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ON THE MINIMUM NUMBER OF BLOCKS DEFINING A DESIGN

KEN GRrAY

A set of blocks which is a subset of a unique t — (v, k, ) design is said to be a
defining set of that design. We examine the properties of such a set, and show that
its automorphism group is related to that of the whole design. Smallest defining
sets are found for 2-designs and 3-designs on seven or eight varieties with block
size three or four, revealing interesting combinatorial structures.

1. DEFINING SETS: DEFINITIONS AND BASIC RESULTS

A design is a collection of b k-subsets (blocks) chosen from a set of v elements, V
say. A block design is a collection of blocks chosen in such a way that every element
belongs to » blocks. If k < v, we say the block design is incomplete. Except in Section
4, where linked designs are dealt with, we will take all designs to be incomplete block
designs. If every subset of ¢ elements belongs to exactly A; blocks for some constant
At, we call the design a t-design and indicate its parameters by t — (v,k,A;). When
t = 2, we say the design is balanced. We shall often omit the subscript, and simply
write t — (v, k,A).

A set of blocks which is a subset of a unique ¢ — (v,k,);) design is said to be
a defining set of the design, and will be denoted by d(t — (v,k,A;)). (This notation
later requires us to denote the index of the ith design by A(:), rather than by X;.)
For example, the set of blocks R = {123,145,167} can be completed to a 2-(7,3,1)
design in two distinct ways: by adjoining either Ty = {246,257,347,356} or T, =
{247,256,346,357}. Hence R is not a defining set of either design. But the set of
blocks § = {123,145,246} can be completed to a 2-(7,3,1) design in only one way,
namely by adjoining the blocks {167,257,347,356}. Hence S is a defining set of that
design. -

A minimal defining set, denoted by dn,(t —(v,k,])), is a defining set, no proper
subset of which is a defining set. A smallest defining set, denoted by d,(t — (v,k,A)),
is a defining set such that no other defining set has smaller cardinality. Every t-design
clearly has a defining set (the whole design) and hence a smallest defining set. A
d(t — (v,k,))) defining set consisting of blocks of a particular t — (v, k,A) design D is
abbreviated to dD.
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In this section, we establish several lemmas.

‘We define a collection of blocks 7; to be a trade if there exists a distinct collection
7; containing precisely the same pairs; for example, the collections 77 and T, given
above. Others use the term similarly to mean the set {7;,7;} of distinct collections
containing precisely the same pairs (see Billington [2] and Gray [5]). Such collections
are also known as mutually balanced (Rodger [10]).

When forming unions of sets of blocks we take the symbol U as allowing repeated
blocks; for example

{123,456} U {123, 789} = {123,123, 456, 789}.

We also denote the complement of the set X by X and XNY by X \Y.

LEMMA 1.1. Every defining set § of a 2~ (v,k,)) design D contains a block
of every possible trade Ty C D.

PROOF: Suppose T} C D has a trade T, and SNTy = 0. Then S C D\ T
and the designs T; U (D \ T1), for i = 1,2, are a pair of distinct 2 — (v,k,)) designs
containing S, contradicting the assumption that § is a defining set.

Now every permutation on the elements of V induces a mapping from one k-set
to another. An automorphism of a set of blocks X is a permutation of the elements
which takes every block of X to a blockof X . Let Aut(X) denote the group of all the

automorphisms.

LEMMA 1.2. Suppose S is a particular defining set of a t — (v,k,\;) design D
and p € Aut(D). Then p(S) is also a defining set of D and Aut(S) is a subgroup of
Aut(D).

PROOF: Suppose p is an automorphism of D, that is, p(D) = D, where p is a
permutation on the elements of the underlying v-set. Clearly, if S is a defining set of
D then p(S) is also a defining set of D.

Further suppose that p* is any automorphism of §. Since § C D then we have
p*(S) C p*(D). So S=p*(S) is a subset of the designs D and p*(D). But,if D is a
t— (v, k, A;) design, then so is p*(D) and, since S is a defining set, D = p*(D). Hence

p* is an automorphism of D.

LEMMA 1.3. No automorphism of a 2 — (v,k,1) design, with k > 2, consists of
a single transposition.

