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Letter

Re-Evaluating Machine Learning for MRP Given the Comparable

Performance of (Deep) Hierarchical Models
MAX GOPLERUD  University of Pittsburgh, United States

political science. Multiple papers have suggested that relying on machine learning methods can

Multilevel regression and post-stratification (MRP) is a popular use of hierarchical models in

provide substantially better performance than traditional approaches that use hierarchical

models. However, these comparisons are often unfair to traditional techniques as they omit possibly
important interactions or nonlinear effects. I show that complex (“deep”) hierarchical models that include
interactions can nearly match or outperform state-of-the-art machine learning methods. Combining
multiple models into an ensemble can improve performance, although deep hierarchical models are
themselves given considerable weight in these ensembles. The main limitation to using deep hierarchical
models is speed. This paper derives new techniques to further accelerate estimation using variational
approximations. I provide software that uses weakly informative priors and can estimate nonlinear effects
using splines. This allows flexible and complex hierarchical models to be fit as quickly as many

comparable machine learning techniques.

tinues to revolutionize parts of political science

by allowing easy estimation of flexible and pow-
erful models. One increasingly popular application is
using machine learning when performing “multilevel
regression and post-stratification” (MRP) to extrapo-
late nationally representative surveys to smaller geo-
graphic units such as states (Lax and Phillips 2009;
Park, Gelman, and Bafumi 2004). MRP is a two-step
process that begins by fitting a predictive model to the
survey using demographic and state-level information.
Next, opinion estimates for the states are obtained by a
weighted average of the predicted values for various
demographic groups inside of that state using their
known distribution. While the performance of MRP
depends on both steps, multiple papers have found that
using machine learning for the predictive model out-
performs traditional methods (“multilevel regression”)
by considerable margins (e.g., Bisbee 2019; Broniecki,
Leemann, and Wiiest 2022; Goplerud et al. 2018;
Ornstein 2020). A plausible justification is that the
linear, additive, nature of traditional models is insuffi-
cient to capture the complex relationship between the
covariates and the outcome.

The reliance on simple hierarchical models, however,
unnecessarily limits their usefulness. Unlike some
machine learning methods that can automatically esti-
mate interactions (or nonlinear effects of continuous
predictors), hierarchical models can only estimate

T he growing popularity of machine learning con-
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interactions that the researcher has explicitly included.
This is both a strength and a weakness. While hierar-
chical models are highly modular and allow the
researcher to explicitly incorporate domain-specific
knowledge as to important predictors or interactions,
there is a risk of mis-specification—and thus worse
performance —if important interactions are omitted.
Thus, a “fair” test of MRP’s performance must examine
a model that explicitly includes many possibly relevant
interactions. Ghitza and Gelman (2013) illustrate this
by adding a broad set of interactions and uncover
considerably more subtle results than traditional
methods could identify. Following their usage, I refer
to complex hierarchical models that explicitly include
interactions or nonlinear effects as “deep MRP.”!
Thus, despite the understandable enthusiasm for
applying machine learning to MRP, it is simply
unknown in a systematic way whether machine learn-
ing outperforms deep MRP. The main reason for this
gap in the literature is a practical one. Existing uses of
deep MRP sometimes include nearly 20 random effects
to capture the underlying heterogeneity and thus are
usually very slow to estimate. Given that one might
wish to fit these models repeatedly (e.g., comparing
different specifications), this has quite reasonably
caused researchers to “rule out” deep MRP.
Fortunately, recent work has shown that deep MRP
can be estimated very quickly using variational infer-
ence while producing very similar point estimates to
traditional methods (Goplerud 2022). However, that
paper only tested those algorithms on the single dataset

! This method is distinct from “deep learning” (e.g., involving neural
networks).
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from Ghitza and Gelman (2013) and did not compare
them against machine learning techniques. My initial
systematic tests found that those algorithms performed
unfavorably against machine learning. This paper pro-
vides two improvements to existing variational methods
that result in competitive performance: First, Goplerud
(2022) relied on an improperly calibrated prior that
often resulted in too little regularization. Second, those
algorithms cannot capture nonlinear effects of continu-
ous covariates (e.g., presidential vote share).

