
London Mathematical Society ISSN 1461–1570

SPIDER DIAGRAMS

JOHN HOWSE, GEM STAPLETON and JOHN TAYLOR

Abstract

The use of diagrams in mathematics has traditionally been restricted
to guiding intuition and communication. With rare exceptions such
as Peirce’s α and β systems, purely diagrammatic formal reason-
ing has not been in the mathematician’s or logician’s toolkit. This
paper develops a purely diagrammatic reasoning system of ‘spider
diagrams’that builds on Euler,Venn and Peirce diagrams. The system
is known to be expressively equivalent to first-order monadic logic
with equality. Two levels of diagrammatic syntax have been devel-
oped: an ‘abstract’ syntax that captures the structure of diagrams,
and a ‘concrete’ syntax that captures topological properties of drawn
diagrams. A number of simple diagrammatic transformation rules
are given, and the resulting reasoning system is shown to be sound
and complete.

1. Introduction

The value of diagrams is widely acknowledged in information representation and informal
reasoning. In mathematical and logical reasoning, however, diagrams have traditionally been
allowed only as a heuristic tool. Although proofs may use diagrams to aid comprehension
and communication, they have only been permitted if the underlying argument is expressible
in some (formal) text-based language. In [37], Sun-Joo Shin gives a cogent summary of this
long-standing ‘prejudice’ against diagrammatic reasoning, before developing two (sound
and complete) reasoning systems of Venn diagrams. In this paper, we develop a purely
diagrammatic formal reasoning system, equivalent in expressive power to monadic first-
order logic with equality.

Circles or contours (simple closed curves) have been in use for the representation of
classical syllogisms at least as far back as the Middle Ages [30]. Euler introduced the
notation that we now call Euler diagrams [2] to illustrate relations between sets. This
notation uses the topological properties of enclosure, exclusion and intersection to represent
the set-theoretic notions of subset, disjointness, and intersection, respectively. For example,
the Euler diagram in Figure 1 denotes that A and B are disjoint, and that C ⊆ B.

John Venn used contours to represent logical propositions [43]. In a Venn diagram,
each pair of contours intersects. Moreover, for each non-empty subset of the contours, the
intersection of the interiors of the contours in the subset is a non-empty connected region
of the diagram. Shading is used to indicate that a particular region of the diagram denotes
the empty set. Figure 2 shows a Venn diagram capturing the same information as the Euler
diagram in Figure 1.

This research was partially supported by EPSRC grant number GR /R63516/01. The second author was supported
by an EPSRC studentship 01800274
Received 2 November 2004, revised 16 May 2005; published 6 September 2005.
2000 Mathematics Subject Classification 03B22
© 2005, John Howse, Gem Stapleton and John Taylor

LMS J. Comput. Math. 8 (2005) 145–194https://doi.org/10.1112/S1461157000000942 Published online by Cambridge University Press

http://www.lms.ac.uk
http://www.lms.ac.uk/jcm/
http://www.lms.ac.uk/jcm/8
https://doi.org/10.1112/S1461157000000942

Spider diagrams

A B

C

Figure 1: An Euler diagram.

A

C

B

Figure 2: A Venn diagram.

Charles Peirce augmented Venn diagrams by adding ‘X-sequences’ as a means for de-
noting elements [34]. An X-sequence connecting a number of ‘minimal regions’ of a Venn
diagram indicates that their union is not empty. Formal semantics and sound and complete
inference rules have been developed for Venn–Peirce diagrams by Shin [37], and for Euler
circles by Hammer [19].

Spider diagrams [17] are a natural extension of Venn–Peirce and Euler diagrams; they
are based on Euler diagrams, so the topological properties of the diagrams are important,
but they also contain spiders, a generalization of Peirce’s X-sequences, and shading. The
spider diagram in Figure 3 denotes that C ⊆ B, there are exactly two elements in A − B,
and there is at least one element in B − A.

� �

�

Figure 3: A spider diagram.

Spider diagrams emerged from work on constraint diagrams [28], introduced as a vis-
ual technique intended to be used in conjunction with the Unified Modeling Language
(UML) [33] for object-oriented modelling. The constraint diagram in Figure 4 expresses,
among other constraints, an invariant on a model of a car-hire business: the specification
of the car assigned to a reservation must be the same as or better than the specification
reserved.

∀r ∈ Reservations • r.assigned.spec = r.reserved ∨ r.assigned.spec ∈ r.reserved.better

146https://doi.org/10.1112/S1461157000000942 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000942

Spider diagrams

� � � � � � 	
 � �

� 	 � � � � � � � � � � 	
 � �

� 	 �
	 � � � �
 � �

� � � �

� � � � � � � �

� �

 � �

Figure 4: A constraint diagram.

Currently, such constraints can be expressed in UML only by using the Object Constraint
Language (OCL) [45], essentially a stylized, textual version of first-order predicate logic.

In this paper we modify and extend the spider diagram systems given by Molina in [31].
Our spider diagrams are based on Euler diagrams, whereas the previous spider diagram
systems SD1 and SD2 are based on Venn diagrams [23, 25, 31]. Although not more ex-
pressive than SD2, our ‘Euler-based’ spider diagrams provide a more user-friendly system:
Venn diagrams look cluttered when more than three contours are present. A spider diagram
system, ESD2, introduced in [31], allows Euler-based diagrams; however, all reasoning,
with the exception of one reasoning rule, takes place at the Venn-diagram level. In [41], it
is shown that the system introduced in this paper is expressively equivalent to first-order
monadic logic with equality.

There is a need to express both disjunctive and conjunctive information, achieved by
drawing a collection of diagrams. In all previous spider diagram systems, this information
was restricted to a conjunctive normal form; we remove this restriction. This more flexible
approach should aid diagrammatic modelling and reasoning.

In Section 2 we give the syntax of spider diagrams. The semantics are defined in Section 3.
Reasoning rules for the systems are developed in Section 4. Soundness and completeness
results are given in Sections 5 and 6, respectively. The expressiveness of the system is
discussed in Section 7. More details can be found in [38].

2. Spider diagrams: syntax

In this section we introduce the syntax of spider diagrams. Following [21, 22], we define
two layers of spider diagram syntax: an abstract or type syntax, and a concrete or token
syntax. In order to define a rigorous reasoning system of spider diagrams and to explore its
formal properties, it is helpful to have a definition of spider diagrams that is independent
of the fine-grained topological properties of diagrams. This is provided by our definition
of an abstract spider diagram as a certain many-sorted algebra that captures the structural
properties of a diagram. However, the raison d’être of our system is precisely that it is
diagrammatic, and the abstract definition loses this. Thus we also define the notion of a
concrete spider diagram that formalizes ‘drawn’diagrams (on paper or a computer monitor,
say) and captures the topological properties of a diagram. Separating the structural from the
topological aspects of the spider diagram syntax helps to clarify and formalize the reasoning
within the system, and has avoided some of the difficulties faced by Shin in herVenn systems
[37], which were noted by Scotto di Luzio [36].

147https://doi.org/10.1112/S1461157000000942 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000942

Spider diagrams

We begin by giving an informal description of unitary spider diagrams. Essentially,
these are a hybrid of Euler, Venn and Peirce diagrams: roughly speaking, we preserve the
topological notions of enclosure and disjointness employed in Euler diagrams, the use of
shading employed in Venn diagrams to represent empty sets (although, in spider diagrams,
shaded regions do not necessarily represent empty sets), and the use of X-sequences to
represent elements, employed in Peirce diagrams.

Informally, a concrete spider diagram is a subset of the plane R2 containing various
syntactic elements. (A more formal description is given in Section 2.2.) A contour is (the
image of) a simple closed plane curve. Each contour is labelled. All of the contours in a
spider diagram are enclosed by a boundary rectangle which, formally, is not itself a contour.
A basic region is the bounded region of the plane enclosed by a contour or the boundary
rectangle. A region is defined recursively as follows: any basic region is a region; if r1 and r2
are regions, then the union, intersection or difference of r1 and r2 is a region, provided that
these are non-empty. A zone is a region having no other region contained within it. Thus a
zone is a bounded subset of the complement of the contours and boundary rectangle; we will
also impose a well-formedness condition that each zone is a connected component of the
complement of the contours and boundary rectangle. Zones may be shaded or unshaded.
A region is shaded if each of its component zones is shaded.

A spider is a plane tree with vertices (called feet) placed in different zones, and edges
(called legs) which are straight-line segments. All spiders are contained within the boundary
rectangle. A spider touches a zone if one of its feet is placed in that zone. It follows that
a spider can touch any zone at most once. A spider is said to inhabit the region which
is the union of the zones that it touches; this region is called the habitat of the spider.
A (concrete) unitary spider diagram comprises a single boundary rectangle, together with
a finite collection of contours and spiders. No two contours in a unitary spider diagram can
have the same label.

Semantically, the regions of a spider diagram denote sets, and each spider denotes the
existence of an element in the set represented by its habitat. Distinct spiders denote distinct
elements. Shading a region denotes that it contains no elements other than those indicated
by the spiders touching the region; in particular, a shaded region that is not touched by any
spider denotes the empty set.

Example 2.1. The diagram in Figure 5 contains three contours, labelled A, B and C, and
six zones; for example, the region inside the contour B but outside the contours A and C

is a zone. Two of the zones are shaded. The diagram contains two spiders – a single-footed
spider whose habitat is the zone inside C and outside A and B, and the ‘articulated’ spider
whose habitat is the basic region inside contour A.

� �
�

Figure 5: A concrete spider diagram.

148https://doi.org/10.1112/S1461157000000942 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000942

Spider diagrams

2.1. Abstract spider diagrams

To describe the diagrammatic elements abstractly in a concrete diagram, we need to
specify its contours and zones, including which zones are shaded, and list the spiders
together with their habitats. Each zone is uniquely specified by the contours which enclose
it and those which it lies outside. For example, in Figure 5, the right-hand shaded zone lies
inside contours B and C, and outside contour A. Thus we may identify this zone by the
ordered pair, ({B, C}, {A}), comprising the sets of labels of the contours that the zone lies
inside and outside of, respectively. In Figure 5, the six zones are therefore represented as
follows:

(∅, {A, B, C});
({A}, {B, C});
({A, B}, {C});
({B}, {A, C});
({B, C}, {A});
({C}, {A, B}).

The set of shaded zones is {
({A}, {B, C}), ({B, C}, {A})}

and the spiders have habitats{
({A}, {B, C}), ({A, B}, {C})} and

{
({C}, {A, B})}.

Note that only the labels of contours are needed to identify a zone. Thus, for abstract
diagrams, we identify contours and labels. It is also convenient for the labels of the contour
to be drawn from a fixed, countably infinite set L of contour labels. A zone will be defined
to be an ordered pair of disjoint finite sets of contour labels. There appears to be redundancy
in using pairs of contour labels to define zones since, for a given unitary diagram, we can
identify a zone by only those contour labels that contain it. However, later we will consider
sets of spider diagrams, each (potentially) with a different contour label, where the single
set of containing contour labels is not sufficient to distinguish distinct zones. We denote the
set of all finite subsets of a set S by FS.

Definition 2.1. A zone with labels in L is an ordered pair (a, b), where a, b ⊆ FL and
a ∩ b = ∅. Define Z to be the set of zones on L:

Z = {(a, b) ∈ FL × FL : a ∩ b = ∅}.
If z = (a, b) ∈ Z, then the set a = c(z) is called the set of contour labels that contain z,
and b = e(z) is the set of contour labels that exclude z. A region with labels in L is a set of
zones; R = PZ denotes the set of regions on L.

In [23, 25, 31], a diagram contains a set S of spiders, together with a ‘habitat function’
η : S −→ R, that gives the habitat η(s) of each spider s as a region of the diagram. Here, we
prefer an approach that avoids having a set of spiders with a habitat function but, instead,
describes the spiders directly in terms of their habitats. However, describing a spider as
a set of zones (its habitat) is not, in general, sufficient to identify a unique spider, since
different spiders may have the same habitat. Our approach is to indicate, for a region r , the
number of spiders whose habitat is r: if there are n > 0 spiders in the region r , then we say
that the pair (n, r) is a spider identifier. Although this is perhaps a less intuitive description
than having a set of spiders, one significant advantage is that every concrete unitary spider
diagram has a unique abstraction.

149https://doi.org/10.1112/S1461157000000942 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000942

Spider diagrams

Definition 2.2. A unitary spider diagram with labels in L is a tuple d = 〈L, Z, Z∗, SI〉
whose components are defined as follows.

1. L = L(d) ∈ FL is a finite set of contour labels.

2. Z = Z(d) ⊆ {(a, L − a) : a ⊆ L} is a set of zones (Z(d) ⊆ Z) such that

(i) for all l ∈ L there exists (a, L − a) ∈ Z such that l ∈ a;
(ii) (∅, L) ∈ Z.

We define R = R(d) = PZ − {∅} to be the set of regions.

3. Z∗ = Z∗(d) ⊆ Z is the set of shaded zones. We define R∗ = R∗(d) = PZ∗ − {∅}
to be the set of shaded regions.

4. SI = SI(d) ⊂ Z+ × R(d) is a (finite) set of spider identifiers such that

∀(n1, r1), (n2, r2) ∈ SI • r1 = r2 =⇒ n1 = n2.

If (n, r) ∈ SI, we say that there are n spiders whose habitat is r .

Additionally, the diagram ⊥ = 〈∅, ∅, ∅, ∅〉 is a unitary spider diagram.

In a concrete spider diagram, every contour contains at least one zone; condition 2.2(1)
ensures that abstract diagrams preserve this property. Also, any concrete diagram contains
the zone inside the boundary rectangle but outside all the contours; this property is ensured
at the abstract level by condition 2.2(2). Note that we have also ‘lost’ the boundary rectangle
in Definition 2.2. In a concrete diagram, the boundary rectangle simply represents ‘where
the diagram stops’, and thus is not required in the abstract description.

Example 2.2. The concrete diagram in Figure 6 has abstract description d = 〈L, Z, Z∗, SI〉
where:

the set of contour labels is L(d) = {A, B, C};
the set of zones is Z(d) = {

(∅, {A, B, C}), ({A}, {B, C}), ({A, B}, {C}), ({C}, {A, B})};

the set of shaded zones is Z∗(d) = {
({A}, {B, C})};

the set of spider identifiers is

SI(d) = {(
2,

{
({A}, {B, C}), ({A, B}, {C})}), (1,

{
({C}, {A, B})})}.