Proor: Without loss of generality, suppose we have such a 2 — (v,k,1) design on
{1,2,... ,v}, and that this design is fixed under the permutation (12). Since the design
is incomplete, the element 1 belongs to at least two blocks, say b; = {1,2,as,... ,az}
and by = {1,c2,¢€3,...,¢x}, where 2 ¢ b, . Since (12) is an automorphism, b, and
(1,2)b, are distinct blocks containing the pair {c;,c3}, contradicting the fact A = 1. 0
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LEMMA 1.4. Any d(2— (v,k,1)) defining set S, for k > 2, has at least (v —1)

elements occurring in its blocks.

PROOF: If two elements 7 and j do not appear in any block of S, then we have
(t,7) € Aut(S). By Lemma 1.2, (i,5) € Aut(D) where D is the unique 2 — (v,k,1)
design containing S, contradicting Lemma 1.3. 0

LEMMA 1.5. Suppose two elements i,j each appear only oncein a d(2 — (v, k,1))
defining set S, where k > 2. Then i,j cannot appear in the same block of S.

PROOF: Suppose i,j appear uniquely in the same block of §. Then (i,7) € Aut(S)
and again we have a contradiction of Lemma 1.3.

These lemmas lead to a simple lower bound on the number of blocks in a defining
set of a 2 — (v,k,1) design.
THEOREM 1.6. Forevery 2 — (v,k,1) design D, with k > 2,
2(v—1)
k+1
PROOF: Let S be a defining set of D, and suppose that |S| = s. Then by Lemma

1.5, at most s elements occur in precisely one block each of S, and by Lemma 1.4, at

|dD| >

least (v — 1 — s) elements occur in at least two blocks each of S. Since we have only

ks entries in the blocks, we need
s+2(v—1-3) < ks
and the result follows. 0

Were one to consider the effect on the bound of changing the value of A, it would
be worth observing that a defining set may have cardinality 0. This is true, for example,
ofa d,(2 - (4,3,2)).

The following Lemmas are given without proof.

LEMMA 1.7. Suppose D = {b;} is a block design. Then the set of complemen-
tary blocks D = {b;}, where complementation is with respect to the set of varieties v,
is also a block design (see [12]).

LEMMA 1.8. If S is a particular defining set of a design D, then § is a defining
set of D.

A t—(v,k, ;) design D is said to be reducibleif D = D,UD, for some t—(v, k, ;)
and ¢t — (v,k,w,) designs D; and D; respectively.

THEOREM 1.9. Suppose that S is a defining set of some reducible t—(v, k,w; + g,
design D = D, U D,, where D, and D, are t — (v,k,w;) and t — (v,k,p,) designs re-
spectively. Then '

|S| > |ds Dy |+ |d, D, |.
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PRrOOF: Suppose |S| < |d,D;|+ |d,Dz|. For the partition of the blocks of D into
blocks of D; and blocks of D,, we partition the blocks of S correspondingly with n;
blocks in Dj, for j = 1,2. Then nj < |d,D;| for at least one value of j = 1 or 2,
and for this value of j these n; blocks belong to two distinct designs D, and D, say,
with the same parameters as D;. So § is a subset of two distinct ¢ — (v, k,w,) designs,
namely D;UD; and D;UD,, where | =1 or 2 and [ # j. Hence S cannot be a
defining set. 1]

COROLLARY 1.10. Ifeach D(i)isa 2—(v,k,w(i)) design fori =1,...,n and
if D= 0 D(i) is a union of 2 — (v,k,w(?)) designs, then

i=1

n

1.D] > 3" 14,D()-

i=1

2. PROPERTIES OF SOME SMALL DESIGNS

In this section, we list the properties of some small designs which we shall use in
constructing examples, and give their smallest defining sets.

ExAMPLE 2.1. THE FaNO PLANE.

There is, up to isomorphism, just one 2 — (7,3,1) design, also known as the Fano
plane. It has automorphism group of order 168 (Biggs and White [1}) and hence there
are 7!/168 = 30 possible planes based on the set of seven elemients; for example, RUT)
as given in Section 1. As indicated there, it is easily Yeriﬁed that any three blocks with
no element common to all three form a defining set, and that trades can be established
by completing any three blocks containing a common element in the two possible ways.
Since no three blocks containing a common element form a defining set, neither will
any set of fewer than three blocks. Thus we have:

THEOREM 2.2. The smallest defining sets of a Fano plane are the sets of three

blocks containing no element common to all three.

