformly in z ; m € N).
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Proof. Since f({) < B/2, we have by (4.7)

Bm(z)—z _ Zﬂjo‘ p2m+1e—2F(p,z)dp > 2”]; p2m+1e-gpz/zdp > 27‘[R2m+lfl; e_BpZ/zdp.
w -1
Putting C5(R) = <27Tf e—sz/de) , we have the desired inequality. ]
R

1/4
Let k = c I B—2 2 ,s=s0m, k) = k~'m"® and O = gbf,im “ Then we
0

as follows. This estimation serves to estimate the

can estimate ”
L3R

quadratic form of T(bo)z.

LEMMA 4.7. For any € > 0, the following inequality holds :

(m + 1)+ (B, Hhm™!

wio) [%2] < a+olw +y

2 174 —-1/4 -1
= 201 + )y2e, (—B—:—z) m+ 1™+ (B, )m

when m is sufficiently large, where ¢(B, k) is some positive constant depending on B
and k, and ¢, appears in (4.3).

To prove Lemma 4.7 we prepare several lemmas as follows.

LEMMA 4.8. The normalizing constant 8,,(2) satisfies the following equality.

(4.11) B,,(2) = 271'[3,,,(2)32 jom (& — £ 2 |))‘02m+1e—2p<p,z>dp'

LemMa 4.9, Let g(0) = f(Q) — B/2. Then the following equality holds.

(4.12) f l O |

— l P lz [zn_ﬂm(z)zf g(r)202m+le—2F(o,z)dp
0

— [271'[3,,, (2)* jom g(r)pzm“e—zp(”‘“dp}z].

LeEMMA 4.10. The first term of the right-hand side of (4.12) is estimated as fol-
lows.
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(4.13) 278, (2) f g(r)z 2wl - ZF(p,z)dp < JB7om~ V>

LemMa 411, Lets =k 'm

(4.12) is estimated as follows.

. Then the second term of the vight-hand side of

(4.14) 228,° [ (= &)™ dp
> (B 5 2>m(m + D7 —¢,(B, Om™
form > 1, s < z X 2s, where ¢,(B, k) is some positive constant depending on B and
k.
Admitting Lemmas 4.8-11 for the moment, we prove Lemma 4.7.
Proof of Lemma 4.7. By a simple calculation,
415) |2 | = Il + 2Re (g B2) 4 |n 2]

The first term of the right-hand side of (4.15) is equal to cos—z. By differentiating
in z the both-sides of the equality | b, 1|L2(R2) 1, we have

09,
2Re j; 6, z)a%(pﬁ 2)d = 0.

Hence the second term of the right-hand side of (4.15) vanishes. So we have

O | _2+f Ins(z)l(fl ” (g, ZHdp)dz

Now we estimate the second term of the right-hand side of (4.16). By Lemmas 4.9,

4.10 and 4.11, and by putting s = Em'®,

L% ofas 4 F-

< Izlz{—*—l*
V2(B—2)

Since supp 7, € {z € R'; s < z < 25},

(4.16) “

09y, @,

( + D + 0lm -5/4)}

(m + 1)‘1’2(1 + 23 ) + O(m ‘5/4)}

[the second term of (4.16)] < élsz{~\/2(—Bl——_“2)~ (m + 1)—1/2<1 + %) + O(mHm)}
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2

2 B
< /B-

5 m+ D1+ o) + 0m™).

B
Let € be an arbitrary positive number. Then for m = %%

(4.17) [the second term of (4.16)] < (1 + E)“]% /ﬁ m+ 1D+ 0om™.

8

Hence by substituting s = k'm"® into (4.16) and by (4.17) we obtain the first

2 2 1/4

inequality of (4.10). Also recalling the definition k£ = [c /m] , we obtain
0

the second equality of (4.10). ]

By using Lemmas 4.7 and 4.11 we now proceed to prove Proposition 4.2.

Proof of Proposition 4.2. The sequence of functions {¢,,} constructed as be-
fore satisfies (¢;, ¢;)2gs) = 0y by Lemma 4.5. By Lemma 4.5 again,

09, ||

@18) 1 T¢n o = (T* = (= 32702 9 s + | 22
09y |

L3R

= (G, ) 2ws T H

PRY
Since k will be determined to be independent of m later in this proof, we can

assume s(m, k) = 2 if m is sufficiently large. By (4.5) (if s(m, k) = 2),

(G (» D ¢m)L2(R3) <SB+t35 (g(r) Do ¢m)L2(R3)f

where g(#) = f(») — B/2. By Lemma 4.11,

€D b < = (B52) m+ D™+ 0™,

so we have

3 (B~ 2\ o
(G D S imr <B =5 (F5=) m+ D™+ 06m™),

Using Lemma 4.7, we have for any ¢ > 0

T =8 [3(252)" =20 o2 g 25) om0+ 00

https://doi.org/10.1017/50027763000006115 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000006115