�

�

�

Figure 6: A concrete spider diagram.

The spider diagrams considered in this paper have ‘underlying diagrams’ that are Euler
diagrams rather than Venn diagrams; in other words, if a ⊆ L(d), then the diagram need
not contain the zone (a, L(d) − a). For example, the spider diagram in Figure 6 does not
contain the zones ({B}, {A, C}), ({A, C}, {B}), ({B, C}, {A}) and ({A, B, C}, ∅). We say
that these zones are ‘missing’ from the diagram in Figure 6.

150https://doi.org/10.1112/S1461157000000942 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000942

Spider diagrams

Definition 2.3. Let d be a unitary spider diagram. We define the Venn zone set of d, VZ(d),
to be the set of zones in the corresponding Venn diagram with labels L(d):

VZ(d) = {(a, L(d) − a) : a ⊆ L(d)}.
A diagram d is said to be in Venn form if Z(d) = VZ(d). If z ∈ VZ(d) − Z(d), then we
say that the zone z is missing from d .

Although our formal Definition 2.2 introduces spiders only as ‘spider identifiers’, we
shall need to identify individual spiders and consider the sets of spiders enclosed within, or
touching, a particular region. In our definition of a unitary spider diagram, we could have
explicitly defined a set of spiders, in a similar way to that given in the definition below,
rather than using spider identifiers (which is, essentially, a bag of spiders). However, the
definition of spiders using spider identifiers is more concise.

Definition 2.4. Let d be a unitary spider diagram.

1. If (n, r) ∈ SI(d), then the region r contains n spiders, which we denote by
s1(r), s2(r), . . . , sn(r). We define S(d) to be the set of all spiders in d:

S(d) = {si(r) : (nr , r) ∈ SI(d) and 1 � i � nr}.
The habitat mapping η : S(d) −→ R(d) is given by η(si(r)) = r , and we say that the spider
si(r) has habitat η(si(r)).

2. Let r be a region of d . The set of complete spiders inhabiting r in diagram d is:

S(r, d) = {s ∈ S(d) : η(s) ⊆ r}.
The set of spiders touching region r in diagram d is

T (r, d) = {s ∈ S(d) : η(s) ∩ r
= ∅}.
For any region r ′ not in R(d), we define S(r ′, d) = ∅ and T (r ′, d) = ∅.

The following lemma, whose proof is omitted here, describes the cardinalities of S(r, d)

and T (r, d) in terms of spider identifiers in the obvious way.

Lemma 2.1. Let d be a unitary diagram, and let r ∈ R(d). Then

|S(r, d)| =
∑
r ′⊆r

(n,r ′)∈SI(d)

n and |T (r, d)| =
∑

r ′∩r
=∅

(n,r ′)∈SI(d)

n.

Thus far, we have considered only single (or unitary) spider diagrams, each of which
represents a collection of statements about sets and their elements. We shall need to combine
diagrams to represent both disjunctive and conjunctive information. Following the approach
introduced by Shin [37], previous systems of spider diagrams [23, 24, 25, 31] have only
represented expressions in conjunctive normal form. In each of these systems, a compound
diagram is a set of unitary diagrams, and a multi-diagram is a set of compound diagrams.
The semantic interpretation of a compound diagram is the disjunction of the expressions
represented by each of its unitary diagrams. Similarly, the semantic interpretation of a
multi-diagram is the conjunction of the expressions represented by each of its compound
diagrams. There are two advantages in defining compound and multi-diagrams as sets of
diagrams: repetitions of diagrams are automatically ignored, and the commutativity and
idempotency rules for logical disjunction and conjunction are ‘built-in’. For example, if

151https://doi.org/10.1112/S1461157000000942 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000942

Spider diagrams

d1, d2 and d3 are unitary spider diagrams, then {d1, d2}, {d2, d1} and {d1, d2, d1} all represent
the same compound diagram, and {{d1, d2}, {d3}} and {{d3}, {d2, d1, d2}} both represent the
same multi-diagram.

However, only being able to represent expressions in conjunctive normal form is some-
what restrictive. Here we present a more flexible system that allows diagrams to be combined
freely using ‘disjunction’and ‘conjunction’.Although this allows more freedom when build-
ing ‘compound diagrams’ of various types, there is a penalty to pay. We need to include
the idempotency laws in our reasoning rules. Also, we shall have to introduce a slightly
more elaborate framework than that used in [23, 24, 25, 31, 37] for representing concrete
‘compound’ diagrams; we describe this framework in the next section.

Definition 2.5. An abstract spider diagram is defined as follows.

1. Any unitary diagram is a spider diagram.

2. If D1 and D2 are finite bags of spider diagrams, then ∨(D1 � D2) (pronounced
‘D1 or D2’) is a spider diagram, where � denotes bag union.

3. If D1 and D2 are finite bags of spider diagrams, then ∧(D1 � D2) (pronounced
‘D1 and D2’) is a spider diagram.

If we use this definition of a spider diagram, then associativity and commutativity come
for free. We will adopt the convention of writing D1∨D2 to mean ∨({D1}�{D2}). Similarly,
we will write D1∧D2 to mean ∧({D1}�{D2}). We now define the set of all spider diagrams.

Definition 2.6. We define the set of all spider diagrams, D , inductively as follows:

D0 is the set of all unitary diagrams with labels in L;

Dn+1 = Dn ∪ {
(D1�D2) : D1, D2 ∈ Dn ∧ � ∈ {∨, ∧}};

D = ⋃
n∈N

Dn.

2.2. Concrete spider diagrams

In this section we formalize the notion of a diagram drawn in the plane. The definition
needs to capture the topological properties of spider diagrams, and there are various choices
to be made concerning what topological features will be allowed. In order to maintain
readability and avoid ambiguity, we adopt a fairly restrictive definition. Thus, for example,
contours are not allowed ‘to be tangential to’ or ‘to run along’ one another – they must cross
transversely. Other authors have made different choices as to which topological features are
allowed [9, 19, 29, 44].

We now give a formal definition of a concrete spider diagram, obtained from [21],
where the ‘type syntax’ corresponds (roughly) to our abstract syntax, and the ‘token syntax’
corresponds to our concrete syntax.

Definition 2.7. A concrete unitary spider diagram, d̂ , with labels in L is a tuple d̂ =
〈Ĉ, β̂, Ẑ, Ẑ∗, L̂, l̂, Ŝ, η̂〉, whose components are defined as follows.

1. Ĉ is a finite set of (the images of) simple closed plane curves called contours. The
boundary rectangle β̂ is also (the image of) a simple closed curve, usually in the form of a
rectangle, but is not a member of Ĉ. For any contour ĉ (including β̂), we denote the interior
(bounded) and exterior (unbounded) components of R2 − ĉ by ι(ĉ) and ε(ĉ), respectively.
Each contour lies in the interior of the boundary rectangle: ĉ ⊂ ι(β̂).

The set Ĉ forms an Euler diagram that has the following properties.

152https://doi.org/10.1112/S1461157000000942 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000942

Spider diagrams

(i) Contours meet transversely.
(ii) Each contour intersects with every other contour an even number of times (this

can be zero times).
(iii) No two contours have a point in common without crossing at that point.
(iv) Each component of R2 − ⋃

ĉ∈Ĉ
ĉ is the intersection of ι(ĉ) for all contours ĉ

in some (possibly empty) subset X of Ĉ and ε(ĉ) for all contours ĉ in the complement
of X: ⋂

ĉ∈X

ι(ĉ) ∩
⋂

ĉ∈Ĉ−X

ε(ĉ).

2. A zone is the intersection of a component of R2 − ⋃
ĉ∈Ĉ

ĉ with ι(β̂). A zone
may be shaded or unshaded. The set of all zones in d̂ is denoted by Ẑ, and the set of
shaded zones is denoted by Ẑ∗.

A region is a non-empty set of zones. We let R̂ = PẐ − {∅} denote the set of regions of
d, and R̂∗ = PẐ∗ − {∅} denotes the set of shaded regions.

3. L̂ = L̂(d̂) ⊆ L is the set of contour labels of d̂ . The mapping l̂ : Ĉ −→ L̂ is a
bijection that returns the label of a contour.

4. Ŝ is a finite set of plane trees, called spiders, whose vertices, called feet, lie within Ẑ

and satisfy the following properties.

(i) Each spider has at most one foot in each zone.
(ii) The edges (called legs) of each spider are straight-line segments.

(iii) No two spiders have a foot in common.

5. The function η̂ : Ŝ −→ R̂ returns the habitat of each spider:

η̂(ŝ) = {ẑ ∈ Ẑ : ŝ has a foot in ẑ}.

� �

� � �

� �
�

� � � �

� �

� � � � �

�

Figure 7: Non-well-formed concrete diagrams.

Example 2.3. Definition 2.7 imposes ‘well-formedness’ conditions on concrete diagrams.
Figure 7 illustrates some of these conditions by presenting diagrams that are not well-
formed. In the diagram in Figure 7(i), the contours labelled A and B touch at a point
without crossing, and the spider has two feet in the same zone. The diagram in Figure 7(ii)
also violates two conditions. Firstly, the shaded ‘zone’ is not connected: this violates con-
dition 1(iv) of Definition 2.7, since⋂

ĉ∈X

ι(ĉ) ∩
⋂

ĉ∈Ĉ−X

ε(ĉ),

where X is the set of contours labelled A and B, is not a connected component of
R2 − ⋃

ĉ∈Ĉ
ĉ. Secondly, the spider has a foot on one of the contours (and hence does

153https://doi.org/10.1112/S1461157000000942 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000942

Spider diagrams

not lie within Ẑ). Finally, the diagram in Figure 7(iii) has concurrent contours: C ‘runs
along’ both A and B. This violates condition 1(i) of Definition 2.7.

The problem of ‘generating’ an abstract description of a concrete diagram is a relatively
simple one: given a drawn diagram, one can easily list the labels and zones, and define a set
of spider identifiers that achieves what is required. However, creating a concrete diagram
from an abstract description is, in general, non-trivial. Flower and Howse begin to address
this issue in [9], developing an algorithm to draw concrete Euler diagrams from an abstract
description.

We now formalize the connection between abstract and concrete diagrams. Since concrete
diagrams contain actual spiders but abstract diagrams contain ‘spider identifiers’, we define,
for each region r̂ of a concrete diagram d̂ , the set of spiders with habitat r̂ to be Ŝ(r̂) =
{ŝ ∈ Ŝ : η(ŝ) = r̂}.
Definition 2.8. Let d̂ = 〈Ĉ, β̂, Ẑ, Ẑ∗, L̂, l̂, Ŝ, η̂〉 be a concrete diagram, and let d =
〈L, Z, Z∗, SI〉 be an abstract diagram. Then d is an abstraction of d̂, denoted ab(d̂) = d,
if and only if L̂ = L and the following two conditions are satisfied.

1. There exists a bijection µ1 : Ẑ −→ Z such that, for all ẑ ∈ Ẑ,

(i) µ1(ẑ) = ({l̂(ĉ) : ẑ ⊆ ι(ĉ) ∧ ĉ ∈ Ĉ}, {l̂(ĉ) : ẑ ⊆ ε(ĉ) ∧ ĉ ∈ Ĉ}) and

(ii) µ1(ẑ) ∈ Z∗ ⇐⇒ ẑ ∈ Ẑ∗.

2. There exists a mapping µ2 : R̂ −→ SI such that, µ2(r̂) = (|Ŝ(r̂)|, µ1(r̂)) where
µ1 : R̂ −→ R is the natural extension of µ1 : Ẑ −→ Z.

If d is an abstraction of d̂ , then we say that d̂ is an instantiation of d.

Example 2.4. Let d be the abstract diagram d = 〈L, Z, Z∗, SI〉, where

1. L(d) = {A, B};
2. Z(d) = {

(∅, {A, B}), ({A}, {B}), ({A, B}, ∅)
}
;

3. Z∗(d) = {
({A, B}, ∅)

}
; and

4. SI(d) = {(
1,

{
({A, B}, ∅)

})
,
(
1,

{
({A, B}, ∅), (∅, {A, B})})}.

Then d is an abstraction of both d1 and d2 in Figure 8; that is, ab(d1) = ab(d2) = d. Thus
the mapping ab is not injective. We can think of d1 and d2 as being equivalent.

�

�

�

�

� � � �

Figure 8: Equivalent concrete diagrams.

Example 2.5. The ‘well-formedness’ rules defining concrete diagrams are designed to
ensure that concrete diagrams are readable without ambiguity. However, a consequence is
that there are abstract diagrams that have no concrete instantiation. The following abstract

154https://doi.org/10.1112/S1461157000000942 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000942

Spider diagrams

diagram is perhaps the simplest example of an abstract diagram that has no well-formed
concrete representation. Let d = 〈L, Z, Z∗, SI〉, where

1. L(d) = {A, B};
2. Z(d) = {

(∅, {A, B}), ({A, B}, ∅)
}
;

3. Z∗(d) = ∅; and

4. SI(d) = ∅.

For a concrete diagram to realize d , the contours labelled A and B would need to coincide.

The task of classifying which abstract spider diagrams have a concrete representation is
challenging. If the underlying Euler diagram of an abstract spider diagram has a concrete
representation, then the spider diagram also has a concrete representation, and we say that
the diagram is drawable. In [9], the authors classify which Euler diagrams are drawable,
subject to strict well-formedness conditions. In addition to our well-formedness conditions,
the authors of [9] do not allow concrete diagrams to contain triple points, illustrated in
Figure 9.

� �
�

Figure 9: A diagram with a triple point.

Every concrete Euler diagram has a planar dual graph. In the dual graph, each zone
is represented by a vertex, and two vertices are connected by an edge if and only if the
corresponding zones are topologically adjacent in the plane. If two vertices are adjacent
in the dual graph, then the symmetric difference of the containing label sets for the cor-
responding zones contains precisely one element, since contours meet transversely. This
element is the label of the contour that borders the two zones. The edges in the dual graph
are labelled by this element. The diagram in Figure 10 has dual graph G. Each zone labels
the corresponding vertex of G.