ExAMPLE 2.3. THE FoUR 2 - (7,3,2) DESIGNS.

There are, up to isomorphism, four 2 — (7,3,2) designs (see Stanton and Col-
lens {11], Wallis [13] and Nandi [9]). Examples of these are given in Table 1 and
labelled A, B, C and D. All are reducible, with Table 1 expressing each design as the
union of two permutations of the Fano plane P with blocks

123 145 167 246 257 347 356.

For convenience we let P! = (2765)P, P? = (274)P, P® = (142)P and P* = (347)P.
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Table 1. The Smallest Defining Sets of the Non-isomorphic 2 — (7,3,2) Designs.

Design C Design B Design D Design A
P UPp! Py P? PypP®* Pprypt

713 713 713 713 713 746 713 734
124 124 124 745 124 715 745 715
Blocks 235 235 235 726 235 126 726 726
346 346 346 125 346 723 125 124
457 457 457 146 457 431 146 136
561 561 561 234 561 542 234 235
672 672 672 356 672 653 356 456

Block 14(0,12,0,1)  6(0,12,0,1)  14(1,9,3,0) 2(0,12,0,1)
Intersection 8(1,9,3,0) 12(1,9,3,0)
Numbers

Smallest 713 713 713 713 346 653 713 T15
defining 124 124 124 125 713 715 125 124
set d,D 235 235 235 234 457 126 234 235

| Aut(D)] 168 48 42 24
|Aut(d, D) 6 4 1 1

For a particular block b of a given 2—(v, k, A) design let a; be the number of blocks
intersecting b in exactly ¢ elements. The numbers a; are called block intersection num-
bers and a block said to be of type a = (a9, ay,... ,a;) if it has these block intersection
numbers. If a design has a blocks of type (ag,4a1,...,a;), we write a(ag,a1,...,a;) or
aa. For 2—(7,3,2) designs, blocks are of types a or b where a=(0,12,0,1),b=(1,9,3,0).
The number of blocks of each type of each design are given in Table 1, establishing
the non-isomorphism of the designs. Table 1 also gives a smallest defining set for each
design, together with the order of the automorphism group of the defining set.

To check that each given smallest defining set is, in fact, a defining set we use the
properties that any two blocks of a Fano plane intersect in one element and that any
2 - (7,3,2) design is reducible, together with Theorem 2.2. For example, if the blocks
713, 713, 124, 125, 234, 235 belong to a 2—(7,3,2) design D = D, UD,, where D, and
D, are Fano planes, then each Fano plane contains 713, and one contains 124 and the
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other 125. The design containing 125 cannot contain 235 and hence must contain 234.
Then we have that D, , say, contains 713, 124 and 235 while D; contains 713, 125 and
234. In each case we have three blocks with no common element, forming a defining set
of a Fano plane, and thus D is uniquely determined. That we have a smallest defining
set is easily seen from Theorem 1.9 The other smallest defining sets given in Table 1
can be similarly verified. Hence we have

THEOREM 2.4. Every 2 — (7,3,2) design has a smallest defining set consisting
of six blocks.

The number of such defining sets which are distinct up to isomorphism is not

considered in this paper.

3. SMALLEST DEFINING SETS OF 2 — (7,3,3) DESIGNS

Morgan [8] showed that there are ten non-isomorphic 2—(7,3,3) designs, only one
of which is irreducible. Since no 2 —(7,3,2) design is irreducible, each of the reducible
2—(7,3,3) designs can be partitioned into three Fano planes. Hence, by Corollary 1.10,
defining sets of the reducible 2 — (7,3, 3) designs contain at least nine blocks.

THEOREM 3.1. Every reducible 2 — (7,3,3) design has a smallest defining set

of nine blocks.

PROOF: As given in Example 2.3, let P be the Fano plane with blocks
{123, 145, 167, 246, 257, 347, 356, }.

Then Table 2 gives the nine reducible 2 — (7,3,3) designs, numbered 1,2,...,9,
as in [8], and a defining set of nine blocks partitioned into the possible three sets of
three blocks with any pair of blocks intersecting in one element. It is easily seen that
each set of three blocks is a defining set of a Fano plane. O

Note that design number 5 has two possible partitions of the nine blocks, corre-
sponding to two possible partitions into Fano planes.