Those concerns are addressed by, first, extending the
variational algorithms to include a weakly informative
prior (Huang and Wand 2013) that can more appropri-
ately regularize random effects and, second, allowing
the use of penalized splines for continuous predictors.
After implementing a number of novel computational
techniques to accelerate estimation, the accompanying
open-source software can fit highly flexible deep MRP
in minutes —rather than the hours possibly needed for
traditional approaches.

This paper illustrates the importance of deep MRP
by reanalyzing two papers that suggest that machine
learning methods clearly outperform MRP (Bisbee
2019; Ornstein 2020). It demonstrates two important
stylized facts: deep multilevel models (i) are given
considerable weight in an ensemble of machine learn-
ing methods and (ii) are competitive with Bayesian
additive regression trees (BART) in terms of perfor-
mance. While recent work reports that BART per-
forms noticeably better than traditional MRP (Bisbee
2019), I demonstrate that this is not the case. I show
that, especially at moderate sample sizes, BART usu-
ally only slightly outperforms even traditional MRP.
Thus, while machine learning methods that combine
many methods together in an ensemble can improve
performance, (deep) MRP should continue to be used
as a highly competitive single method or in any ensem-
ble approach.

FITTING DEEP MRP FAST

The key limitation in fitting MRP with interactions is
the speed of estimation. Earlier research has shown
that fitting a single deep MRP model can take multiple
hours (e.g., Goplerud 2022). This is because of the
presence of high-dimensional integrals that traditional
methods either numerically approximate or address
using Bayesian methods.

Variational inference provides a different approach
for fast estimation; the goal is to find the best approx-
imating distribution to the posterior given some simpli-
fying assumption—usually that blocks of parameters
are independent (Grimmer 2011). However, the accu-
racy of this approximation can depend heavily on the
specific problem, and thus needs extensive testing to
ensure its reliability. Goplerud (2022) derived a new
general algorithm for binomial hierarchical models and
conducted extensive explorations of its performance on
the single dataset considered in Ghitza and Gelman
(2013). Those algorithms fit an extremely complex
hierarchical model in around 1 minute—versus
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hour(s) for existing approaches. It demonstrated excel-
lent performance by recovering posterior means on
coefficients and predictions that closely aligned with
the gold standard approach of Bayesian estimation.”
Appendix A of the Supplementary Material provides a
full exposition of the variational algorithm.

To illustrate the extensions in this paper, I focus on a
simplified MRP model: Equation 1 shows a hierarchical
model without fixed effects and with a random intercept
for state and a random intercept for race, where y; is the
(binary) response for observation i. The notation follows
Gelman and Hill (2006) where o3 selects the random
effect for the state g of which observation i is a member.
Appendix A of the Supplementary Material shows the
generalization to random slopes, arbitrary numbers of
random effects, and fixed effects.

exp(y;)
~B P i <4 VA
y; ~ Bern(p;); p; T+ exp(y)

a;tate ~ N(O o ); a?ce ~ N(O o2 ); p(ﬁO)«l;

> ¥ state > “'race

= ok g

UJZNPo(UIZ) for je& {state, race}.
(1)

The choice of prior on the variance of the random
effect po(af) is a difficult task. Some inferential tech-
niques assume a flat prior. A risk of this strategy is that
point estimates of 0]2 could be degenerate and equal

zero; this sets all random effects estimates equal to zero.
This problem is rather common for the Laplace approx-
imation in glmer (Chung et al. 2015). A proper prior
prevents this problem and thus is preferable. An
Inverse-Gamma prior is a popular choice, but it is
difficult to calibrate the strength correctly (Gelman
2006). Figure 1 illustrates this by showing the prior
used in Goplerud (2022) (“Inverse-Gamma”) against
the Huang and Wand (2013) prior employed in this
paper. The latter prior implies the popular half-¢ prior
on the standard deviation ¢; (Gelman 2006), and it can
be generalized to multidimensional random effects. In
that case, it imposes half-t priors on each marginal
standard deviation while maintaining (if desired) a
uniform prior on the correlations. Appendix A.1 of
the Supplementary Material provides more informa-
tion on this prior such as its density.