�

�

� � � � � � � � � � �

� � � � � � � � �

� � � � � � � � � � �

�

�

�

�

�

Figure 10: The dual graph.

Consider a graph, G, such that each edge is labelled by an element chosen from some
set L and each vertex is labelled by an element of PL × PL. Such a graph G satisfies the

155https://doi.org/10.1112/S1461157000000942 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000942

Spider diagrams

connectivity conditions if it is connected and if, for all edge labels l ∈ L, the subgraphs
G+(l) generated by vertices whose label (X, Y) satisfies l ∈ X and G−(l) generated by
vertices whose label (X, Y) satisfy l ∈ Y are also connected [9]. The dual graph of a concrete
diagram satisfies the connectivity conditions (given the well-formedness rules in [9]).

An abstract diagramd has a superdual Gwhose edges’labels are chosen fromL(d), and in
which the set of vertices is Z(d), and there is an edge between two vertices (X, Y) and (P, Q)

if and only if |(X−P)∪(P −X)| = 1. Each edge is labelled by (X−P)∪(P −X); see [9]. It
follows that an abstract diagram d is not drawable if the superdual of d fails the connectivity
conditions. A labelled graph that passes the connectivity conditions is potentially the dual
graph of a concrete diagram, but only if it is planar. If it is not planar, then it may be possible
to remove edges and obtain a planar graph that passes the connectivity conditions. As an
example, edges must be removed from the superdual of the abstract diagram Venn-4 (the
Venn diagram on four contours) to produce a planar dual graph of any concrete Venn-4.

Given a diagram d with a superdual that passes the connectivity conditions, the task is to
remove edges (if necessary), without causing the connectivity conditions to fail (if possible),
until a planar graph is found. This planar graph can then be embedded in the plane without
edges crossing, and can be used to construct a concrete representation of d. To summarize,
an abstract Euler diagram is drawable (given the well-formedness conditions in [9]) if and
only if there exists a planar subgraph, H , of the superdual, G, such that V (H) = V (G) and
H passes the connectivity conditions. In [44], a different set of well-formedness conditions
is given, which ensures that every Euler diagram with at most eight contours is drawable.
Further research is needed to classify all drawable diagrams, given these and other sets of
well-formedness conditions.

In order to represent ‘compound’ concrete diagrams, we need a visual framework for
connecting unitary concrete diagrams. In [12], a framework is introduced for combining
logic-based notations, both diagrammatic and textual, using various visual ‘templates’. In
this paper, we use the box template to define compound diagrams. This template, illustrated
in Figure 11, contains a bounding box containing two or more inner boxes into which
diagrams may be ‘plugged’, and a label, which will be either ∨ or ∧, to denote whether
the diagrams are to be taken in disjunction or conjunction. A box template with n inner
boxes is called an n-ary box. (Of course, an n-ary box gives a well-defined diagrammatic
representation because conjunction and disjunction are both associative and commutative.)
We may also nest templates so that the inner box of one template may contain an n-ary box.

� 	 � � �

Figure 11: The box template.

Example 2.6. Figure 12 shows two concrete compound diagrams. Figure 12(i) is an in-
stantiation of d1 ∨ d2, and Figure 12(ii) represents (d1 ∧ d2) ∨ (d3 ∧ d4).

We are now in a position to define general concrete spider diagrams.

Definition 2.9. A concrete spider diagram is defined recursively as follows. Any unitary
concrete diagram is a concrete spider diagram. Let D be an n-ary box. If each inner rectangle

156https://doi.org/10.1112/S1461157000000942 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000942

Spider diagrams

�

�

� �

� � � �

�

�

�

�

� �

� � � �

� � �

� � � �

�

�

� � �

� � � �

Figure 12: Compound concrete diagrams.

of D is a concrete spider diagram, then D is a concrete spider diagram based on an n-ary
box.

The mapping between concrete and abstract unitary diagrams given in Definition 2.8
extends to compound diagrams in the natural way.

Definition 2.10. Let D̂ be a concrete diagram based on an n-ary box (where n � 2) labelled
with � (where � is ∧ or ∨), and suppose that the inner rectangles are concrete diagrams
D̂1, D̂2, . . . , D̂n. Let D = D1 �D2 � . . . �Dn be an abstract diagram. If ab(D̂i) = Di

for i = 1, . . . , n, then ab(D̂) = D and we say that D is an abstraction of D̂. If D is an
abstraction of D̂, we say that D̂ is an instantiation of D.

3. Semantics

In this section we formalize the semantics of spider diagrams. The regions in a spider
diagram represent sets, and the number of elements in the set represented by a region is
greater than or equal to the number of spiders in that region. The number of elements in the
set represented by a shaded region is less than or equal to the number of spiders touching
that region. This allows us to place lower and, in the case of shaded regions, upper bounds
on the cardinalities of the sets we are representing. Missing zones represent the empty set.

Definition 3.1.

1. A set-assignment to contour labels is a pair m = (U, �), where U is a set and
� : L −→ PU is a function that maps contour labels to subsets of U.

2. We extend � to a set-assignment to zones, � : Z −→ PU. The set denoted by a zone,
z = (a, b), is defined to be the intersection of the sets denoted by the contour labels in a

and the intersection of the complements of the sets denoted by the contour labels b:

�(a, b) =
⋂
l∈a

�(l) ∩
⋂
l∈b

�(l),

where �(l) = U − �(l). We also define
⋂

l∈∅
�(l) = U = ⋂

l∈∅
�(l).

157https://doi.org/10.1112/S1461157000000942 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000942

Spider diagrams

3. Finally, we extend � to a set-assignment to regions, � : R −→ PU. The set denoted
by a region, r , is the union of the sets denoted by the zones that r contains:

�(r) =
⋃
z∈r

�(z).

We also define �(∅) = ⋃
z∈∅

�(z) = ∅.

� �

� � � � � �

� �

Figure 13: A Venn-2 diagram.

Example 3.1. Taking the universe to be the set of natural numbers, N, a particular set-
assignment is the pair m = (N, �), where � is the mapping � : L −→ PN defined by

�(A) = {1, 2, 3}, �(B) = {3, 4, 10}
and for all l ∈ L − {A, B}, �(l) = ∅ is a set-assignment to contour labels. In Figure 13,
the zone z1 = ({A}, {B}) represents the set

�(z1) = �(A) ∩ �(B) = {1, 2}.
The region {z1, z2} represents the set

�(z1) ∪ �(z2) = {1, 2} ∪ {3} = {1, 2, 3},
and so forth.

Note that the mapping � (on regions) is well-behaved with respect to intersection, union
and difference. For example, �({z1} ∪ {z2}) = �({z1}) ∪ �({z2}), �({z1, z2} ∩ {z1}) =
�({z1, z2}) ∩ �({z1}) and �({z1, z2} − {z1}) = �({z1, z2}) − �({z1}).

Definition 3.1 introduces three functions, each denoted �. Molina [31] showed that this
overloading is well behaved, by establishing the following result. (Molina’s result was for
his SD2 diagrams, but the proof extends to spider diagrams.)

Lemma 3.1. Let m = (U, �) be a set-assignment to regions.

1. If z1 and z2 are distinct zones of a unitary diagram d then �(z1) ∩ �(z2) = ∅.

2. Let r1 and r2 be regions of unitary diagram d . Then

(i) �(r1 ∪ r2) = �(r1) ∪ �(r2);
(ii) �(r1 ∩ r2) = �(r1) ∩ �(r2);

(iii) �(r1 − r2) = �(r1) − �(r2);
(iv) if r1 ⊆ r2, then �(r1) ⊆ �(r2).

As in previous work on spider diagram systems [31], the semantics of spider diagrams
are captured by a ‘semantics predicate’. Our semantics predicate combines the semantics
predicate for unitary SD2 diagrams (giving the interpretation of spiders and shading) with
the plane tiling condition from ESD2 (which gives the interpretation of the underlying Euler
diagram).

158https://doi.org/10.1112/S1461157000000942 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000942

Spider diagrams

Definition 3.2. Let D be a diagram, and let m = (U, �) be a set-assignment to regions.
We define the semantics predicate, denoted PD(m), of D. If D = d (
= ⊥) is a unitary
diagram, then Pd(m) is the conjunction of the following three conditions.

1. Distinct spiders condition. The cardinality of the set denoted by a region r of a unitary
diagram d is greater than or equal to the number of complete spiders in r:∧

r∈R(d)

|�(r)| � |S(r, d)|.

2. Shading condition. The cardinality of the set denoted by a shaded region r of a unitary
diagram d is less than or equal to the number of spiders touching r:∧

r∈R∗(d)

|�(r)| � |T (r, d)|.

3. Plane tiling condition. All elements fall within sets denoted by the zones of d:⋃
z∈Z(d)

�(z) = U.

If D = ⊥, then PD(m) = ⊥. If D = D1 ∨ D2, then PD1(m) ∨ PD2(m). If D = D1 ∧ D2,
then PD1(m) ∧ PD2(m).

The plane tiling condition asserts that the union of the sets representing those zones
present in a unitary diagram is the universal set. An alternative condition is that each of
the sets represented by those zones missing from the diagram is empty. Recall that, for any
unitary diagram d, a missing zone is an element of VZ(d) − Z(d). The following theorem,
given in [11], formalizes this alternative semantic condition.

Theorem 3.1. Let (U, �) be a set-assignment to regions, and let d be a unitary diagram.
The plane tiling condition for d is equivalent to the following missing zones condition.⋃

z∈VZ(d)−Z(d)

�(z) = ∅.

Example 3.2. The pair m = (N, �) where � is the mapping � : L −→ PN defined by

�(A) = {1}, �(B) = {1, 2, 3}, �(C) = {3}
and for all l ∈ L−{A, B, C}, �(l) = ∅ is a set-assignment to contour labels. In Figure 14,
the zone z1 represents the set {2}, since �(z1) = �(B) ∩ �(A) ∩ �(C). If the semantics
predicate for d1 is to be satisfied, we must have |�(z1)| � 0. This is false; hence d1 fails the
shading condition, and so Pd1(m) is false. Note that d1 also fails the plane tiling condition
since ⋃

z∈Z(d1)

�(z) = N − {1}.

Now consider the diagram d2. With the same mapping � : L −→ PN, the zone z2
represents the set {1}. Since the zone z2 contains and is touched by a single spider, it
satisfies the distinct spiders condition and the shading condition. It is straightforward to
verify that each of the other regions satisfies the distinct spiders condition, and since {z2} is
the only shaded region it follows that the distinct spiders condition and the shading condition
hold for d2. To check the plane tiling condition, note that

�(z3) = {2, 3} and �(z4) = N ∩ (N − {1, 2, 3}) ∩ (N − {1}) = N − {1, 2, 3}.
159https://doi.org/10.1112/S1461157000000942 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000942

Spider diagrams

� ��

� �

�
�

� �

� �

� �

� � � �

Figure 14: Two spider diagrams.

Thus

�({z2, z3, z4}) = �({z2}) ∪ �({z3}) ∪ �({z4}) = {1} ∪ {2, 3} ∪ (N − {1, 2, 3}) = N,

and so the plane tiling condition holds. Hence Pd2(m) is true.

There is, in fact, another condition, the containment condition, which is equivalent to
the plane tiling condition as shown by the following theorem.

Theorem 3.2. The plane tiling condition is equivalent to the following containment con-
dition, which asserts that the set represented by each basic region is the same as that
represented by its containing contour: for all l ∈ L(d),⋃

l∈c(z)

�(z) = �(l),

where c(z) is the set of contour labels that contain z.

Definition 3.3. Let D be a spider diagram, and let m = (U, �) be a set-assignment to
regions. We say m is a model for D, denoted by m |= D, if and only if PD(m) is true. A
spider diagram D is satisfiable if and only if it has a model.

Every unitary spider diagram (
= ⊥) is satisfiable. Given a non-false unitary diagram d,
we follow the approach adopted by Molina [31] to construct a model for d, as follows. Take
the universal set to be the set of spiders in d , U = S(d). For each spider s ∈ S(d), choose a
zone f (s) in the habitat of s; this defines a ‘choice function’ f : S(d) −→ Z(d) such that
f (s) ∈ η(s). Given the choice function, we can define a set-assignment to contour labels
� : L −→ PS(d) by

�(l) =
{

{s ∈ S(d) : l ∈ c(f (s))} if l ∈ L(d),

∅ otherwise.

The extension of � to zones and regions satisfies the following conditions.

1. For any zone z ∈ Z(d), �(z) = {s ∈ S(d) : f (s) = z}.
2. For any region r ∈ R(d), �(r) = {s ∈ S(d) : f (s) ∈ r}.
It can be shown that the set-assignment (S(d), �) defined above is a model for d. (The

proof, which we omit, is similar to that given in [31] for the SD2 system.)

Theorem 3.3. Every unitary spider diagram (
= ⊥) has a model.

Definition 3.4. Let D1 and D2 be two spider diagrams. The diagram D2 is a logical
consequence of D1, denoted D1 � D2, if and only if every model for D1 is also a model
for D2; that is,

D1 � D2 ⇐⇒ (∀ m • (m |= D1 =⇒ m |= D2)).

160https://doi.org/10.1112/S1461157000000942 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000942

Spider diagrams

4. Diagrammatic reasoning

In this section we introduce the reasoning rules for spider diagrams. Each rule transforms
one spider diagram syntactically into another. The rules are defined on abstract diagrams,
although we visualize their effect on concrete diagrams. For each of the main diagrammatic
rules, we give an informal description and an illustration using concrete diagrams, followed
by a formal definition using the abstract syntax.

4.1. Rules of transformation of diagrams

Many of the inference rules given here are generalizations of those given in [31] for the
SD2 system. For each of the rules, we give an informal description, as well as the formal
definition using the abstract syntax. However, because we are no longer forcing diagrams to
be in conjunctive normal form, there are new rules analogous to rules in logic (Rules 6 – 13).
The diagrammatic rules (Rules 1 – 5) given in this section preserve semantic information.
Although this is not a requirement, information-preserving rules are useful when using
tableaux [8]. Indeed, there are only two rules in our system that weaken information, both
of which have analogies in logic: from D1 we may deduce D1 ∨ D2, and from ⊥ we may
deduce any diagram.