In each of the nine designs the block 123 is repeated. As will be seen later, the
existence of a repeated block in the defining set ensures each design is reducible in this
case. The order of each automorphism group is also given.
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Table 2. The Smallest Defining Sets of the Nine Reducible 2-(7,3,3) Designs.

f DesignD Defining set dD
1 PUPUP 123,356,246;123,356,246;123,356,246
2 PUPUQ12)P ) 123,356,257;123,356,257;123,356,157
3 PUQ2)PU(14)P 123,356,246;356,123,425;356,423,145
4 PUPU(56T)P 123,145,246;123,145,246;123,146,345
5 PU(567)PU(576)P 123,257,437;123,256,435;123,267,436
(67)P U (56)P U (57)P 123,256,436;123,267,437;123,257,435
6 PUPU(3456)P 123,246,347;123,246,347;124,267,346
7 PU(45)P U (346)P 123,145,356;123,145,256;124,156,236
8 PU(56T)PU(34)(67)P 123,145,356;123,345,146;124,135,237
9 PU(567)PU(3467)P 123,145,246;123,146,247;124,235,137

Order of each automorphism group
Design § 1 2 3 4 5 6 . 7 8 9

| Aut(D)| 168 24 8 12 144 21 3 6 6
| Aut(S)| 4 1 1 1 6 1 1 1 2

We now consider smallest defining sets of the unique irreducible 2—(7,3, 3) design.

LEMMA 3.2. The unique irreducible 2—(7,3,3) design has a defining set of seven
blocks.

PROOF: The 21 blocks of the irreducible 2 — (7,3,3) design on {1,2,...,7} can

be obtained by taking the (7) = 35 possible triples and deleting the blocks of any

3
two disjoint Fano planes (see Street and Street [12]). We choose to delete the Fano

planes obtained by cycling starter blocks 124 and 134 modulo 7. This leaves the design
consisting of all the triples in arithmetic progression modulo 7, which is type 10 in [8],
and which we call 1.

Consider the set of blocks $; = {123,125,456,145,127,135,345}. Now S; C I.
Consideration of block intersection sizes ensures this set of seven blocks cannot be
partitioned into three subsets of Fano planes, and hence can only belong to a 2-(7,3,3)
design of type 10, containing no repeated blocks.

Suppose Sy C D, where D is a 2 — (7,3,3) design. There can be no further
occurrences of pairs 12, 45 or 15 so we have additional blocks

14% 14" 1**1** 247 24" 24* 25* 25 2**  4** 5** 5** 367,
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where asterisks indicate elements still to be chosen. Now the blocks containing 24
cannot be 241 or 245 and there are no repeated blocks. Also, 47 must occur twice more,
leading to

147 14* 1% 1** 243 246 247 25" 25" 2** 47" 5** 5** 367.

Here 57 has not occurred, and 36 has only occurred once, so to avoid block repetition

we have

147 14* 136 167 243 246 247 257 25* 236 47" 573 576 367

and completion to I is forced. 0

A subset of blocks of a 2 — (v,k, ) design will be said to be trade-free if it has
no set of blocks which can be traded. It can be quickly verified that such a subset of
a Fano plane will contain either fewer than four blocks, or else four blocks with every

element occurring in at least one block.

LEMMA 3.3. The smallest defining sets of the unique irreducible 2 — (7,3,3)
design have at least seven blocks.

PROOF: As mentioned earlier there are 30 possible Fano planes on seven elements.
We will identify these as F; and H; = (1,2)F;, for : =1,...,15, as in Gray [5], with
F; being the Fano plane obtained by cycling starter block 124 modulo 7. The remaining
planes can be obtained from Table 3 which gives a permutation p taking F; to F; for
eachi=1,...,15.

In this notation our deleted Fano planes are F; and H;4 respectively. It can be
verified that if we let F be any one of the remaining planes then either

(1) |Fn(F, UHy,)| =3, and the remaining blocks of F are trade-free, or
(2) |FN(RUHL)| =1

There are fourteen Fano planes for which case (2) applies. Their union gives four copies
of I and one each of F; and Hy,.