90 TETSUYA HATTORI

when m is sufficiently large. By the definition of B (in (4.3)),

3 (B— 2\ 2 \"*_3(B—2\" 8 c(,‘)
7 (55) —am(pzy) =3(55) (1-35/522

B_Z 1/4
ze(757) >0,

where &, depends only on ¢, and B. Hence we have

B 2 1/4 1/4 _ _
1 7, [egesy < B { ( 5 ) 2e¢2_c;(B ) }(m+1) M+ 0m™m> D).
€, B 2
Since € is arbitrary, we can put ¢ = ) . Then
B — 2\ ~ _
1 79 o < B — 5 (7 ) (m+ D7+ 06n™)

2 1/4
<B—-—+ ( ) m

when m is sufficiently large. Moreover, we can choose a subsequence of
{¢,,} (denoted by the same notation) with mutually disjoint supports. Then the
sequence of functions {¢,,} satisfies (T¢;, T¢,) ;2gs) = 0 if ¢ # . L]

To complete the proof of Proposition 4.2 we prove Lemmas 4.8-11.

Proof of Lemma 4.8. By the definition of 53,,(2),
(4.19) 27B,,(2)° f o e g = 1.

0
By differentiating in z the both-sides of (4.19),
2m+1 —2F(p z) 2m+1 —ZF(p z) aF

(4.20) 228, 8, [ o =218,° [ o % (0, 2 dp.

By multiplying the both-sides of (4.20) by 8,,(2) and by using (4.19),

B0 = 28, " [ o™ ZL (o, ap.

oF
We compute 5z 28 follows.
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(4.21) %(p, 2) =f0 f’(\/t2+z2)-t7ti—7dt

v 2
fﬂ d(f(/E + 2))
ZJ, ot

at=Z(f(» —f( z).

Thus we have (4.11). ]

Proof of Lemma 4.9. As is easily seen,

(4.22) % @, 2) = ™" "B — B, @z2(F(D — f(z]))).

Here we have used (4.21). Hence

w2z | %m0 =008, @~ 28,B @2 ~ £ 2)
+B,@ 2P (f () — F( 2% (= ) + Uy + ).
By use of Lemma 4.8 and (4.19),
JO‘OO (fl)Pdp — (Zﬂ'ﬁm(Z)SZ)Z{jowo p2m+1e—2F(p,z)(f(r) _f(l z|))dp] jo‘mpzmﬂe—zi‘(p,z)dp
— 27[,8,,,(2)4 I 2 |2{-/;°° pZm+1e—2F(p,z)(f(r) _f(l Zl))dp} ,

2

[ Uedo= =428, 12P{ [ 0" (1) = £ 21))do)

Now letting g(0) = f(0) — B/2 (£0) and summing up, we have

Lzl‘a—gzﬂ((), 2)

dé = — 2nB,,(2)?] zl)z{jom e (g() — g( zl))dp}
+ 277-'Bm (Z)z | 2z |2j(:°° 02m+1e-—2F(p,z) (g(r) _ g(l 2 |))2dp

_ 2 “ 2 2m+1 —2F(p,2) 2 _ . 2 2m+1 —2F(p,2) z
=|z| A 27B,(2)°0 " e g dp i 27B,(2) 0" e gdp) {.

Here we have used (4.19) for this calculation. U

Proof of Lemma 4.10. In view that
(4.24) e | <1g@) <™ 0<p<+ )

and by using (4.19) we have
[the left-hand side of (4.13)]
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S zn_‘Bm(z)Zf pZme—zF(p,z)dp

0
< [2 2 7 ome1 2k 5 |2 2 7 em—1 —2F(.2)
< {27B,,(2) 0 doy {2nB,,(2) 0T e do

= {znﬁm(Z)z’[;m pm—le-zpw.z)dp}l/z (= (D).

172

Now we estimate (I). It follows from (4.24) that 2F(p, z) — + o as p— + oo,
Hence by integration by parts,

0 = ZEBm(z)zm—l fmf(r)pzmﬂe—zmp,z)dp

< (B/2)m™" - 21f,, (z)zf o e o
0
= (B/2)m".
Here we have used (4.19) and the fact that f(») < B/2. Summing up we get

[the left-hand side of (4.13)] < VvB/2 m™"". O
Proof of Lemma 4.11. We divide the left-hand side of (4.14) as follows.
[the left-hand side of (4.14)] = 27B,,(2)* fo - g + g™ e dp
+278,0° [ (= g™ dp = (M + (.
First we estimate (I). For p = 2.
0<g(» —glo) = [Wﬁ: fg’(wz + ¢%)
< —g fo o+ ) < %zzp—m,

t
———d!
/pz + £

so we have
2 -5/2

1
—g(r)+g(p)2—§zp for p = 2.

