
Solution by L» Carlitz» 

x 1 3 + x + 90 s x 1 3 + x - 1 (mod 7-13) 

x 1 3 + x - 1 • (x - \) { (x - | ) 1 2 + 1} (mod 13). 

Since 

y12 + ! m ( y 2 . 2) (y2 - 5) (y2 - 6) (y2 - 7) (y2 - 8) (y2 - 11) 

(mod 13) 

(the numbers 2 , 5 , 6 , 7 , 8 , 1 1 a r e the quadratic non-res idues 
(mod 13)) we get the quadratic factors 

x 2 - x + c, c • ± 5 , 4 , 3 , 2 , - 1 (mod 13). 

Next, if f(x) = x 1 3 + x - 1, then 

i ( | ) - * (i) = 0 (mod 7), 

so that f(x) i s divisible (niod 7) by (x - - | ) 2 , which is congruent 
to x 2 - x + 2. Since this polynomial occurs among the quadratics 
(mod 13) found above, it is a likely candidate. By division we 
find that *-

x13«h x + 90 = (x2 - x + 2) (x 1 ! + x 1 0 -x9 -3x 8 - x? + 5x6 

+ 7X5 - 3x4 - 17x3 - l l x 2 + 23x + 45)o 

It would be interest ing to know whether the second factor is 
i r reduc ib le . (Also solved by the p ropose r . ) 

SEQUENCE AND SERIES TRANSFORMATIONS 

M. S. Macphail 

The summability methods 

A : *n = Z k ? o a n k s k ' B : T n = Z k ? o b nku k , 

where b ^ = a ^ + a n k+1 + • • • » 2-re regarded as the sequence-
to-sequence and se r ies - to -sequence forms of the same method, 
and if s k = u0 + . . . + u k , we speak of the se r ies H u ^ or the 
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sequence { s j j indifferently, as summable A or B . We have by-
partial summation 

(l) b n o a o + • • • + b nk u k = a n o s o + • • • + a n , k - l s k - l +• b n k s k .' 

so in o r d e r that B >̂ A (eve ry A - s u m m a b l e sequence i s B - s u m m a b l e 
to the s a m e sum) it i s n e c e s s a r y and sufficient tha t 
l i m n l i m k b ^ s ^ = 0 for e v e r y A - s u m m a b l e sequence { s ^ } , and 
in o r d e r tha t A ^ B i t i s n e c e s s a r y and sufficient that the s a m e 
holds for e v e r y B - s u m m a b l e {s^} . 

The p u r p o s e of th is note i s to give s imple sufficient con­
d i t ions depending on the coeff icients b ^ a lone , 

THEOREM 1. In o r d e r that B r> A , it i s sufficient tha t for 
each n = 0, 1, . . . t h e r e i s a pos i t ive cons tant R n such that 

|1 ~ b n , k + l / b n k ] > R n ( k = °> 1» • • • ) • 

P roof . F o r B => A, it i s p la in ly sufficient tha t T n ex i s t s 
and equa l s t n , for e v e r y {s^} such that t n e x i s t s ; o r , f rom (1), 
tha t A n z> A n , w h e r e 

A* = 

u no 
a n o b n l 
a n o a n l b n 2 

a n o a n l a n 2 b n 3 

A T , -

a n o a n l 

a n o a n l a n 2 

a n o a n l a n 2 a n 3 

We e a s i l y find tha t A* A n ~^ has for i t s k - t h row 

(0, 0, . . . , 0, 1 - b n k / a n k » b n k / a n k K 

Applying the Toep l i t z condi t ions for r e g u l a r i t y , we have at once 
that the co lumn l i m i t s a r e z e r o and the r o w - s u m l imi t i s 1. The 
r o w - n o r m condi t ion r e d u c e s to | b n k / a n k l < ^ n » which i s equ i ­
va len t to the condi t ion s t a t ed in the t h e o r e m . 

THEOREM 2, In o r d e r that A 3 B , it i s sufficient tha t for 
each n = 0, 1, . . . t h e r e i s a cons tan t M n such tha t 

(2) | b n > k + 1 | Z r = o l b n ! r + l ' bn£ I < Mn ( k = 0 , 1, . . . ) . 

and l i m ^ b ^ = 0. 
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This may be proved by a s imilar method, after writing 
(1) in the modified form 

a n o s o + a n l s l + • • • + a n k s k 

= h n o u 0 + b n i u i + . . . + b^a^ - b n j k + 1 s k 

= <bno - b n , k + l ) u o + (b n i - b n > k + 1 ) a 1 + . . . + ( b ^ - b n j k + i ) u k . 

Or we may use a theorem of Kronecker [ i , p . 129-130] , to 
show that l i m k bEQcsk = 0. 

THEOREM 3. In order that A r> B, it is sufficient that 
for each n = 0, 1, . . . there is a constant C n (0 < C n <£ 1), such 
that Ibj^k+i/bakl •* C n (k = 0, 1, . . . ) . For rea l b ^ it is 
sufficient that for each n, b ^ — > 0 monotonically from a cer ta in 
k on. 

Proof, The second condition is obviously sufficient for 
(2). Fo r the f i rs t , we observe that 

| b n j k + l l Z r = o l b n ! r + l " ^ 1 < ̂ K . k + l E Ï ^ ! ^ r I • 

Denoting the right hand side by 2B I l k , we find 

B n ,k+1 = i b n ,k+2 / b n ,k+ l I B n k + 1 > 

whence we see inductively that B ^ is bounded, under our hypo­
thes i s . 

We may i l lus t ra te with the well-known "circ le method11: 

f (£) tk~* (1 - t ) n ( k * n) 
hnk = < 

l 0 ( k < n ) , 

This is in the customary s e r i e s - t o - s e r i e s form. We easily 
obtain from Theorems 1 and 3 the known resul t s [2, p . 549; 
3, p . 141] that (with a ^ = b ^ - b n k + i ) we have B "=> A for all 
t i 1 and A => B for jt | <- 1; here A is a sequence- to-ser ies 
method which is equivalent to the corresponding sequence-to-
sequence method. It is easily proved [2j that the condition 
| t | -̂  1 is necessary for A ^ B . 
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