Figure 1 shows that Goplerud’s (2022) prior puts
effectively no mass on small values of ¢; (e.g.,
P(0; <0.25) ~ 0.0003). Thus, in the event where the
true value is small (i.e., the random effect is mostly
irrelevant), the prior results in too large estimates of g;,
thereby underregularizing the coefficients, which likely
results in poorer performance. By contrast, the Huang—
Wand prior puts nontrivial weight on very small ¢; and
thus allows for strong regularization when appropriate.
Appendix A.1 of the Supplementary Material provides
a stylized example of this phenomenon.

2 As with most variational methods, it underestimates posterior
uncertainty; Goplerud (2022) provides a post-estimation adjustment
to mitigate some of this problem.
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FIGURE 1. Comparing Prior Density for Random Effect Standard Deviation ¢;
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Note: The dashed line shows the prior density on ; given an Inverse-Gamma prior on oj with ¢y = 1and g, = 1/2. The solid line shows a

Huang-Wand prior on ¢ with v = 2 and A =5 (i.e., half-t on o;).

Unfortunately, Appendix A.5 of the Supplementary
Material illustrates that naively incorporating the
Huang-Wand prior dramatically increases estimation
time. While it does increase the time per iteration, the
major problem is that estimation requires 5-10 times
more iterations to converge. Thus, a key contribution of
this paper is to accelerate variational algorithms when
this more appropriate prior is employed. Appendices
A.2 and A.3 of the Supplementary Material provide,
respectively, full explanations of the techniques
employed: (i) a squared iterative method and (ii) a
novel application of parameter expansion.

The model in Equation 1 can be extended by adding
many interactions between geographic and demographic
factors (“deep MRP”; Ghitza and Gelman 2013). How-
ever, Broniecki, Leemann, and Wiiest (2022) note that
additional state-level predictors (e.g., unemployment
rate) may also provide considerable benefits. Unlike
hierarchical models, many machine learning methods
can automatically estimate nonlinear effects or interac-
tions between these continuous predictors, whereas they
must be specified explicitly for MRP.

I address that scenario by allowing estimation of
nonlinear effects using splines as in a generalized addi-
tive model. Appendix A.4 of the Supplementary Mate-
rial demonstrates how splines can be represented as
additional hierarchical terms and thus estimated using
the same variational algorithms.

Appendix B of the Supplementary Material provides
simulations to illustrate the importance of using hier-
archical models that include interactions or nonlinear
effects. It shows that ignoring important interactions or
nonlinearities hurts the performance of hierarchical
models vis-a-vis alternative models, especially as the

sample size increases. However, after those terms are
included, hierarchical models perform well even
against machine learning methods.

COMPARING METHODS FOR FITTING MRP

To compare deep hierarchical models against machine
learning systematically, I use Buttice and Highton’s
(2013) popular dataset for validating new methods for
MRP (e.g., Bisbee 2019; Broniecki, Leemann, and
Wiiest 2022; Ornstein 2020). It consists of 89 policy
questions that are collected from multiple years of the
National Annenberg Election Studies (2000, 2004, and
2008) and the Cooperative Congressional Election
Studies (2006 and 2008). The benefit of these large
samples is that it is possible to use the entire dataset
to get a “ground truth” by taking the observed average
in each state while drawing a smaller subsample (e.g.,
1,500 respondents) to mimic the conditions under
which a researcher would need to apply MRP to obtain
reliable state-level estimates.