The first diagrammatic rule that we give allows contours to be introduced into a diagram,
provided that no new semantic information is introduced. For example, in Figure 15, intro-
ducing contour B into d1 to produce d2 is invalid since d2 includes the semantic information
A ∩ B = ∅, which is not represented by d1. Similarly, introducing contour B into d1 to
produce d3 is invalid since d3 denotes A − B
= ∅, which is stronger than A
= ∅, which
is denoted by d1.

�

� �

�

�

� �

�

� �

�

Figure 15: Invalid contour introduction.

Rule 1 (Introduction of a contour label). Let d (
= ⊥) be a unitary diagram, and
let d ′ be the diagram obtained from d after introducing a new contour label satisfying the
following conditions:

1. Each zone splits into two zones.

2. Each shaded zone splits into two shaded zones.

3. Each foot of a spider is replaced with a connected pair of feet, one foot in each new
zone.

Then we may replace d with d ′, and vice versa.

Example 4.1. In Figure 16, the diagrams d and d ′ are semantically equivalent. Each zone
in d splits into two zones in d ′. The spiders’ feet in diagram d bifurcate to become two feet
in diagram d ′.

161https://doi.org/10.1112/S1461157000000942 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000942

Spider diagrams

�

� �

�

� �

� �

Figure 16: An application of Rule 1, introduction of contour label.

Formal description. Let d (
= ⊥) be a unitary diagram, and let d ′ be a unitary diagram
satisfying the following conditions.

1. L(d ′) = L(d) ∪ {l∗}, where l∗
∈ L(d).

2. There exists a surjection h : Z(d ′) −→ Z(d) defined by

h
(
a, L(d ′) − a

) = (
a − {l∗}, L(d ′) − (a ∪ {l∗})),

which extends to the function h : R(d ′) −→ R(d), where

h(r) =
⋃
z∈r

{h(z)} = {h(z) : z ∈ r}.

3. (i) The mapping h : Z(d ′) −→ Z(d) is two-to-one: for every zone z ∈ Z(d) there
exist distinct zones z1, z2 ∈ Z(d ′) such that h(z1) = z = h(z2).

(ii) The mapping h : Z(d ′) −→ Z(d) preserves shading:

z ∈ Z∗(d ′) ⇐⇒ h(z) ∈ Z∗(d).

4. There exists a bijection σ : S(d) −→ S(d ′) such that, for all s ∈ S(d), η(σ (s)) =
{z ∈ Z(d ′) : h(z) ∈ η(s)}.
Then d can be replaced by d ′ and vice versa.

The same semantic information can often be represented by syntactically different spider
diagrams. As a simple example, each of the diagrams in Figure 17 represents A ⊆ B. In
order to obtain a complete system, we need to be able to transform between the diagrams d

and d ′ in Figure 17. Similarly, amongst the abstract diagrams representing A = B are the
following:

d1 = 〈
L, Z(d1) = {

(∅, {A, B}), ({A, B}, ∅)
}
, Z∗(d1) = ∅, SI

〉
,

d2 = 〈
L, Z(d2) = {

(∅, {A, B}), ({B}, {A}), ({A, B}, ∅)
}
, Z∗(d2) = {

({B}, {A})}, SI
〉
,

d3 = 〈
L, Z(d3) = {

(∅, {A, B}), ({A}, {B}), ({B}, {A}), ({A, B}, ∅)
}
,

Z∗(d3) = {
({A}, {B}), ({B}, {A})}, SI

〉
,

where L = {A, B} and SI = ∅.
Of these, d1 does not have a concrete representation (it would require the contours

labelled A and B to ‘run along’ one another). The diagrams d2 and d3 are represented by
shading the zone ({B}, {A}) in the diagrams d and d ′ in Figure 17 respectively. Again, we
need to be able to transform each of the diagrams d1, d2 and d3 into each of the other two.

The next rule allows us to introduce a zone that is not already in the diagram, provided
that it is shaded, or remove a shaded zone that is not part of the habitat of any spider

162https://doi.org/10.1112/S1461157000000942 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000942

Spider diagrams

�

� � �

� ��

Figure 17: Two representations of A ⊆ B.

(provided that it is not the only zone contained within some contour). This will allow the
diagram d in Figure 17 to be replaced by d ′. Similarly, it allows us to transform between
the abstract diagrams d1, d2 and d3 above.

Rule 2 (Introduction of a shaded zone). Let d be a unitary diagram and let z =
(a, L(d) − a) (where a ⊆ L(d)) be a zone that is missing from d (that is, z /∈ Z(d)). Let
d ′ be a copy of d, except that d ′ contains z as an additional, shaded zone. Then d may be
replaced by d ′, and vice versa.

This rule is similar to the rule of weakening given by Hammer in [19]. Hammer’s rule
loses semantic information since his system does not include shading. Here we are able
to preserve all the semantic information. By the plane tiling condition, all elements in the
universal set must occur in sets represented by zones in the diagram. It follows that missing
zones represent the empty set – thus introducing a shaded missing zone does not alter the
interpretation of the diagram.

Formal description. Let d (
= ⊥) be a unitary diagram that is not in Venn form, and let
z∗ ∈ VZ(d) − Z(d). Let d ′ be a unitary diagram such that

1. L(d) = L(d ′);
2. Z(d) ∪ {z∗} = Z(d ′);
3. Z∗(d) ∪ {z∗} = Z∗(d ′);
4. SI(d) = SI(d ′).

Then d can be replaced by d ′, and vice versa.

We should note that Rule 2 really only operates at the abstract level. If d ′ is formed from
d by adding a shaded zone, according to the rule, then it is possible for both, exactly one,
or neither, of the diagrams to have a well-formed concrete instantiation. This is illustrated
in Figure 18. The diagram d1 is formed from d by adding the shaded zone ({C}, {A, B})
and d2 is formed from d1 by adding a further shaded zone ({A, C}, {B}). The diagram d1
does not have a well-formed concrete instantiation – the representation in Figure 18 is not
a well-formed concrete diagram. However, adding the additional shaded zone to form d2
produces a diagram that does have a well-formed concrete instantiation.

An articulated spider is one that has more than one foot; its habitat is a non-trivial union
of regions. Semantically, an articulated spider denotes the existence of an element in the set
represented by its habitat which is the disjoint union of the sets represented by each of the
zones in the habitat. Thus an articulated spider represents disjunctive information, and we
can reflect this at the syntactic level by replacing a diagram containing an articulated spider
with a disjunction of ‘simpler’ diagrams.

163https://doi.org/10.1112/S1461157000000942 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000942

Spider diagrams

�

�

�

�

�

�

�

� � � �

�

� �

Figure 18: Adding shaded zones to concrete diagrams.

Rule 3 (Splitting spiders). Let d be a unitary diagram with a spider s∗ touching every
zone of two disjoint regions r1 and r2. Let d1 and d2 be unitary diagrams that are copies of
d except that s∗ is replaced in d1 by a spider whose habitat is region r1, and s∗ is replaced
in d2 by a spider whose habitat is region r2. Then d can be replaced by the diagram d1 ∨ d2.
The rule is reversible; that is, d1 ∨ d2 can be replaced by d.

Example 4.2. Figure 19 illustrates an application of this rule. The spider s∗ in d splits into
two spiders, one in d1, and the other in d2. Intuitively, the element represented by the spider
s∗ belongs either to the set U − (A ∪ B) or to the set A ∪ B.

� �

�

�

� � � �

�
�

�
�

� �

Figure 19: An application of Rule 3, splitting spiders.

Formal description. Let d be a unitary diagram, and let r , r1 and r2 be regions of d such
that r = r1 ∪ r2 and r1 ∩ r2 = ∅. Let sn(r) be a spider in d (with habitat r). Let d1 and d2
be unitary diagrams such that

1. Z(d) = Z(d1) = Z(d2);

2. Z∗(d) = Z∗(d1) = Z∗(d2);

3. there exist spiders s1 ∈ S(d1) and s2 ∈ S(d2) such that

η(s1) = r1 ∧ η(s2) = r2

and

S(d) − {sn(r)} = S(d1) − {s1} = S(d2) − {s2}.
Then d can be replaced by d1 ∨ d2, and vice versa.

Suppose that a diagram d contains an unshaded region that is not touched by any spider.
The semantics predicate gives no information about the cardinality of the set denoted by
the region. The set is either empty (represented diagrammatically by shading) or non-empty
(represented diagrammatically by a spider whose habitat is the region). This observation

164https://doi.org/10.1112/S1461157000000942 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000942

Spider diagrams

forms the basis of our next rule, which does not require the region to be untouched by any
spider.

Rule 4 (Excluded middle). Let d (
= ⊥) be a unitary diagram with a non-shaded region
r . Let d1 and d2 be unitary diagrams that are copies of d except that d1 contains an extra
spider whose habitat is r , and r is shaded in d2. Then d can be replaced by the diagram
d1 ∨ d2. The rule is also reversible; that is, d1 ∨ d2 can be replaced by d.

Example 4.3. The diagram d in Figure 20 asserts that A ∩ B = ∅ and |A ∪ B| � 1, but
asserts nothing about |B|. Each of the diagrams d1 and d2 asserts that A∩B = ∅. However,
d1 also asserts that |A ∪ B| � 1 and |B| � 1, whereas d2 also asserts that |A ∪ B| � 2 and
|B| � 1. Now A ∩ B = ∅ ∧ |A ∪ B| � 1 is equivalent to

(A ∩ B = ∅) ∧ (
(|A ∪ B| � 1 ∧ |B| � 1) ∨ (|A ∪ B| � 2 ∧ |B| � 1)

)
.

It follows that we can replace d with d1 ∨ d2, and vice versa.
Note that this example shows that the term ‘excluded middle’ to name the rule is being

used somewhat loosely, since the semantic statements asserted by d1 and d2 are not mutually
exclusive.

�

�
�

�
��

� � � � � �

Figure 20: An application of Rule 4, excluded middle.

Formal description. Let d be a unitary diagram containing a non-shaded region r (that
is, r ∩ Z∗(d) = ∅). Let d1 and d2 be unitary diagrams such that

1. Z(d) = Z(d1) = Z(d2);

2. Z∗(d) = Z∗(d1);

3. Z∗(d) ∪ r = Z∗(d2);

4. there exists s∗ ∈ S(d1) such that η(s∗) = r and

S(d) = S(d1) − {s∗} = S(d2).

Then d can be replaced by d1 ∨ d2, and vice versa.

The next rule in this section, called combining, replaces two unitary diagrams taken in
conjunction by a single unitary diagram. In SD2 [31], the basic operation of combining
was defined on a multi-diagram (recall that a multi-diagram is in conjunctive normal form).
Unlike in the system SD2, the basic operation of combining diagrams will be performed
on two unitary diagrams taken in conjunction: we will replace two unitary diagrams with a
single, semantically equivalent, unitary diagram. In SD2, the basic operation of combining
was defined for finitely many unitary diagrams taken in conjunction. As in the SD2 system,
we combine unitary diagrams that have the same sets of zones, and that contain only spiders

165https://doi.org/10.1112/S1461157000000942 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000942

Spider diagrams

whose habitats are single zones. The following example illustrates why the presence of
spiders inhabiting regions that are not single zones is problematic when combining diagrams.

Example 4.4. The diagram d1 ∧d2 in Figure 21 contains two spiders whose habitats are not
zones. A combined (unitary) diagram, semantically equivalent to d1 ∧ d2, would have the
same set of zones as d1 and d2, but what spiders should it contain? We cannot deduce that
spiders s1 and s2 denote distinct elements, since they are in different unitary diagrams and,
in many set-assignments to regions, their habitats do not represent disjoint sets. Informally,
each spider may represent the same element of A − (B ∪ C). Thus we cannot just place
copies of s1 and s2 into a combined diagram.

Equally, we cannot deduce that s1 and s2 denote the same element for, in some set-
assignments to regions, their habitats denote disjoint sets – informally, when A−(B ∪C) =
∅. Therefore we cannot just place one spider with habitat η(s1) ∪ η(s2) into a combined
diagram.

�

�
�

� �

�
�

�

� �
�
�

�

�
�

Figure 21: Spiders whose habitats are not zones.

Definition 4.1. A spider diagram is an α-diagram if and only if the habitat of every spider
is a single zone.

We now give two examples to motivate the definition of combining diagrams. In these
examples, we derive results by working an the semantic level, although we will, of course,
define combining diagrams purely syntactically.

�

�
�

�
�

� �

�

�

�

� � �

�

�
�

Figure 22: Combining unitary diagrams.

Example 4.5. In Figure 22, d1∧d2 is semantically equivalent to d∗. From |A−(B∪C)| � 1
(asserted by d1) and |A− (B ∪C)| � 2 (asserted by d2), we deduce that |A− (B ∪C)| � 2,
which is asserted by d∗. Similarly, from d1 we have |(B ∩ C) − A| = 1 (since the zone
({B, C}, {A}) is shaded and contains a single spider), and from d2 we have |(B∩C)−A| � 1.
Hence, from d1 ∧ d2 we have |(B ∩ C) − A| = 1, which is also asserted by d∗.

166https://doi.org/10.1112/S1461157000000942 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000942

Spider diagrams

The diagram d1 also represents B − (A ∪ C) = ∅, whereas d2 provides no information
about this set. Therefore d1 ∧ d2 represents B − (A ∪ C) = ∅, and this is also asserted by
d∗. In fact, d1 ∧ d2 is semantically equivalent to d∗.

Example 4.6. In Figure 23, the two unitary components of d1 ∧ d2 represent conflicting
information. The diagram d1 asserts that A− (B ∪C) = ∅, whereas the diagram d2 asserts
that |A − (B ∪ C)| � 1. Thus d1 ∧ d2 has no model.

�

�
�

�
�

�

��

�

��

Figure 23: An unsatisfiable diagram.

The operation of combining unitary α-diagrams will be performed on diagrams with
the same sets of zones. Combining unitary diagrams produces a unitary diagram that is
semantically equivalent to the original unitary diagrams when their semantic information
is taken in conjunction.

