Solution by L. Carlitz,
34 x4+ 90 =x134+x-1 (mod 7-13)

x13+x-1

(x-3) {(x-H12+1} (mod 13).
Since

y124 1= (y% - 2) (y2 - 5) (y2 - 6) (y2 - 7) (y2 - 8) (y2 - 11)
(mod 13)

(the numbers 2,5,6,7,8,11 are the quadratic non-residues
{mod 13)) we get the quadratic factors

xt -x+c, c=4%5,4,3,2,-1 (mod 13).
Next, if f(x) = x13 4 x - 1, then
() =0 (3) =0 (mod 7),
so that f(x) is divisible (mod 7) by (x - %)2, which is congruent
to x2 - x+ 2. Since this polynomial occurs among the quadratics
(mod 13) found above, it is a likely candidate. By division we
find that -~
x13 4 x+ 90 = (x2 - x4+ 2) (x11 + x10 -x9 -3x8 _ x7 4+ 5x6

+ Tx0 - 3x4 - 17x3 - 11x2 + 23x + 45).

It would be interesting to know whether the second factor is
irreducible. (Also solved by the proposer.)

SEQUENCE AND SERIES TRANSFORMATIONS
M. S. Macphail
The summability methods
A: tp = Zkgoo apksyx, B: Tp= chfo bnkuk »
where bpy = ank + an,k+1 + +.., are regarded as the sequence-

to-sequence and series-to-sequence forms of the same method,
and if s = up+ ... + ukx, we speak of the series Juy or the
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sequence {sk} indifferently, as summable A or B. We have by
partial summation

(1) bpoug+ o« + bprug = anese + -+ + an,k-15k-1 + bpkSk ;

so in order that B o A (every A-summable sequence is B-summable
to the same sum) it is necessary and sufficient that

limy limy byksk = O for every A-summable sequence {sy}, and

in order that A @ B it is necessary and sufficient that the same
holds for every B-summable {sy}.

The purpose of this note is to give simple sufficient con-
ditions depending on the coefficients by alone.

THEOREM 1. In order that B > A, it is sufficient that for
eachn=20, 1, ... there is a positive constant Ry such that
[l - bn,k+1/bnk] > Rp (k=0, 1, ...).

Proof, For B> A, it is plainly sufficient that T, exists
and equals ty, for every {si} such that t, exists; or, from (1),
that Ai > Ap, wWhere

B bno i 2no
ano bnl ano anl
Af = ano anl bn2 , An= 2no 2nl 2n2
2no 2nl @n2 Pn3 @no 2nl 2n2 an3

We easily find that A¥ An"1 has for its k-th row

(0, 0, vuvy 0, 1 = bpx/ank, bak/apk).

Applying the Toeplitz conditions for regularity, we have at once
that the column limits are zerd and the row-sum limit is 1. The
row-norm condition reduces to |byx/apnk| < Mp, which is equi-
valent to the condition stated in the theorem.

THEOREM 2. In order that A ® B, it is sufficient that for
eachn=20, 1, ... there is a constant M, such that

-1 - :
(2) ‘bn,k+lizr}-_(o lbn,r+1 "bn% < Mgy (k=0,1, ...),

and limk bpk = 0.
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This may be proved by a similar method, after writing
(1) in the modified form '

anpSo t anisy + cee + ankSk

bpoUup + bpjuy + - o + bppui - bn,k+lsk

(Pno - bn,k+1)uo + (bnl - Pn,k+1)a1 + + oo + (bpk - Pn, ki) uk-

Or we may use a theorem of Kronecker [l, p. 129-130], to
show that limyk bpksy = O.

THEOREM 3. In order that A o B, it is sufficient that
for eachn=20, 1, ... there is a constant C, (0 < Cy < 1), such
that |bp,k+1/Ppk| < Cp (k=0, 1, ...). For real bpy it is
sufficient that for each n, by — 0 monotonically from a certain
k on.

Proof. The second condition is obviously sufficient for
(2). For the first, we observe that

- - k+1 -1
lbn,k+ll Zrl:{o Ibn,lr-%-l - bn:H <2|bn,k+li rio ibnr .

Denoting the right hand side by 2By, we find

Bn,k+1 = Ibn,k+2/Pn, ksl | Bk + 1

whence we see inductively that Bpx is bounded, under our hypo-
thesis.

We may illustrate with the well-known ''circle method!":
{(%9 7B (1 -4 (k> n)

bnk =
0 (k <n) .

This is in the customary series-to-series form. We easily
obtain from Theorems 1 and 3 the known results [2, p.549;
3, p. 141] that (with apy = byy - by 111) we have B = A for all
t# 1 and A> B for |t| <1; here A is a sequence-to-series
method which is equivalent to the corresponding sequence-to-
sequence method. It is easily proved [2] that the condition
[t] < 1is necessary for A > B.
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