Existing comparisons, however, only rely on a simple
hierarchical model outlined below (Equation 2), fol-
lowing the original specification in Buttice and Highton
(2013). The model includes random effects for age,
education (educ), gender-race combination (gXr),
state, and region. The state-level continuous predictors
pvote (state-level Republican presidential two-party
vote share) and rel1g (share of population identifying
as Evangelical Protestant or Mormon) are indexed with
gli] as they are constant within a state.

region
sl

gXr

ﬁ() + ﬂpvote : pVOteg[i] +ﬁrelig ' religg[i]+>
sl

— 1) — Tooit!
Pr(y; = 1) = logit (aaﬁe e g
gli

state
8lil T oy 4

ai, ~ N(O, af) for allj and g.
2

This model includes no interactions between vari-
ables or nonlinear effects on continuous predictors,
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and thus is likely insufficiently rich to capture the true
underlying relationship. It is reasonable to suspect
that a “properly specified” MRP model should include
at least some interactions to be competitive with
methods that can automatically learn interactions or
nonlinearities.

I consider three expansions of this model’s hierar-
chical component. First, I consider a deep MRP
where all two-way interactions between demographics
and geography are included (e.g., age—education and
age-state), as well as a triple interaction between
the three demographic variables. Second, I add splines
to capture possible nonlinear effects in the state-level
continuous variables. A third model includes both
extensions. Table 1 summarizes the specifications;
Appendix F of the Supplementary Material provides
a demonstration of how to fit these models in the
accompanying software (Goplerud 2023).3

It is important to stress that this paper tracks the
existing analyses comparing machine learning and
MREP as closely as possible. There are thus other spec-
ifications that likely improve upon Table 1, although I
show that adding this set of interactions enables MRP
to perform competitively against state-of-the-art
machine learning techniques.

DEEP MRP IN AN ENSEMBLE

The first comparison explores whether deep MRP adds
much benefit when used alongside a suite of machine
learning methods. I begin by using a technique known
as “stacking” that takes the predictions of many differ-
ent methods and combines them into a single prediction
known as an ensemble. Ornstein (2020) applied this
method to MRP and found considerable gains over
traditional methods. The method performs K-fold
cross-validation to get an out-of-sample prediction for
each observation in the survey using each constituent
model. The out-of-sample predictions are combined to
see which weighted average (convex combination) best

predicts the outcome, and then these weights are used
to combine predictions before post-stratification. It is
often the case that the ensemble outperforms any single
method (Broniecki, Leemann, and Wiiest 2022; Orn-
stein 2020), although this is not guaranteed and can be
empirically assessed by, for example, using a held-out
dataset.

A useful property of ensembles is the ability to
compare the weights given to the constituent models.
The weights reflect both the performance of the
method and its “distinctiveness” from the other
methods in the ensemble. Using each survey in Buttice
and Highton (2013), I drew 10 different samples of
varying sizes and estimated an ensemble using fivefold
cross-validation with the models in Ornstein (2020)
where I swapped the traditional (“Simple”) MRP
model with the deep MRP model from Table 1.
Figure 2 summarizes the weights given to each model,
averaging across the surveys and simulations.

The results provide clear support for the importance
of deep MRP in an ensemble: it is the highest weighted
method when the sample size is over 1,500 and is given
over 40% of the total weight when the sample size is
5,000 or higher. The performance of deep MRP is
corroborated by the fact that, of the methods in the
ensemble, it has the lowest cross-validated error on the
survey data when N > 1,500. In terms of computational
time, fitting this deep model on the full survey takes
around 30 seconds for the largest sample size of 10,000
observations. Thus, deep MRP can be added to an
ensemble with limited cost.

Appendix D of the Supplementary Material explores
the trade-off between model complexity and sample
size. It examines a larger ensemble that includes all four
models from Table 1.* While corroborating Figure 2—
MRP models collectively receive around 40%-50% of
the weight—it shows an expected trade-off between
traditional and deep MRP where traditional (noninter-
active) methods are given decreasing weight as the
sample size increases. This suggests that the ensemble
upweights more complex methods as the amount of

TABLE 1. Deep MRP Specifications

Model pvote and relig Demographics and state
Simple Linear Additive

Deep Linear Interacted

Splines Splines Additive

Combined Splines Interacted

interactions noted in the main text alongside the additive terms.