A similar method as above with (4.24) yields this inequality also for o > 0. By
this inequality and by Hoélder’s one,

2 £
0 > — %anm(z)zf oI IEOR g
0
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2

Z 2 ® am-3 —2F(p.2) va ® am-1 —2F (0,2 4
> — —2~2an(.2) (f o e dp) . (f o e dp) .
0 0

By integration by parts and by the fact that f(#) < B/2 we have
jo'w 0O — (g — 1) j(;w 0L e O dp
<@B/2m-D" [ e,
Hence by use of the estimation of (I) in the proof of Lemma 4.10 we have

M = — (B/2)"4(m — 1)-1/4(22/2)2nﬁm(2)2f oA g,
0

> — (B/4)m(B/2)m — 1)V
> — Bs'm™(B/2)" (m — 1)
for s < z < 2s. By putting s = k~'m"”®,

-2 -1 1/4 m v -1
25 O 2-BCw B2 (") 2 - @B, bm

for some positive constant C,(B, k) depending on B and k.
Next we estimate (II). By the definition g(p) = f(0) — B/2 and (4.4),

o 2
a = Znﬁm(z)z{j; V20D gy J; (— g(0) o™ — 02m+1/z)e—2p<p,z>d‘0]
oo 2
> Zﬂ,Bm(Z)z{f p2m+l/2e—2F(p,z)dp _ sz p2me—2F(a,z)dp}’
o o
where C, = sup (| g(o) | o+ 0. By use of Lemma 4.6 with R =4 and the
0<p<2

2
. 2m —2F(p,2) 2m+1
estxmatef o e " do < 27 we have
0

1) = 278, (2)° f p2m+1/2e~2F(p,z)dp _ 27‘(C22—2m—1
(4.26) °
> 27L'Bm(z)2f p2m+1/2e—2F(p,z)dp —CcBm™
0

for some positive constant C,(B). We now estimate the first term of the
right-hand side of (4.26). By use of (4.19) and Schwarz inequality,

1= @, @Y ([ " dp)

< (znﬁm(z)z)zf 02m+1/2e—21~‘(p,z>d‘0f pZm+3/2e—2F(p,z)dp.
0 0
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Furthermore by using Holder's inequality and by using (4.19) again, we have
© -1
(27[,Bm(z)zf p2m+1/2e—2F(p,z)dp>
0
< 27t,8m(z)2 f p2m+3/2e-2F(p,z)dp
0
< 2 2 ® 2m+3 —2F(p,2) 1/4 “ 2m+1 —2F(p,2) ¥
< 27B,,(2) 0 e do o do
_ 2 [T ames —2rn , V!
= (2n8,,(2) o e dp
0

Using the fact that B/2 — 1 < f(») < B/2(0 £ » < + o0) and integrating by
parts, we have

(4.27)

4

f pZm+3e—2F(p.z)dp < f (3/2 _ 1)-1f(r)02m+3e—21-‘(p,2)d‘0
0 0

(e—ZF(p,Z))

L 0
—_ _ 1 2m+2
(4.28) =—MB-2 l 0 50

do

—om+1)(B— 2)—1f 02m+1e—zr(p,z>dp.

)
Hence we have by (4.27), (4.28) and (4.19)

2 7 eme1s2 —2F(p,2) B — 2\ ~1/4
(4.29) 2np,,(2) 0 e do = 5 m+ 1)~
[\

Combining (4.25) with (4.26), (4.29) we obtain (4.14). ]

5. Proof of Theorem 1.1

In this section, using propositions and lemmas in previous sections we prove
Theorem 1.1. At first we show the following proposition.

ProposITION 5.1.  We recall the vector potential b, defined in 84 and suppose that
(5.1) 0,(Hy_, (b)) # @.
Then there exists a sequence of functions {@,,} C Q(Hy ,(b))) such that

(o, D) 2wy = 04y
(5.2) 4y, (D, O] = 0 if i # j and
qHN[@m] < B+ A(Hy_),
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where Hy = Hy, ,(b,)) and Q(Hy) denotes the form domain of Hy.