Definition 4.2 (Combining unitary α-diagrams with the same zone sets). Let d0
and d1 be unitary α-diagrams such that Z(d0) = Z(d1) or d0 = ⊥ or d1 = ⊥. Then their
combination

d∗ = d0 ∗ d1

is a unitary α-diagram, defined as follows.

1. If d0 = ⊥ or d1 = ⊥, then d∗ = ⊥.

2. If there is a zone that is shaded in one diagram but contains more spiders in the other
diagram, then d0 ∧d1 is unsatisfiable and d∗ = ⊥. More precisely, if there exists z ∈ Z(di),
i = 0, 1, such that

z ∈ Z∗(dj)

and S({z}, di) − S({z}, dj)
= ∅, where j = 1 − i, then d∗ = ⊥.

3. Otherwise d∗ is a unitary α-diagram such that the following statements hold.

(i) The set of zones of the combined diagram is the union of the zone sets of the
original diagrams:

Z(d∗) = Z(d0) ∪ Z(d1).

(ii) Shaded zones in the combined diagram are shaded in one (or both) of the
original diagrams:

Z∗(d∗) = Z∗(d0) ∪ Z∗(d1).

(iii) The number of spiders in any zone in the combined diagram is the maximum
number of spiders inhabiting that zone in the original diagrams:

∀ z ∈ Z(d∗) • S({z}, d∗) = S({z}, d0) ∪ S({z}, d1).

167https://doi.org/10.1112/S1461157000000942 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000942

Spider diagrams

Rule 5 (Combining). Let d0 and d1 be unitary α-diagrams satisfying Z(d0) = Z(d1) or
d0 = ⊥ or d1 = ⊥. Then d0 ∧ d1 may be replaced by d0 ∗ d1, and vice versa.

We now introduce a collection of rules, each of which has an (obvious) analogy in logic.

Rule 6 (Connecting a diagram). Let D1 and D2 be two spider diagrams. Then D1 can
be replaced by D1 ∨ D2.

Rule 7 (Inconsistency). The diagram ⊥ may be replaced by any diagram.

Rule 8 (Idempotency of ∨). Let D a be spider diagram. Then D may be replaced by
D ∨ D, and vice versa.

Rule 9 (Idempotency of ∧). Let D a be spider diagram. Then D may be replaced by
D ∧ D, and vice versa.

Rule 10 (Distributivity of ∨). Let D1, D2 and D3 be spider diagrams. Then
D1 ∨ (D2 ∧ D3) may be replaced by (D1 ∨ D2) ∧ (D1 ∨ D3), and vice versa.

Rule 11 (Distributivity of ∧). Let D1, D2 and D3 be spider diagrams. Then
D1 ∧ (D2 ∨ D3) may be replaced by (D1 ∧ D2) ∨ (D1 ∧ D3), and vice versa.

Rule 12 (Simplification of ∨). Let D1, D2 and D3 be spider diagrams. If diagram D2 can
be transformed into diagram D3 by one of the first 11 transformation rules, then D1 ∨ D2
may be replaced by D1 ∨ D3.

Rule 13 (Simplification of ∧). Let D1, D2 and D3 be spider diagrams. If diagram D2 can
be transformed into diagram D3 by one of the first 11 transformation rules, then D1 ∧ D2
may be replaced by D1 ∧ D3.

4.2. Derived reasoning rules

The reasoning rules introduced in the previous section produce, as we shall see, a sound
and complete system. However, there are a number of additional, intuitive rules that may be
derived from them, and which aid the reasoning process. In this section we introduce some
of these ‘derived reasoning rules’. In practice, users of any reasoning system may choose
to introduce other derived rules (as theorems) to suit their particular purposes.

Definition 4.3. Let D and D′ be two spider diagrams. We write D � D′ if and only if D

can be transformed to D′ by a single application of one of the first 13 rules of transformation.
We say that D′ is obtainable from D, denoted D � D′, if and only if there is a sequence
of diagrams 〈D1, D2, . . . , Dm〉 such that D1 = D, Dm = D′ and Dk � Dk+1 for each k

(where 1 � k < m).
Two spider diagrams D and D′ are syntactically equivalent, denoted D ≡� D′, if and

only if D � D′ and D′ � D.

Definition 4.4. Let ρ be a (finite) set of reasoning rules, and let r be a reasoning rule
such that r /∈ ρ. The rule r is derived from ρ if and only if, for all spider diagrams D1
and D2, if D1 can be transformed into D2 by a single application of r , then there exists a
sequence of diagrams 〈D1 = D1, D2, . . . , Dm = D2〉 such that for each k (1 � k < m)
Dk is transformed into Dk+1 by a single application of a reasoning rule in ρ.

168https://doi.org/10.1112/S1461157000000942 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000942

Spider diagrams

We will say, informally, that a rule is derived if it is derived from the (set of the) first
13 reasoning rules, in the sense of Definition 4.4. Our first derived rule allows erasure of
shading in any region, and amounts to ‘throwing away’ the information on the upper bounds
of the cardinalities of the sets represented by those regions affected.

Rule 14 (Erasure of shading). We may erase shading from any region. Let d be a unitary
diagram with shaded region r , and let d ′ be a copy of d except that r is not shaded. Then d

may be replaced by d ′.

This rule is derived from Rule 6 (connecting a diagram) and Rule 4 (excluded middle).
The proof strategy (to show that Rule 14 is a derived rule) is illustrated in the following
example.

Example 4.7. To the diagram d in Figure 24, we connect diagram d1 using Rule 6. Then
Rule 4 (excluded middle) is applied, obtaining diagram d ′.

�

�

�

�
�

�

� � �

� �

Figure 24: Erasure of shading.

Formal description. Let d be a unitary diagram that contains a shaded region r∗. Let d ′
be a unitary diagram such that

1. Z(d) = Z(d ′);
2. Z∗(d) − r∗ = Z∗(d ′);
3. SI(d) = SI(d ′).

Then d can be replaced by d ′.

A second derived rule allows the extension of a spider’s habitat: we call this ‘adding
feet to a spider’. The validity of the rule is intuitively obvious: it allows us to replace the
containing set for the element denoted by a spider by any superset.

Rule 15 (Adding feet to a spider). Let d be a unitary diagram with a spider s∗, whose
habitat does not include the zone z of d . Let d ′ be a copy of d, except that the spider s∗ has
an extra foot placed in the zone z. Then d may be replaced by d ′.

The proof strategy (to show that Rule 15 is a derived rule) is illustrated by the following
example.

Example 4.8. In Figure 25, we add a foot to the spider s1 in the diagram d into the zone
(∅, {A, B}). First we use Rule 6 to connect the diagram d1, which is a copy of d except
that s1 has been replaced by a new spider in the zone (∅, {A, B}). Then Rule 3 (splitting
spiders) is applied to obtain the diagram d ′, where the habitat of s1 has been extended into
the new zone (∅, {A, B}).

169https://doi.org/10.1112/S1461157000000942 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000942

Spider diagrams

�

�

�
� � �

� �

�
�

� �

�
�

� �

�

� �

Figure 25: Adding feet to a spider.

Formal description. Let d be a unitary diagram that contains a spider sn(r) whose habitat
r does not contain a zone z of d . Let d ′ be a unitary diagram such that

1. Z(d) = Z(d ′);
2. Z∗(d) = Z∗(d ′);
3. there exists a spider s∗ ∈ S(d ′) such that η(s∗) = r ∪ {z} and S(d ′) − {s∗} =

S(d ′) − {sn(r)}.
Then d can be replaced by d ′.

Rule 16 (Erasure of a spider). We may erase a complete spider whose habitat is a non-
shaded region. Let d be a unitary diagram with a spider s whose habitat is a non-shaded
region. Let d ′ be a copy of d , except that s has been removed. We may replace d with d ′.

The proof strategy (to show that Rule 16 is a derived rule) is illustrated by the following
example.

Example 4.9. In Figure 26, we erase the spider s. First, we use Rule 6 to connect a diagram
d1, which is a copy of d except that the spider s is missing and its former habitat is shaded.
The diagram d ′ is then obtained by an application of Rule 4, excluded middle.

�

�

�
�

� � �

� � � � � �� �

�

Figure 26: Erasing a spider.

Formal description. Let d be a unitary diagram such that there exists (n, r) ∈ SI(d) with
r ∩ Z∗(d) = ∅. Let d ′ be a unitary diagram such that

1. Z(d) = Z(d ′);
2. Z∗(d) = Z∗(d ′); and

3. S(d) − {sn(r)} = S(d ′).
Then d can be replaced by d ′.

170https://doi.org/10.1112/S1461157000000942 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000942

Spider diagrams

Erasing a contour from a concrete diagram may result in a diagram that is not well
formed. There are two potential problems that may arise because, in erasing a contour,
some pairs of zones will ‘coalesce’ to form single zones. If one zone of such a pair is shaded
and the other is unshaded, then the new ‘coalesced’ zone is partially shaded. Similarly, if
both zones of a pair contain a foot of the same spider, then, in the resulting diagram, the
spider has two feet in the new zone. These problems are illustrated in the middle diagram
of Figure 27.

Rule 17 (Erasure of a contour label). Let d be a unitary diagram containing at least
one contour label, and let d ′ be the diagram obtained from d after erasing a contour label
as follows.

1. Any shading remaining in only part of a zone is also erased.

2. If a spider has feet in two zones that combine to form a single zone with the erasure
of the contour label, then these feet are replaced by a single foot connected to the rest of
the spider.

Then we may replace d with d ′.

Example 4.10. In Figure 27, erasing the contour C from d leaves the region inside A

partially shaded and the spider s1 having two feet in the new zone (∅, {A, B}). To ensure
that diagram d ′ is well formed, the partial shading in the new region ({A}, {B}) is erased, and
the two feet of s1 are combined to form a single foot. Applying this rule loses all information
about the set represented by the contour with label C. For example, from diagram d we can
deduce that |A − C| = 1, but from diagram d ′ we can infer (about the cardinality of A)
only that |A| � 1.

�

�

�

�

�

�

� �

�

�

�

� �
� �

Figure 27: An application of Rule 2, erasure of a contour label.

Formal description. Let d be a unitary diagram and let l∗ ∈ L(d). Let d ′ be a unitary
diagram satisfying the following conditions.

1. L(d ′) = L(d) − {l∗}.
2. There exists a surjection h : Z(d) −→ Z(d ′) defined by

h(a, L(d) − a) = (
a − {l∗}, L(d) − (a ∪ {l∗})).

3. (i) For all unshaded zones z of d , the zone h(z) is unshaded in d ′.
(ii) For all shaded zones z of d , if h(z) is unshaded in d ′ then h(z) = h(z∗) for

some unshaded zone z∗ of d .

4. There exists a bijection σ : S(d) −→ S(d ′) such that for all s ∈ S(d),

η(σ (s)) = {h(z) : z ∈ η(s)} = h(η(s)).

171https://doi.org/10.1112/S1461157000000942 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000942

Spider diagrams

Then d can be replaced with d ′.
The proof strategy (to show that Rule 17 is a derived rule) is illustrated by the following

example.

Example 4.11. In Figure 28, we show how to erase the contour C from d (as in Exam-
ple 4.10). The idea is to modify the diagram d so that (the converse of) Rule 1, introduction
of a contour label, may be applied. First, we use Rule 2 to introduce the shaded zone
({B}, {A, C}); then we add various feet to the spiders, using Rule 15 several times. Next
we remove the shading from the zone ({A}, {B, C}) using Rule 14. We can then obtain the
diagram d ′ by an application of Rule 1.

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

Figure 28: Erasing a contour label.

Since each of the rules introduced in this section may be derived from the first 13 rules
given in the previous section, we have the following theorem.

Theorem 4.1. Let D and D′ be spider diagrams. D′ is obtainable from D using all 17
rules if and only if D � D′.

The following two lemmas are simple extensions of the simplification rules, 12 and 13.

Lemma 4.1. Let D1 and D2 be spider diagrams such that D1 � D2, and let D be a spider
diagram. Then D ∨ D1 � D ∨ D2.

Lemma 4.2. Let D1 and D2 be spider diagrams such that D1 � D2, and let D be a spider
diagram. Then D ∧ D1 � D ∧ D2.

Corollary 4.1 (Rule of replacement). Let D1, D2, D3 and D4 be spider diagrams
such that D1 � D2 and D3 � D4. Let � be ∨ or ∧. Then D1 �D3 � D2 �D4.

Let {D1, D2, . . . , Dn} be a set of spider diagrams. Then we write∨
1�i�n

Di

for D1 ∨ D2 ∨ . . . ∨ Dn and ∧
1�i�n

Di

for D1 ∧ D2 ∧ . . . ∧ Dn.

172https://doi.org/10.1112/S1461157000000942 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000942

Spider diagrams

Theorem 4.2 (Rule of construction). For i = 1, . . . , n let Di be a spider diagram,
and let D be a spider diagram. If Di � D for i = 1, . . . , n then(∨

1�i�n

Di

)
� D.

5. Soundness

An essential aspect of any reasoning system is, of course, the soundness of the system.
In this section we start by considering the validity of each reasoning rule. After proving the
validity of each transformation rule, it follows by induction that the system is sound. The
omitted proofs and further details for the sketched proofs can be found in [38].

Definition 5.1. 1. A transformation rule r is valid if, for all diagrams D and D′,
if D′ is obtained from D by a single application of r (D � D′) then D � D′.

2. The diagrams D1 and D2 are semantically equivalent, denoted D1 ≡� D2, if and
only if D1 � D2 and D2 � D1.

The general strategy of the proof of validity for each rule is to assume that a set-assignment
to regions satisfies ‘the diagram we start with’, and to show that it satisfies the diagram that
results after applying the rule concerned.

Lemma 5.1. Rule 1, introduction of a contour label, is valid.

Lemma 5.2. Rule 2, introduction of a shaded zone, is valid.

Sketch of the proof. The strategy is to show that the introduced zone, z∗, represents the
empty set in any set-assignment to regions that is a model for d1 or for d2. It is then
straightforward to show that d1 ≡� d2.

To prove the validity of Rule 3, splitting spiders, we need the result that states that if a
set-assignment to regions satisfies a unitary diagram d and d1 ∨ d2 is a diagram obtained
from d by applying the splitting spiders rule, then the distinct spiders condition holds for
one of the disjuncts d1 and d2, or the shading condition holds for the other disjunct.