Note: The second column indicates how these two variables are included. It is either “Linear” (Equation 2) or “Splines” where a spline is
used to allow for nonlinear effects for each variable. The third column indicates how the random effects on age, education, gender x race,
state, and region are included. “Additive” refers to five random effects added together (Equation 2). “Interacted” refers to including the

3 All methods use a Huang-Wand prior for each random effect;
hyperparameters are identical to Figure 1.
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1t also examines the “deep” hierarchical model with an Inverse-
Gamma/Wishart prior.
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FIGURE 2. Weights Given to Models in Ensemble
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Note: This figure shows the ensemble weights averaged across all surveys and 10 simulations per survey. Each panel reports the sample
size of the survey. Ninety-five percent confidence intervals are shown. The first four methods are from Ornstein (2020): LASSO, k-Nearest
Neighbors (KNN), Random Forest (Forest), Gradient Boosting Machine (GBM). The final method is “Deep” MRP from Table 1.

data increases. The spline-based methods receive rela-
tively low weight, but this may be due to the limited
variation in the continuous variables that are measured
at the state level.> Appendix D of the Supplementary
Material also shows that, in terms of raw performance,
a well-designed ensemble usually beats any single con-
stituent method. The five-model ensemble beats all of
its constituent methods by more than 5% on at least one
sample size considered.

MRP AND BART

One limitation of ensembles is appropriately quantify-

ing uncertainty of the post-stratified estimates. This is

challenging because it may be difficult to quantify the

uncertainty of the estimates from the individual
machine learning methods used in the ensemble.® It

also requires careful work to interpret the effects of the

included variables. Thus, researchers often seek to rely

on a single model that can incorporate uncertainty and

remains highly flexible. To that end, BART (Chipman,

George, and McCulloch 2010) is an attractive choice.

The method is related to popular tree-based methods

such as “random forests,” but it is implemented in a
Bayesian framework that allows for quantification of

uncertainty. Bisbee (2019) applies BART to MRP and

> Appendix B of the Supplementary Material provides simulations
where splines are important for strong performance.

6 Broniecki, Leemann, and Wiiest (2022) suggest bootstrapping.
They show promising results, but this can be computationally expen-
sive and thus sometimes a single method is desirable.

reports that it substantially outperforms (traditional)
MRP. The magnitude of the improvement is large
(e.g., around 20%-30% decrease in mean absolute
error [MAE]). This motivates an initial question: does
BART improve upon deep MRP?

After some preliminary exploration, I discovered an
error in Bisbee’s (2019) replication archive. Appendix
E of the Supplementary Material describes it in detail;
see also a corrigendum to Bisbee (2019) (Goplerud and
Bisbee 2022). In brief, the error arbitrarily injected
random noise into the MRP estimates at the prediction
stage. When this is corrected, traditional MRP’s per-
formance increases markedly and is only slightly beaten
by BART.

Following the main analysis in Bisbee (2019),
Figure 3 shows the predictive accuracy on the surveys
in Buttice and Highton (2013) for a sample with 1,500
observations.” For simplicity, I show only three
methods: the traditional (“Simple”) MRP following
Bisbee’s (2019) provided code, a corrected traditional
MRP, and deep MRP estimated using variational infer-
ence (see Table 1).

Fixing the error shows a noticeably different story;
rather than being clearly beaten by BART, traditional
MREP looks visually similar to BART in terms of its
error across surveys. Table 2 provides a more concise
quantitative summary. It shows the percentage gap in
MAE versus BART averaged across the 89 surveys:
(MAEk—MAEBART)/MAEBART X 100, where MAEk indi-
cates the MAE of the model k averaged across two-

7 Appendix E of the Supplementary Material replicates other ana-
lyses in Bisbee (2019) and finds similar results.
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FIGURE 3. Visualizing Performance: MRP versus BART

MRP (Bisbee 2019) MRP Deep
0.08 A
° ° °
Ly 0-06-
<
= . .
'L.E o 0 ° /o0
< 0.04- "o g, X -
m () .; L ) ( ..
(L ] ..
N
°
0.024q e (] (]
0.02 0.04 0.06 0.08 0.02 0.04 0.06 0.08 0.02 0.04 0.06 0.08
MRP MAE

variational inference (“Deep”).