Now suppose S is a d,(2 — (7,3,3)) defining set of I. S must contain at least one
block from every trade T within I. Then S must certainly contain at least {wo of the
remaining blocks of each of the fourteen Fano planes for which case (2) applies, since
I contains six blocks of each such design and hence any five blocks of a Fano plane

contain a trade. But each block of S occurs in four of these planes so we need at least

14><2=7blocksin S. 0
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Table 3. The Thirty Fano Planes on Seven Elements.

Fi: F2 FS F4 FS FG F‘l FB F9 FlO Fll F12 Fls F14 FlS

pi: 142 124 235 253 346 364 457 475 561 516 672 627 713 731

NoTE. For each i, F; = (p;)F;. The remaining 15 planes are given by H; = (1,2)F;.
THEOREM 3.4. The smallest defining sets of the unique irreducible 2 — (7,3,3)

design contain precisely seven blocks.
Proor: This follows immediately from Lemmas 3.2 and 3.3. 0

Note that the set of blocks S, = {123,234, 345, 456,567,671, 712} is a second non-
isomorphic smallest defining set of the design D containing 5.

The automorphism groups of S; and Sz have orders 2 and 14 respectively.
Interestingly, I can be partitioned in each case into the union of three defining
sets. Examples of such partitions are: I = §; U (124)(365)57 U (132645)S; and
I=S, U (162)(457)S2 U (126)(475)S-.

4. SMALLEST DEFINING SETS OF THE FOUR 2 - (8,4,3) DESIGNS

Nandi (7] showed that there are exactly four non-isomorphic 2 — (8,4,3) designs.
To assist in distinguishing these we make the following definitions: whenever the blocks
of the design not containing a given element z form a 2 — (7,4,2) design we say the
blocks containing z are associated with respect to the associating element z and these
blocks are the associated blocks. It can easily be verifed that deletion of an associating
element from its associated blocks leaves a 2 — (7,3,1) design.

Examples of the four non-isomorphic 2 — (8,4,3) designs on {1,2,...,7,00} are
given in Table 4. The designs can be derived from the four non-isomorphic 2 — (7,3,2)
designs given in Table 1. Thus design v* is of type 7y derived from C, 8+ is of type 3
derived from B and so on .

In each case the blocks have been partitioned into the associated and non-associated
blocks with respect to oo, so we have immediately

LEMMA 4.1. Every 2 —(8,4,3) design has an associating element.
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Table 4. The Four 2-(8,4,3) Designs and their Complements.

Design Non-associated  Associated Complementary
Blocks Blocks design
¥ 2456 71300 71300 2456
3567 12400 12400 3567
4671 23500 23500 1467
5712 346 0o 346 00 5712
6123 457 00 457 00 6123
7234 561 00 56100 7234
1345 67200 67200 1345
B 2456 71300 71300 2456
6123 74500 74500 6123
1345 726 00 72600 1345
3567 356 00 12400 7124
4671 146 00 23500 7235
5712 12500 34600 7346
7234 2340 56100 7156
ak 1345 726 00 726 00 1345
2156 21500 73400 7346
2346 23400 71500 7156
6357 63500 12400 1247
6147 61400 23500 2357
7452 : 74500 13600 1362
7132 71300 456 c0 2456
5% 2456 24500 71300 7136
3567 356 00 12400 1247
4671 46700 23500 2351
5712 57100 34600 3462
6123 2160 457 c0 4573
7234 723 00 561 00 5614
1345 13400 67200 6725

Note that in Table 4 the pairs of complementary blocks are given first - these will
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have intersection type (0,0,12,0,1). The remaining blocks will have type (0,1,9,3,0) and
each appears next to the unique block with which it has three elements in common.
Table 4 also includes for later reference the designs formed by complementing each block
of the given 2 — (8,4,3) designs.

NOTE. Design v# is self-complementary.
We now state without proof the following lemmas.

LEMMA 4.2. A design is of type v if and only if every triple of elements occurs
precisely once.

LEMMA 4.3. A design is of type B if and only if it has more than one pair
of complementary blocks and some triple occurring more than once. It then has three
pairs of complementary blocks containing four pairs three times each, and each repeated

triple occurs with a fixed pair of elements.