Lemma 5.3. Let d be a unitary diagram, and suppose that there are n > 0 spiders with
habitat the region r ∈ R(d). Further, suppose that there are regions r1 and r2 such that
r = r1 ∪ r2 and r1 ∩ r2 = ∅.
Let d1 and d2 be unitary diagrams such that

1. Z(d) = Z(d1) = Z(d2);

2. Z∗(d) = Z∗(d1) = Z∗(d2);

3. there exist spiders s1 ∈ S(d1) and s2 ∈ S(d2) such that η(s1) = r1 and η(s2) = r2
and

S(d) − {sn(r)} = S(d1) − {s1} = S(d2) − {s2},
(where sn(r) denotes the ‘nth spider in r’).

Let m = (U, �) be a set-assignment to regions. If m |= d , then(∧
r∈R(d1)

|�(r)| � |S(r, d1)| ∨
∧

r∈R∗(d2)

|�(r)| � |T (r, d2)|
)

∧
(∧

r∈R(d2)

|�(r)| � |S(r, d2)| ∨
∧

r∈R∗(d1)

|�(r)| � |T (r, d1)|
)
. �

173https://doi.org/10.1112/S1461157000000942 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000942

Spider diagrams

Lemma 5.4. Rule 3, splitting spiders, is valid.

Sketch of proof. Let m = (U, �) be a set-assignment to regions. It is easy to show that
Pd1(m) =⇒ Pd(m) and Pd2(m) =⇒ Pd(m). Hence (Pd1(m) ∨ Pd2(m)) =⇒ Pd(m). To
show that Pd(m) =⇒ (Pd1(m) ∨ Pd2(m)), show that

Pd(m) =⇒
⋃

z∈Z(d1)

�(z) = U ∧
⋃

z∈Z(d2)

�(z) = U

∧
(∧

r∈R(d1)

|�(r)| � |S(r, d1)| ∨
∧

r∈R(d2)

|�(r)| � |S(r, d2)|
)

∧
(∧

r∈R∗(d1)

|�(r)| � |T (r, d1)| ∨
∧

r∈R∗(d2)

|�(r)| � |T (r, d2)|
)
.

Then use Lemma 5.3 to give Pd(m) =⇒ (Pd1(m) ∨ Pd2(m)).

Part of the proof of the validity of Rule 4 (excluded middle) requires us to show that, if
d1 ∨ d2 is a diagram obtained from a unitary diagram d by an application of the excluded
middle rule, and the distinct spiders condition for d1 fails, then the shading condition for
d2 holds. In order to do this, the following lemma is required. This states that if a region r1
represents a set whose cardinality is the same as that of |S(r1, d)| and the distinct spiders
condition holds for d, then any subregion r2 of r1 represents a set whose cardinality is at
most the number of spiders that inhabit r1 and touch r2.

Lemma 5.5. Let d be a unitary diagram, and let m = (U, �) be a set-assignment to regions.
Let r1 ∈ R(d) be a region such that |�(r1)| = |S(r1, d)|. If the distinct spiders condition
for d holds, then, for each subregion r2 of r1,

|�(r2)| � |S(r1, d) ∩ T (r2, d)|.
Lemma 5.6. Rule 4, excluded middle, is valid.

Proof. It is straightforward to show that d1 � d and d2 � d, and so d1 ∨ d2 � d. It is
obvious that the plane tiling condition for d implies that the plane tiling condition holds for
d1 and for d2. Moreover, it is also obvious that the distinct spiders condition for d implies
that the distinct spiders condition holds for d2, and that the shading condition for d implies
that the shading condition holds for d1.

Suppose that m |= d, and that the distinct spiders condition for d1 is false. We show that
the shading condition for d2 is true. Since the distinct spiders condition for d1 is false, there
exists a region r1 such that

|�(r1)| < |S(r1, d1)| ∧ |�(r1)| � |S(r1, d)|.
Since |S(r1, d1)| can be at most one bigger than |S(r1, d)|, it follows that

|�(r1)| = |S(r1, d)|.
For any region r3 ∈ R∗(d2), we wish to show that |�(r3)| � |T (r3, d2)|. Now r3 =
(r3 ∩ r1) ∪ (r3 − r1) and, since r3 ∩ r1 ⊆ r1,

|�(r3 ∩ r1)| � |S(r1, d) ∩ T (r3 ∩ r1, d)|
by Lemma 5.5. Furthermore, if r3 − r1 ∈ R∗(d), then, by the shading condition for d,

|�(r3 − r1)| � |T (r3 − r1, d)|.
174https://doi.org/10.1112/S1461157000000942 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000942

Spider diagrams

Alternatively, r3 − r1 = ∅, and it is trivial that

|�(r3 − r1)| � |T (r3 − r1, d)|.
Thus

|�(r3)| = |�(r3 ∩ r1)| + |�(r3 − r1)|
� |S(r1, d) ∩ T (r3 ∩ r1, d)| + |T (r3 − r1, d)|. (1)

Now

S(r1, d) ∩ T (r3 ∩ r1, d) ⊆ T (r3, d)

and

T (r3 − r1, d) ⊆ T (r3, d).

Also,

S(r1, d) ∩ T (r3 ∩ r1, d) ∩ T (r3 − r1, d) = ∅.

Thus

|S(r1, d) ∩ T (r3 ∩ r1, d)| + |T (r3 − r1, d)| � |T (r3, d)|.
Using equation (1), we deduce that

|�(r3)| � |T (r3, d)| = |T (r3, d2)|,
as required. Therefore the shading condition holds for d2. Hence Pd(m) ⇐⇒ (Pd1(m) ∨
Pd2(m)) and d ≡� d1 ∨ d2; that is, Rule 4 is valid.

For Rules 6 to 13, the proofs of validity are trivial.

Lemma 5.7. Rules 6 to 13 are valid.

It now follows by induction that the reasoning system that uses only the first 13 reasoning
rules (other than combining) is valid. More precisely, if D1 and D2 are spider diagrams such
that there exists a sequence of diagrams 〈D1, D2, . . . , Dm〉, where D1 = D1, D2 = Dm

and Dk can be transformed into Dk+1 (1 � k < m) using a single application of one of the
first 13 transformation rules (other than combining), then D1 � D2. The following result is
an immediate consequence.

Corollary 5.1. Rules 14 to 17 (the derived reasoning rules) are valid.

Finally, we consider the validity of the rule for combining diagrams.

Lemma 5.8. Rule 5, the rule for combining diagrams, is valid.

Sketch of the proof. There are three cases, corresponding to those in the definition of the
combined diagram.

1. If either d0 or d1 is ⊥, then d0 ∗ d1 = ⊥, and the result is obvious.

2. Assume that there is a zone, z, that is shaded in one of d0 and d1, dj say, and contains
more spiders in d1−j then d0 ∗ d1 = ⊥. In this case, for any set-assignment to regions m =
(U, �), if m |= dj then �(z) = |S({z}, dj)|, and if m |= d1−j then �(z) > |S({z}, dj)|.
Therefore d0 ∧ d1 is unsatisfiable and d0 ∧ d1 ≡� d0 ∗ d1.

175https://doi.org/10.1112/S1461157000000942 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000942

Spider diagrams

3. For the final case, it can be shown that d0 ∗ d1 � d0 and d0 ∗ d1 � d1, using the rules
erasure of shading and erasure of a spider. By the validity of these rules, d0 ∗ d1 � d0 ∧ d1.
To show that d0 ∧ d1 � d0 ∗ d1, the strategy is to consider each zone of d0 ∗ d1 in turn, and
to show that the distinct spiders condition and the shading condition hold for that zone in
d0 ∗ d1. Noting that d0 ∗ d1 is an α-diagram, we see that it then follows that the distinct
spiders condition and the shading condition hold for d0 ∗ d1. It is trivial that the plane tiling
condition holds for d0 ∗ d1.

The soundness of the system now follows by induction.

Theorem 5.1 (Soundness). Let D1 and D2 be spider diagrams. If D1 � D2, then
D1 � D2.

6. Completeness

In this section we show that our system of spider diagrams is complete. The strategy
that we adopt is a simplified version of that used in the proof of completeness for the SD2
system, given by Molina [31]. Given D1 � D2, the strategy is to convert both D1 and
D2 into disjunctions of unitary α-diagrams, all with the same label set, giving D′

1 and D′
2

respectively, using only rules that preserve information. The excluded middle rule is then
applied to D′

1, giving D′′
1 , until enough spiders and sufficient shading are present to allow

erasure rules to be applied to D′′
1 until all the unitary parts on the left-hand side appear

on the right-hand side. The completeness result will then follow. We start by proving a
completeness result for unitary α-diagrams, all with the same zone set.

6.1. Completeness for unitary α-diagrams

We show that if d1 � d2, for α-diagrams d1 and d2 with the same zone sets, then we can
erase shading and spiders from d1 to give d2, and therefore d1 � d2.

� �� �

� �

�

� �

�

Figure 29: Two α-diagrams.

Example 6.1. The diagrams d1 and d2 in Figure 29 satisfy the following conditions.

1. Every shaded zone in d2 is shaded in d1, and contains the same number of spiders in
both diagrams.

2. Every zone in d2 contains the same number of spiders, or fewer, than in d1.

Under these conditions, the diagram d2 can be obtained from d1 by applying Rules 14
(erasure of shading) and 16 (erasure of a spider). The properties 1 and 2 above relate to
properties 3(i) and 3(ii) in Theorem 6.1 below.

176https://doi.org/10.1112/S1461157000000942 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000942

Spider diagrams

The transformation from d1 to d2 is illustrated in Figure 30. The zone ({B}, {A, C}) is
shaded in d1, but not in d2. Remove this shading using Rule 14, giving d3. Next delete the
extra spider inhabiting the zone ({B}, {A, C}).

� �

� �

�

� �

�

� �

�

� �

Figure 30: Transformation of α-diagrams.

� �� �

� �

�

�
�

�

Figure 31: Two α-diagrams.

Example 6.2. The diagram d2 in Figure 31 cannot be obtained from d1, for two reasons.

1. The zone ({A}, {B, C}) is shaded in d2, but not shaded in d1. There is a model for d1
that will cause the shading condition for d2 to fail.

2. The zone (∅, {A, B, C}) contains a single spider in d2, but is untouched in d1. Again,
we can deduce that there is a model for d1 that does not satisfy d2, this time causing the
distinct spiders condition for d2 to fail.

Hence d1
� d2.

The following theorem gives syntactic conditions on unitary α-diagrams, equivalent to
semantic and syntactic entailment. The theorem forms the heart of the proof of completeness.
Our theorem is a modified form of the corresponding result in [31], to take account of the
fact the our spider diagrams are now based on Euler, rather than Venn, diagrams.

Theorem 6.1. Let d1 (
= ⊥) and d2 (
= ⊥) be two unitary α-diagrams. If Z(d1) = Z(d2),
then the following three statements are equivalent.

1. d1 � d2.

2. d1 � d2.

3. (i) Every zone that is shaded in d2 is shaded in d1, and contains the same number
of spiders in both diagrams:

Z∗(d2) ⊆ Z∗(d1) ∧ ∀ z ∈ Z∗(d2) • S({z}, d2) = S({z}, d1).

(ii) Every zone in d2 contains at most the same number of spiders as in d1:

∀ z ∈ Z(d2) • S({z}, d2) ⊆ S({z}, d1).

177https://doi.org/10.1112/S1461157000000942 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000942

Spider diagrams

Proof. (a) 1 =⇒ 2. This follows by soundness.

(b) 2 =⇒ 3. We prove the contrapositive.
That is, we prove that (¬3(a) ∨ ¬3(b)) =⇒ ¬(d1 � d2), which is equivalent to

(b1) ¬3(a) =⇒ ¬(d1 � d2) and
(b2) ¬3(b) =⇒ ¬(d1 � d2).

(b1) Suppose that there exists a shaded zone, z, in d2 such that

z
∈ Z∗(d1) ∨ S({z}, d2)
= S({z}, d1).

Suppose first that z
∈ Z∗(d1). Let m = (U, �) be a model for d1 such that |�(z)| >

|S({z}, d2)|. Since z is shaded in d2 and d2 is an α-diagram, m does not satisfy d2
(the shading condition fails).

Alternatively, suppose that S({z}, d2)
= S({z}, d1). Let m = (U, �) be a model
for d1 such that

|�(z)| = |S({z}, d1)|,
for example the model constructed in Theorem 3.3. Then the shading condition or
the distinct spiders condition fails for d2, since it is not the case that

|S({z}, d2)| � |�(z)| � |T ({z}, d2)| = |S({z}, d2)|.
So in either case there is a model for d1 such that m
|= d2, so ¬3(a) =⇒ ¬(d1 � d2).

(b2) ¬3(b) =⇒ ¬(d1 � d2). Suppose that there exists a zone, z, in Z(d2) such
that S({z}, d2) � S({z}, d1). Then |S({z}, d2)| > |S({z}, d1)|. Let m = (U, �) be
a model for d1 such that |�(z)| = |S({z}, d1)|. Then |�(z)| < |S({z}, d2)| and the
distinct spiders condition fails for d2, so ¬(m |= d2). Thus ¬3(b) =⇒ ¬(d1 � d2).

Hence 2 =⇒ 3.

(c) 3 =⇒ 1. Erase the shading from the region Z∗(d1) − Z∗(d2) in d1 by applying
Rule 14 (erasure of shading), yielding d3. The diagram d3 satisfies Z(d3) = Z(d2) and
Z∗(d3) = Z∗(d2). Any shaded zone in d2 contains the same number of spiders in d1, by
3(i), and therefore in d3. Any zone that is not shaded in d2 contains at most the same number
of spiders in d2 as in d1, by 3(ii), and therefore in d3. Thus we can apply Rule 16 (erasure
of a spider) repeatedly to d3, removing all extra spiders and no others, yielding d2. Thus
d1 � d2. Hence 3 =⇒ 1.

Therefore all three statements are equivalent.

Hence for unitary α-diagrams with the same zone sets, the system is complete.