Note: Each plot compares the mean absolute error (MAE) of BART and MRP, averaged across two-hundred simulations per survey. The
points below the 45-degree line indicate that MRP performs worse. The three methods shown are the traditional MRP and prediction method
in Bisbee (2019) (“MRP (Bisbee 2019)"), an MRP with the same specifications but a corrected prediction (“MRP”), and a deep MRP fit using

TABLE 2. Relative Mean Absolute Error versus BART

Sample size
Method 1,500 3,000 4,500 6,000 7,500 10,000
MRP (Bisbee 2019) 22.55 26.29 30.95 35.18 38.78 44.25
MRP 4.52 1.66 1.22 1.07 1.07 1.08
Deep 2.61 -1.04 -1.05 -0.59 0.14 1.11

BART outperforms its competitor. Figure 3 defines the abbreviations.

Note: This table reports percentage gap in mean absolute error between BART and the alternative methods; positive numbers indicate that

hundred simulations. A positive number indicates that
BART outperforms the other method. This measure is
relative as BART and MRP both decrease the observed
MAE as sample size increases.

Table 2 shows that BART outperforms traditional
MRP, but it does so by quite small margins (1%—4%)
and its relative advantage declines as sample size
increases. Deep MRP performs slightly better versus
BART; for modest sample sizes (3,000-6,000), it actually
slightly outperforms BART, although it does slightly
worse at small and very large sample sizes. In terms of
performance, across all sample sizes, deep MRP out-
performs BART between 45% and 55% of the time and,
thus, they can be considered to reach an effective “draw”
in terms of performance. The table also suggests a small-
but-systematic improvement of deep MRP over tradi-
tional MRP. Comparing the traditional (“Simple”) MRP
against deep MRP shows that, except for the largest
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sample sizes, traditional MRP performs around 1%-3%
worse than deep MRP in terms of MAE and is beaten
around 60%-70% of the time.

CONCLUSION

This paper has shown that with recent advances in vari-
ational inference and novel technical extensions, it is
possible to rapidly estimate deep MRP; Appendix C of
the Supplementary Material shows that deep MRP can
be often estimated much more quickly than machine
learning methods that require tuning of external hyper-
parameters and as quickly as BART without tuning. It
found that deep MRP is highly competitive in perfor-
mance—effectively tying the state-of-the-art BART
method. Compared with traditional MRP, adding
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interactions provided a small, but systematic and nontri-
vial, gain in performance at most observed sample sizes.

The key implications of this paper for applied MRP
research are twofold. First, the fast variational methods
developed in this paper allow researchers to easily
perform the well-established process of model compar-
ison (e.g., by using cross-validation) when deciding
which (complex) hierarchical model to use. Rather than
selecting a single (traditional) specification for MRP, the
results in this paper suggest that considering and com-
paring a variety of possible models—traditional MRP,
deep MRP, or perhaps machine learning—can result in
better performance for the post-stratified estimates. It is
not possible to know a priori whether deep or traditional
hierarchical models will perform better on a specific
survey, but the methods in this paper allow for this to
be easily tested rather than assumed. If quantification of
uncertainty in the estimates is desired, one might employ
a hybrid strategy where the variational methods are used
for initial model comparison to winnow down the possi-
ble models before using a fully Bayesian approach for
the final estimates.

Second, in terms of re-evaluating the role of machine
learning for MRP, this paper suggests that the major
benefit of machine learning comes from combining
models in an ensemble. However, it also shows a clear
important role for (deep) hierarchical models in those
ensembles; these deep hierarchical models often have
the strongest out-of-sample predictive accuracy on the
survey itself and thus are given high weight in an
ensemble. There is usually little downside to including
additional methods in an ensemble —especially when
the cost of estimation is rather low—and thus a well-
specified ensemble should probably include multiple
versions of MRP (traditional and deep). As in the case
of model comparison, this allows for the data to provide
guidance in terms of which type of hierarchical model is
most appropriate.
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