Proof of Proposition 5.1. Let x = (z/, M e RBN, =@ ..., 2" e

st_l) and pick up a normalized eigenfunction 1 (x’) corresponding to the ground

state energy A(H,_,). We note that in view of (5.1) the ground state energy be-
longs to the discrete spectrum of Hy_,. Using the sequence of functions {¢,},, in
Proposition 4.2, we define the sequence of functions {®,,},, © Q(H,) by

(5.3) o, (x) =), x") (meN).
These functions satisfy
(@, D) 2gemy = 0y, (i, ] € N)

because of the orthonormal property of {gbm} » Now using the equality:

. 7 N-1 1
(5.4) H=Hy,(b) =Hy_,;(0) + Ty — %+ X ———
27| =]z’ — 27|
we have by dropping the third term of (5.4)
) N-1 1
qHN[@m] < QH,H[W] + " TN¢’m "LZ(R3) + Z <_1——N— @m’ ¢m>
=1 M — 27 LAR3M
(5.5)
Y = 1
< A(HN—l) + B — Egm + Z (—;%T @m, (Dm>
=t Mgl =z | LAR3M)

when m is sufficiently large. Here we have used Proposition 4.2.
In order to estimate the last term of the right-hand side of (5.5), we divide it
into two parts as follows.

1
<m O qjm)Lz(R”) " {'fl;jlélx”l/z * ’[fl>|z”{/2} ﬁl On ldz
=D + dD.

First we consider (I). Since | - | > IxN | /2 on the integral region of (I),

ll<lz¥isz | gV |

1 ) _
o<z |0, [dr < 202" 70, B,) pigem < 2005 By Do) e

where 2V = (), z}, 2) and py = {(z;)* + (x,)%". By the estimation in the
proof of Lemma 4.10 we have

(5.6) O < 2/2Bm "2

https://doi.org/10.1017/50027763000006115 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000006115

96 TETSUYA HATTORI

Next we consider (II). Since | z | > | z" |/2,

1 S .
0 % f s T @M@ [ g6 P
r — X

-
R3

Here §, is in Theorem 3.1, which states Lz—exponential decay of eigenfunctions, so

1

|2’ —z

4

n Gl . 5 0olzN1s2 Ny |24 N
)e L2(R3WN-D) ¢ |(l)m($ )ldx ’

N | LAR3W-D) ) " n @

" ﬂ(x’)eﬁollj’ "Lz(Rs(N—D) < Cl < +

for some positive constant C,. By the uncertainty principle lemma (see [10] Lemma
4.7,[14] p.169) we have

<2 " Tj") "LZ(Rs(N—n) =(C, <+ oo,

LER3W-D)

1
” 17— 2"| n(z)

r — X

Summing up we have
I < CC, j; T g, @) Pax,

In view that supp ¢,, C {z" € R®;|z" | = k™'m"®} (k is defined the proof of
Proposition 2),

(5.7) an < Clcze—aok-lmus/z f3| o |2de - O(e_(s"k_lm‘/s/z).
R
Combining (5.6) with (5.7) yields
(—?— ®,, q),,,) =0m™"),
l x] — le LAR3M
hence by going back to (5.5) we obtain
& -
Ga, [0, S A(Hy.) + B—5'm < AWMH, ) + B
when m is sufficient large.
In addition, by the same reason as in the proof of Proposition 4.2, there is a
subsequence of {®,},, (denoted by the same notation) satisfying gy [®,, @] =0

if { # j. Hence {®,,},, satisfies (5.2). ]

We now prove the main theorem by using Rayleigh-Ritz method.
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Proof of Theorem 1.1. Let b = b, in §4. This b, is independent of N and Z.
We show that the vector potential b, satisfies the statement of Theorem 1.1, by
using an induction with respect to N when Z is fixed. For the sake of convenience
we denote Hy ,(by) by Hy.

First we consider the case N = 1. From Theorems 2.1 and 2.6 it follows that

Z
>.(H,) = B. Here we have used the fact that — ToT decays at infinity (see also

[9] §2). By Theorem 4.1 and by the fact that ;" < H,, we have #0,(H,) = + .
Next suppose that

2(H)=AMH,_)+B QA<I<N-1) and #0,(Hy_) = + .
Then by Theorem 2.8 we have
(5.8) 2(Hy) =2 A(Hy_) + B.
By (5.8), Proposition 5.1 and Rayleigh-Ritz method, we have
#lo,(Hy) N (= o0, 22(Hy)} = + oo,

Also it follows that 2 (Hy) = B + A(Hy_). We remark that o,(Hy) = [2(H,),
o) by the same method as in [10]. This completes the proof of Theorem 1.1. U
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