6.2. Associated contour diagrams

Recall that we are aiming to replace a diagram with a disjunction of unitary α-diagrams,
each with the same zone set. To do so, the combining rule must be used. When combining
two unitary diagrams, we require the sets of zones to be identical. Thus we may need to
introduce contours into each diagram. It is convenient to define, for a unitary diagram d and
set of contours L ⊇ L(d), the diagram dL obtained from d by introducing the contours in
L − L(d). The following definition also extends this notion to compound diagrams (where
L(D1�D2), � = ∧ or ∨, is defined to be L(D1) ∪ L(D2)).

178https://doi.org/10.1112/S1461157000000942 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000942

Spider diagrams

Definition 6.1. Let L be a finite subset of L.

1. Let d
= ⊥ be a unitary diagram such that L ⊇ L(d). A contour diagram associated
with d, denoted dL, is any unitary diagram such that L = L(dL) and d ≡� dL. If d = ⊥,
then dL = ⊥.

2. Let D = D1�D2, where � is ∧ or ∨, be any spider diagram not in D0 such that
L ⊇ L(D). A contour diagram associated with D is DL = DL

1 �DL
2 , where DL

1 and DL
2

are contour diagrams associated with D1 and D2 respectively.

Example 6.3. Associated contour diagrams need not be unique. Consider the diagram d

(with L(d) = {A, B}) in Figure 32 and L = {A, B, C}. Two associated contour diagrams
dL = d1 and dL = d2 are shown. The diagram d1 is obtained by introducing C directly
into d, whereas the diagram d2 is obtained by first converting d to Venn form, and then
introducing C.

�

�
� � �

� � �

� �

�

� �

Figure 32: A diagram with two associated contour diagrams.

Theorem 6.2. Let L be a finite subset of L, and let D be any spider diagram such that
L ⊇ L(D). There exists a contour diagram DL, associated with D, and any such contour
diagram is syntactically equivalent to D, D ≡� DL.

Sketch of the proof. The proof is achieved by induction on the depth of D in the inductive
construction.

6.3. Associated zone diagrams

The next stage in our completeness proof strategy is to introduce zones until all unitary
parts have the same zone sets. To formalize this, we now define associated zone diagrams.
In order to do so, we first define the set of unitary components of a spider diagram.

Definition 6.2. Let D be a spider diagram. The set of unitary components of D, denoted
comp(D), is defined as follows.

1. If D ∈ D0 then comp(D) = {D}.
2. If D = D1�D2 for some D1, D2 ∈ D , � ∈ {∨, ∧} then comp(D) = comp(D1) ∪

comp(D2).

179https://doi.org/10.1112/S1461157000000942 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000942

Spider diagrams

Definition 6.3. Let Z be a finite subset of Z such that

∀(a1, b1), (a2, b2) ∈ Z • a1 ∪ b1 = a2 ∪ b2.

Given Z, for any unitary diagram d (
= ⊥) such that Z ⊇ Z(d), the zone diagram associated
with d, denoted dZ , is the unitary diagram defined as follows.

1. The zones of dZ are those of d , together with those in Z: Z(dZ) = Z(d) ∪ Z = Z.

2. The shaded zones of dZ are those of d , together with those in Z that are not in d:
Z∗(dZ) = Z∗(d) ∪ (Z − Z(d)).

3. The spiders match: SI(dZ) = SI(d).

If d = ⊥, then the zone diagram associated with d is ⊥.
Let D = D1�D2 (� ∈ {∨, ∧}) be any diagram such that, for each d in comp(D)

Z ⊇ Z(d) or d = ⊥. Given Z, the zone diagram associated with D is DZ = DZ
1 �DZ

2
where DZ

1 and DZ
2 are the zone diagrams associated with D1 and D2 respectively.

� �

� �

� �

� �

Figure 33: A diagram with an associated zone diagram.

Example 6.4. The zone set Z = {(∅, {A, B}), ({A}, {B}), ({B}, {A}), ({A, B}, ∅)} is a
finite subset of Z. Given Z, the diagram d1 in Figure 33 has associated zone diagram d2.
The diagram d2 can be obtained from d1 by introducing zone ({A, B}, ∅) to d1.

Given a zone set, the associated zone diagrams are unique.

Theorem 6.3. Let Z be a finite subset of Z such that

∀(a1, b1), (a2, b2) ∈ Z • a1 ∪ b1 = a2 ∪ b2.

Let D be any diagram such that for each d in comp(D), Z ⊇ Z(d) or d = ⊥. Given Z, let
DZ be the zone diagram associated with D. Then D is syntactically equivalent to DZ .

Sketch of the proof. Suppose that D is a unitary diagram. If D = ⊥, then DZ = ⊥ and
D ≡� DZ . Alternatively, D
= ⊥. Apply Rule 2 (introduction of a shaded zone) to D,
introducing all zones in Z −Z(D) to give DZ . Then D ≡� DZ . The result then follows by
induction on the depth of D in the inductive construction.

6.4. Associated α-diagrams

We are aiming to replace any spider diagram by a syntactically equivalent disjunction of
unitary α-diagrams. To do so, we must apply the combining rule, which operates on unitary
α-diagrams with the same zone sets. So far, we have seen that any diagram can be replaced
by another diagram where each of the unitary parts have the same zone sets, or are ⊥. Thus

180https://doi.org/10.1112/S1461157000000942 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000942

Spider diagrams

the next step that we take is to replace each unitary part by a disjunction of α-diagrams. Any
spider diagram that is not an α-diagram may be transformed into an α-diagram by splitting
all the spiders.

Example 6.5. The diagram d in Figure 34 is syntactically equivalent to the α-diagram
d1 ∨ d2. This equivalence is obtained by a single application of Rule 3, splitting spiders.

�

�

�
�

� � � � � �

�
�

Figure 34: Syntactically equivalent diagrams.

We wish to define, for any spider diagram D, its ‘associated α-diagram’ which is an
α-diagram that is syntactically equivalent to D. To describe the construction of such an
α-diagram, we introduce the notion of an α-subdiagram of a unitary diagram. Informally,
we can obtain an α-subdiagram of a diagram d by erasing, for each spider in d, all of its
feet except one.

Definition 6.4. Let d be a unitary diagram and d ′ a unitary α-diagram. If d
= ⊥, Z(d) =
Z(d ′), Z∗(d) = Z∗(d ′) and there exists a bijection σ : S(d) −→ S(d ′) such that, for all
spiders s in d,

ηd ′(σ (s)) ⊆ ηd(s),

then d ′ is an α-subdiagram of d , denoted d ′ �α d . If d = ⊥, then the only α-subdiagram
of d is ⊥.

Example 6.6. In Figure 35, the diagram d ′ is an α-subdiagram of d. Furthermore, by
applying Rule 15 (adding feet to a spider) twice, it is clear that d is obtainable from d ′.

� �

� �

�

� � � �

� �

Figure 35: An α-subdiagram of d transformed into d.

Lemma 6.1. Let d be a unitary diagram, and let d ′ be a unitary α-diagram. If d ′ �α d,
then d ′ � d .

181https://doi.org/10.1112/S1461157000000942 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000942

Spider diagrams

Definition 6.5. Let D be a spider diagram.

1. If D is a unitary diagram, let DD
α = {d ′ ∈ D0 : d ′ �α D} be the set of all

α-subdiagrams of D. The α-diagram associated with D, αD, is the disjunction of all of its
α-subdiagrams:

αD =
∨

d ′∈DD
α

d ′.

2. If D = D1 �D2 for some D1, D2 ∈ D and � is ∧ or ∨, then the α-diagram
associated with D, αD, is

αD = αD1 � αD2,

where αD1 and αD2 are the α-diagrams associated with D1 and D2 respectively.

Example 6.7. In Figure 36, the diagram d has associated α-diagram αD = d1 ∨ d2 ∨ d4
which is syntactically equivalent to d . This equivalence is established by splitting the spiders
in d, and then using idempotency to remove the repeated diagram.

Example 6.8. Similarly, the compound diagram D in Figure 37 has the associated
α-diagram αD.

�

� �

�

�
�

� � � � � �

�
��

�
�
�

� �

�

�
�

� � � �

�
��

�

� �

�
�

Figure 36: A unitary diagram with its associated α-diagram.

�

�
�

�
��

�

�
�

� � � � �

�

�
�

�
�

� � �

�

Figure 37: A diagram with its associated α-diagram.

182https://doi.org/10.1112/S1461157000000942 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000942

Spider diagrams

We wish to show that any diagram is syntactically equivalent to its associated α-diagram.

Lemma 6.2. Let d be a unitary diagram and D the α-diagram obtained from d by applying
Rules 3 (splitting spiders) and 12 (simplification of ∨) repeatedly to d. Then the α-diagram
associated with d is

αd =
∨

d ′∈comp(D)

d ′.

Theorem 6.4. Let D be a spider diagram, and let αD be the α-diagram associated with
D. Then D ≡� αD.

6.5. Combining α-diagrams

The next stage in our completeness proof strategy is to remove all the conjuncts; for this
we use the combining rule.

Definition 6.6. Let D be an α-diagram such that each pair of unitary components, d1, d2 ∈
comp(D), satisfies Z(d1) = Z(d2) or d1 = ⊥ or d2 = ⊥. The combined diagram associated
with D, denoted D∗, is defined as follows.

1. If D is a unitary diagram, then D∗ = D.

2. If D = D1 ∨ D2, for some D1 and D2, then

D∗ = D∗
1 ∨ D∗

2 ,

where D∗
1 and D∗

2 are combined diagrams associated with D1 and D2 respectively.

3. If D = D1 ∧ D2, then
D∗ =

∨
di∈comp(D∗

1)

dj ∈comp(D∗
2)

di ∗ dj .

We now prove that D is syntactically equivalent to D∗.

Theorem 6.5. Let D be an α-diagram such that each pair of unitary components d1, d2 ∈
comp(D) satisfies Z(d1) = Z(d2), or d1 = ⊥ or d2 = ⊥. Then D ≡� D∗.

Proof. The proof is achieved by induction on the depth of D in the inductive construction.
If D ∈ D0, then D = D∗ and the base case holds.

For any α-diagram D ∈ Dn such that each pair of unitary components d1, d2 ∈ comp(D)

satisfies Z(d1) = Z(d2) or d1 = ⊥ or d2 = ⊥, assume that it is the case that D ≡� D∗,
whereD∗ is the combined diagram associated withD. LetD1 ∈ Dn+1−Dn be anα-diagram
such that each pair of unitary components d1, d2 ∈ comp(D1) satisfies Z(d1) = Z(d2) or
d1 = ⊥ or d2 = ⊥. Then D1 = D2�D3 for some � ∈ {∨, ∧} and D2, D3 ∈ Dn for which
each pair of unitary components d1, d2 ∈ comp(D2) ∪ comp(D3) satisfies Z(d1) = Z(d2)

or d1 = ⊥ or d2 = ⊥. Let D∗
1 be the combined diagram associated with D1.

Suppose firstly that � = ∨. Then D∗
1 = D∗

2 ∨ D∗
3 , where D∗

2 and D∗
3 are the combined

diagrams associated with D2 and D3 respectively. By assumption, D2 ≡� D∗
2 and D3 ≡�

D∗
3 . Therefore we have

D1 = D2 ∨ D3

≡� D∗
2 ∨ D3 by Corollary 4.1 (rule of replacement)

≡� D∗
2 ∨ D∗

3 by Corollary 4.1 (rule of replacement)

= D∗
1 .

Hence D1 ≡� D∗
1 .

183https://doi.org/10.1112/S1461157000000942 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000942

Spider diagrams

Alternatively, � = ∧. Then

D∗ =
∨

di∈comp(D∗
1)

dj ∈comp(D∗
2)

di ∗ dj .

Since D∗
2 and D∗

3 are combined diagrams, it must be true that

D∗
2 =

∨
1�i�n

d2,i and D∗
3 =

∨
1�j�m

d3,j ,

where each d2,i (1 � i � n) and d3,j (1 � j � m) is a unitary diagram. Using Rules 10
(distributivity of ∨) and 12 (simplification of ∨), we can show that

D∗
2 ∧ D∗

3 =
(∨

1�i�n

d2,i

)
∧

(∨
1�j�m

d3,j

)
≡�

∨
1�i�n
1�j�m

(d2,i ∧ d3,j).

Now, for each d2,i and d3,j , we have d2,i ∗ d3,j ≡� d2,i ∧ d3,j , by Rule 5 (combining).
Therefore

D∗
2 ∧ D∗

3 ≡�
∨

1�i�n
1�j�m

(d2,i ∗ d3,j) = D∗
1 by Rule 12 (simplification of ∨).

We have shown that

D1 = D2 ∧ D3

≡� D∗
2 ∧ D∗

3 by Corollary 4.1 (rule of replacement)

≡� D∗
1 .

Hence D1 ≡� D∗
1 .

6.6. Extended diagrams

Suppose that we have a unitary α-diagram d and a disjunction of unitary α-diagrams,
D, such that Z(d) = Z(di) or di = ⊥ for each di ∈ comp(D). We are aiming to find
an α-diagram which we call the extended diagram associated with d in the context of D,
namely ext(d, D), that is syntactically equivalent to d . The diagram ext(d, D) will have
the property that, if a unitary component of ext(d, D), say ed, satisfies ed � D, then there
exists a unitary component of D, say di , satisfying ed � di .

Example 6.9. In Figure 38, the diagram D is a semantic consequence of d but no unitary
component of D is semantically entailed by d; that is, d
� d1, d
� d2 and d
� d3. The
diagram ext(d, D) can be obtained from d (and vice versa) by applying Rules 4 (excluded
middle) and 12 (simplification of ∧). The spiders and shading introduced to d to obtain
ext(d, D) are determined by D. For example, consider the outside zone (∅, {A}). This zone
is shaded and contains two spiders in d3, and no other unitary component of D contains
more than two spiders in this zone. In ext(d, D), this zone contains one, two or three
spiders in any unitary component. The process of constructing ext(d, D) will be described
in Definitions 6.7 and 6.8 below.