THEOREM 4.4. Forevery 2 —(8,4,3) design D
|dD |2 6.

PROOF: By Lemma 4.1 each 2 — (8,4,3) design D can be partitioned into the
associated and non-associated blocks of some element z. The non-associated blocks are
the complementary blocks of some Fano plane and hence by Theorem 2.2 and Lemma
1.8 , a defining set must contain at least three of these blocks. The associated blocks
must also contribute three blocks; otherwise, z can be adjoined to some other plane
than that in D. Six blocks in all are thus required. 0

A design is said to be linked if it has the property that any two blocks intersect in
A elements, for some constant A (see, for example, Street and Street [12]).

LEMMA 4.5. The associated blocks form a linked design with A = 2.

PROOF: Since, on deletion of the associating element, the associated blocks form a
Fano plane with any two blocks intersecting in one element, any two associated blocks
must intersect in two elements. a

LEMMA 4.6. The non-associated blocks form a linked design with A = 2.

PRrROOF: The non-associated blocks can be obtained as the complements of the
blocks of a Fano plane. Since any two blocks of the Fano plane intersect in one element
their complements must intersect in two. 0

THEOREM 4.7. For every 2 — (8,4,3) design D
|d,D|=6.

PROOF: By Theorem 4.4, it is sufficient to show that each of the designs v+, f*, a*
and 6% has a defining set S of six blocks.
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Design v+. Suppose § = {2456, 71300,2613,45700,2571,34600} is a subset of
some 2 — (8,4,3) design D. Since S has three pairs of complementary blocks, D must
be of type 7 or #. By Lemma 4.3 a type 8 design has only one such set of six blocks,
with three of the blocks containing a common pair. Since S has no such pair, D is
of type v and then, by Lemma 4.2, no triple occurs more than once. Immediately we
have that D must contain blocks 25300,26700,12400,7146,1345 and 7536, and then
561c0 and 7234.

Design §x. Take S = {7234, 72300, 1263, 12600, 2456, 35600}. Now by Lemma
4.1,if § € D for some 2—(8,4,3) design D, then D can be partitioned into associated
and non-associated blocks of some element. The six blocks of S, by Lemmas 4.5 and
4.6, must then be able to be partitioned into the blocks of two linked designs with
A = 2. Since 7234 and 1263 cannot occur with 126 co the partition must be

1263 7234 2456 ... 12600 35600 72300.

The elements common to either side are 2 on the left and oo on the right, but since 2
also appears on the right, co must be the associating element. Further, the blocks on
each side lead uniquely to the associated and non-associated blocks respectively, and
can be completed in only one way, giving design §*.

Design Bx. Take S = {71300, 2456, 72600, 1345, 2347, 234co}. By Lemma 4.3,
the design must be of type 8 and consideration of block intersections gives that the
remaining pair of complementary blocks is 74500 and 1236. Also, by the same Lemma,
since the triple 234 is repeated, repeated triples must occur with 7 and co. Now element
1 must occur with each of 7 and oo twice more and pair 13 must not occur again so we
must have blocks with form

Tlab oolab Tled oolcd T73ef oo03ef.

5 and 6 must each occur again twice with 1 and 3, with the pair 56 only occurring twice
more and so we have

716a ool6a 7150 00156 7356 00356

and the design completes to Ox.

Design ax. Take S = {1345, 72600, 2156, 21500, 3567, 35600}. As in case (ii) we
attempt to partition S into linked designs. This can be done in two ways.

Case(A) Case(B)
2156 21500 2156 21500
7356 356 0o 7356 356 00
1345 726 00 726 00 1345
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In case(B), 6 is the common element on the left but also appears on the right, while
the common element 5 on the right appears also on the left. Hence no element can
be an associating element for this partition. In case(A) we similarly see that only oo
can be the associating element and in this case we must complete our associated and
non-associated blocks uniquely to produce design ax. 0

5. SMALLEST DEFINING SETS OF 3-DESIGNS

Suppose T is a 3 —(v,k, ) design. Consider the set of blocks containing any given
element z, with z deleted. Since T is a 3-design, this set of blocks must be a 2-design,
with each pair occurring A times. Such a design is called a restriction (on z ). For any
set of blocks S = {b;}, let §(oc0) = {b; U {o0}} for some additional element oo. Then
the following result is well known and stated without proof (see Hughes and Piper [6])

LEMMA 5.1. Suppose D isa 2 — (2n+ 1,n,)) design. Then D(oco0)U DTo-;)) is
a3—(2n+2,n+1,) design.
We will call such a design an eztension by complementation of D; see Breach [3]

for further discussion of extensions to 3-designs. The following Lemma is also clear.

LEMMA 5.2. Suppose T is an extension by complementation of some 2-design
D for some element. Then T is also an extension by complementation of the restriction
of T on z, for every element z of the underlying set of T.

PRrROOF: Since T is an extension by complementation the blocks can be arranged
in complementary pairs. For any element z, T must then be the union of the blocks

containing z together with their complements. 0

THEOREM 5.3. Suppose S is a d(2 —(2n + 1,n,})) defining set. Then S(o0)
isa d{3 — (2n + 2,n + 1,))) defining set, provided all 3-designs with the required pa-
rameters can be obtained by extension by complementation.

PROOF: Suppose S is a dD defining set for some 2 — (2n +1,7n,]) design D.
Further suppose S(o0) C T for some 3 — (2n+2,n +1,)) design T, where T is
obtained by extension by complementation. By Lemma 5.2, T must be able to be
obtained by extension by complementation of the restriction of T on oo, D say. Then
we have §(o0) C D(o0) and since S is a defining set, D = D that is, D(oc0) C T. But
T must contain the complement of each block and so T = D(c0)U D?:o) . The 3-design
containing S(oo) is then unique, and thus §(oo) is a defining set as required. 0

THEOREM 5.4. Suppose, for some given values of n and XA, every
3 - (2n+2,n+1,)) design is obtainable by extension by complementation. Then
each d(3 — (2n + 2,n + 1,1)) defining set gives rise to a d(2 — (2n + 1,n,))) defining
set with equal cardinality.

https://doi.org/10.1017/50004972700017883 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700017883

110 K. Gray (14]

PRrOOF: Suppose the given conditions hold and S is a d(3 -~ (2n 4+ 2,7 +1,1))
defining set of some 3-design D = X(00) U X(o0), where X is a 2 — (2n + 1,n,])
design. Then for each block b; € S define:

{b,-, if oo €b;
C; =

I;, otherwise.

In either case oo € ¢; for all 7. Let C be the set of blocks {¢;} with the element oo
deleted. Clearly C C X and |C |=| §|. If C is not a d(2 — (2n + 2,n + 1, 1)) defining
set then C must belong to a 2 — (2n +1,n + 1,) defining set X', distinct from X.
Then D = X(oo)U XT;) and D' = X'(00) U X'(00) are both 3-designs containing S,
contradicting the assumption that § is a defining set. Hence C must be a defining set
of the required form. 0

As a consequence of Theorems 5.3 and 5.4 we have

THEOREM 5.5. If D isa 3—(2n+2,n + 1,) design, necessarily obtainable by

extension by complementation, and D*® is its restriction on z, then
|d,D|=|d,D* |

where the parameters of the defining sets correspond to those of the respective 2-design
and 3-design.

COROLLARY 5.6. If D is a 3-(84,1) design then
| d,D |=3.

Proo¥r: This follows from Theorem 2.2, since a 3-(8,4,1) design is unique up to
isomorphism and obtainable by extension by complementation of a Fano plane. For
example, we give the design F with blocks

12400 23500 346 00 457 co 561 c0 67200 71300
3567 1467 1257 1236 2347 1345 2456 .

The restriction of F on oo has a typical defining set {124, 235, 346} corresponding
to the 3-(8,4,1) defining set {12400, 23500, 34600 }. 0

COROLLARY 5.7. If D is a 3-(8,4,2) design then
| dD |= 6.

This follows from Theorem 2.4 and since all designs with the given parameters are
obtainable by extension by complementation (see Nandi [9]). 0
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CoRoLLARY 5.8. If D is a 3-(8,4,3) design then
| d,D|=9or |d,D|=1.

PrOOF: This follows from Theorems 3.1 and 3.4 and since the ten 3-(7,3,3) de-
signs are easily seen to be obtained from the ten 2-(7,3,3) designs by extension by
complementation (see Morgan [8]). 1]
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