Note that we have

d ′
1 � d1, d ′

2 � d2, d ′
3 � d1, d ′

3 � d3, d ′
4 � d1, d ′

5 � d2, d ′
6 � d2 and d ′

6 � d3

184https://doi.org/10.1112/S1461157000000942 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000942

Spider diagrams

�

�

�

�

�� �

�� ��� ��� �

�� ��� �

� � �

� �

� �

�

� � � �

���

� � 	
 � � � � �

�

Figure 38: An α-diagram and an extended diagram.

so, for each unitary component d ′
i of ext(d, D), there exists a unitary component dj of D

such that d ′
i � dj . By Theorem 6.1, d ′

i � dj . Thus

d ′
1 ∨ d ′

3 ∨ d ′
4 � d1 and d ′

2 ∨ d ′
5 ∨ d ′

6 � d2,

by the rule of construction. Therefore,

ext(d, D) = d ′
1 ∨ d ′

3 ∨ d ′
4 ∨ d ′

2 ∨ d ′
5 ∨ d ′

6 � d1 ∨ d2,

by the rule of replacement. By Rule 6 (connecting a diagram), d1 ∨ d2 � D, and by
transitivity, ext(d, D) � D. Therefore d � D, since d ≡� ext(d, D).

In general, the diagram ext(d, D) will be constructed by taking copies of d and adding
shading and spiders, as specified below. The unitary components of ext(d, D) are called
extended unitary components associated with d , which we now define.

Definition 6.7. Let d (
= ⊥) be a unitary α-diagram, and let D be an α-diagram. Then,
given D, a unitary α-diagram ed is an extended unitary component associated with d,
denoted by d �D

e
ed, if and only if the following six conditions are satisfied.

1. The diagrams d and ed have the same zones: Z(d) = Z(ed).

2. All shading in d occurs in ed: Z∗(d) ⊆ Z∗(ed).

3. All spiders in d occur in ed: S(d) ⊆ S(ed).

4. If zone z is shaded in d , then the spiders match in d and ed: ∀ z ∈ Z∗(d) • S({z}, d) =
S({z}, ed).

5. If zone z is not shaded in d but is shaded in some unitary component of D, and the
number, m say, of spiders that z contains in d is at most the number that z contains in any
unitary component of D in which z is shaded, then the following statements hold.

185https://doi.org/10.1112/S1461157000000942 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000942

Spider diagrams

(i) If z is shaded in ed , then z contains at most m spiders in ed; and
(ii) if z is not shaded in ed , then z contains m + 1 spiders in ed.

More formally, we have:

∀ z ∈ Z(d) − Z∗(d) •


z ∈

⋃
di∈comp(D)

Z∗(di) ∧ S({z}, d) ⊆
⋃

di∈comp(D)
z∈Z∗(di)

S({z}, di)




=⇒





z ∈ Z∗(ed) ∧ S({z},ed) ⊆

⋃
di∈comp(D)

z∈Z∗(di)

S({z}, di)




∨


z ∈ Z(ed) − Z∗(ed) ∧ |S({z},ed)| =

∣∣∣∣ ⋃
di∈comp(D)

z∈Z∗(di)

S({z}, di)

∣∣∣∣ + 1





 .

6. If an unshaded zone z in d is not shaded in any unitary component of D, or if z

contains more spiders in d than any shaded occurrence of z in D, then z is not shaded in ed

and z contains the same number of spiders in ed as in d . More formally, we have:

∀ z ∈ Z(d) − Z∗(d) •


z
∈

⋃
di∈comp(D)

Z∗(di) ∨ S({z}, d) ⊃
⋃

di∈comp(D)
z∈Z∗(di)

S({z}, di)




=⇒
(
z ∈ Z(ed) − Z∗(ed) ∧ S({z},ed) = S({z}, d)

)
.

If d = ⊥, then the extended unitary component associated with d is ⊥.

Definition 6.8. Let d be a unitary α-diagram, and let D be a disjunction of unitary
α-diagrams such that Z(d) = Z(di) or di = ⊥ for each di ∈ comp(D). Given D, let Dd

e

be the set of all extended unitary components associated with d:

Dd
e = {

d ′ ∈ D0 : d �D
e d ′}.

Then the diagram

ext(d, D) =
∨

d ′∈Dd
e

d ′

is the extended diagram associated with d in the context of D.

Example 6.10. In Figure 38, each d ′
i (i = 1, . . . , 6) is an extended unitary component

associated with d, given D. Indeed, all such extended components ed are present, so
ext(d, D) is the extended diagram associated with d in the context of D.

Theorem 6.6. Let d be a unitary α-diagram, and let D be a disjunction of unitary α-
diagrams such that Z(d) = Z(di) or di = ⊥ for each di ∈ comp(D). Then d is syntactically
equivalent to ext(d, D), the extended diagram associated with d in the context of D:

d ≡� ext(d, D).

186https://doi.org/10.1112/S1461157000000942 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000942

Spider diagrams

Sketch of the proof. The proof follows by repeated application of Rules 4 (excluded middle)
and 12 (simplification of ∨) to d in the case where d
= ⊥. When d = ⊥, the result follows
immediately.

6.7. Completeness theorem

The next result is the final prerequisite for our proof of completeness.

Theorem 6.7. Let d be a unitary α-diagram, and let D be a disjunction of unitary
α-diagrams such that Z(d) = Z(di) or di = ⊥ for each di ∈ comp(D). Given D, let
ed ∈ Dd

e . If ed � D, then there exists a unitary component of D, say di , such that ed � di:

ed � D =⇒ ∃di ∈ comp(D) • ed � di.

Proof. The proof is shown by contradiction. Assume that ed � D, but that there is no
di ∈ comp(D) for which ed � di . By Theorem 6.1, for each di one of the following
alternative statements holds:

(i) ∃ z ∈ Z∗(di) • z
∈ Z∗(ed) ∨ S({z}, di)
= S({z},ed) or

(ii) ∃ z ∈ Z(di) • S({z},ed) ⊂ S({z}, di).

Let m = (U, �) be a model for ed with the property that, for each zone in Z(ed),
|�(z)| = |S({z},ed)|. We show that m does not satisfy any di in D, and therefore ed
� D,
giving a contradiction.

Suppose that statement (i) is true. Firstly, consider the case where z
∈ Z∗(ed); then
z ∈ Z(ed) − Z∗(ed). So z ∈ Z(d) − Z∗(d) and, by the definition of ed,

S({z},ed) ⊃
⋃

dj ∈comp(D)

z∈Z∗(dj)

S({z}, dj) ⊇ S({z}, di).

Now |�(z)| = |S({z},ed)| > |S({z}, di)| = |T ({z}, di)|, and it follows that the shading
condition fails for di .

Consider now the case where S({z}, di)
= S({z},ed). Then either the shading condition
fails for di (as above), or the distinct spiders condition fails for di . Hence m
|= di .

Suppose that statement (ii) is true. That is,

∃ z ∈ Z(di) • S({z},ed) ⊂ S({z}, di).

Then |�(z)| = |S({z},ed)| < |S({z}, di)|, and thus the distinct spiders condition fails for
di . Hence m
|= di .

Thus m does not satisfy any unitary component of D, and by the definition of the
semantics predicate for D, m does not satisfy D. This contradicts the assumption that
ed � D. Hence if ed � D, then there exists di ∈ comp(D) such that ed � di .

Theorem 6.8 (Completeness). Let D1 and D2 be spider diagrams. If D1 � D2, then
D1 � D2.

Proof. Let D1 and D2 be spider diagrams such that D1 � D2. Given L = L(D1)∪L(D2),
let DL

1 and DL
2 be the contour diagrams associated with D1 and D2 respectively. Given

Z =
⋃

d∈comp(DL
1)∪comp(DL

2)

Z(d),

187https://doi.org/10.1112/S1461157000000942 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000942

Spider diagrams

let DZ
1 and DZ

2 be zone diagrams associated with DL
1 and DL

2 respectively. Let αDZ
1 and

αDZ
2 be α-diagrams associated with DL

1 and DL
2 respectively. Let D∗

1 and D∗
2 be combined

diagrams associated with αDZ
1 and αDZ

2 respectively. Then

D1 ≡� DL
1 by Theorem 6.2

≡� DZ
1 by Theorem 6.3

≡� αDZ
1 by Theorem 6.4

≡� D∗
1 by Theorem 6.5.

Hence, by transitivity,

D1 ≡� D∗
1 . (2)

Similarly,

D2 ≡� D∗
2 . (3)

By the soundness theorem,

D∗
1 � D1 ∧ D2 � D∗

2 ,

and again by transitivity,

D∗
1 � D∗

2 .

Now D∗
1 and D∗

2 are disjunctions of unitary diagrams, and so

D∗
1 =

∨
1�i�n

d1,i and D∗
2 =

∨
1�j�l

d2,j ,

where each d1,i (1 � i � n) and d2,j (1 � j � l) is a unitary α-diagram. The semantics
predicate for D∗

1 is ∨
1�i�n

Pd1,i
(m),

where m = (U, �) is a set-assignment to regions. Therefore, for all d1,i (1 � i � n) we
have

d1,i � D∗
1 (4)

Let ext(d1,i , D
∗
2) be the extended diagram associated with d1,i in the context of D∗

2 . By
Theorem 6.6, we have

d1,i ≡� ext(d1,i , D
∗
2),

and by the soundness theorem,

d1,i ≡� ext(d1,i , D
∗
2).

Now we have ext(d1,i , D
∗
2) � d1,i , d1,i � D∗

1 and D∗
1 � D∗

2 , and so by transitivity

ext(d1,i , D
∗
2) � D∗

2 .

Now

ext(d1,i , D
∗
2) =

∨
1�p�k

ed1,p

for some unitary diagrams ed1,p (1 � p � k).

188https://doi.org/10.1112/S1461157000000942 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000942

Spider diagrams

Similarly to (4), we deduce that for all d1,p (1 � p � k), we have

ed1,p � D∗
2 .

Therefore, by Theorem 6.7,

∀ ed1,p(1 � p � k) ∃d2,j (1 � j � m) • ed1,p � d2,j .

By Theorem 6.1,

∀ ed1,p(1 � p � k) ∃d2,j (1 � j � m) • ed1,p � d2,j .

By Rule 6 (connecting a diagram), for all edi,p (1 � p � k) we have

ed1,p � D∗
2 .

Hence, by Theorem 4.2 (rule of construction), for all d1,i (1 � i � n), we have

ext(d1,i , D
∗
2) � D∗

2 .

Since, by Theorem 6.6, d1,i � ext(d1,i , D
∗
2), by transitivity we obtain for all d1,i

(1 � i � n):

d1,i � D∗
2 .

By Theorem 4.2 (rule of construction), we have

D∗
1 � D∗

2 (5)

Now

D1 � D∗
1 by (2)

� D∗
2 by (5)

� D2 by (3).

Finally, transitivity gives D1 � D2. Hence

D1 � D2 =⇒ D1 � D2,

as required.

We have seen that the spider diagram system is both sound and complete. An immediate
consequence of the completeness proof strategy is that the system is also decidable.

Theorem 6.9 (Decidability). Let D1 and D2 be spider diagrams. There is an algorithm
that determines whether D1 � D2.

Sketch of the proof. Given D1 and D2, apply the completeness proof algorithm to both D1
and D2, giving D∗

1 and D∗
2 as above. For each unitary part, d1, of D∗

1 , obtain ext(d1, D
∗
2).

Then either each unitary part of ext(d1, D
∗
2) syntactically entails a unitary part of D∗

2 , or
there exists a unitary part of ext(d1, D

∗
2) that does not syntactically entail a unitary part of

D∗
2 . In the latter case, we can deduce that D1
� D2.

189https://doi.org/10.1112/S1461157000000942 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000942

Spider diagrams

� �

� �

� �

�

�

Figure 39: From diagrams to sentences.

7. Expressiveness

A natural question to ask is: “What is the formal expressiveness of spider diagrams?”
Shin showed that her Venn II system is equivalent in expressive power to first-order monadic
logic without equality. Spider diagrams are more expressive.

Theorem 7.1 (Expressiveness). The language of spider diagrams is equivalent in
expressive power to first-order monadic logic with equality.

Proof. This result is proved formally in [42]. The mapping from diagrams to sentences is
reasonably straightforward.

Example 7.1. The diagram d1 in Figure 39 contains three spiders, one outside both A and B

and the other two inside B and outside A. It is expressively equivalent to the sentence

∃x1 (¬A(x1) ∧ ¬B(x1)) ∧ ∃x1∃x2 (B(x1) ∧ B(x2) ∧ ¬A(x1) ∧ ¬A(x2) ∧ x1
= x2).

The diagram d2 expresses the information that no elements can be in C and not in A (due
to the missing zone), and no elements can be in both A and C (due to the shading), and is
expressively equivalent to the sentence

∀x1 ¬(C(x1) ∧ ¬A(x1)) ∧ ∀x1 ¬(A(x1) ∧ C(x1)).

The diagram d1 ∨ d2 is expressively equivalent to the disjunction of the sentences given for
d1 and d2.

The mapping from sentences to diagrams is more challenging. Shin’s approach for the
Venn II system does not extend to spider diagrams. She converts a sentence to prenex normal
form, and then syntactically manipulates this to remove nested quantifiers; a diagram can
then be drawn for each of the simple parts of the resulting formula. This approach does
not extend to the case where equality is allowed because ‘=’ is a dyadic predicate, and so
nesting of quantifiers cannot necessarily be removed. We take a different approach, based
on a classic result of Dreben and Goldfarb [1, pp. 209–210]. To establish the existence of a
diagram that is expressively equivalent to a sentence, we consider models for that sentence.
In [42], it is shown that for every sentence S, there exists a finite set of models that can be
used to classify all the models for S. Each classifying model has a finite domain, and can be
used to construct a diagram. The disjunction of all such diagrams is expressively equivalent
to S. The idea is illustrated in the following example.

Example 7.2. Let S be the sentence ∃x1A(x1) ∨ ∀x1A(x1). There are four classifying
models for S that give rise to the diagrams d1, d2, d3 and d4 in Figure 40. The diagram
d1 ∨ d2 ∨ d3 ∨ d4 is expressively equivalent to S. This is not the ‘natural’ diagram that one
would associate with S.

190https://doi.org/10.1112/S1461157000000942 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000942

Spider diagrams

� �

�

� �

�

� �

�

� �

�

Figure 40: Constructing diagrams from models.

8. Conclusion and further work

Building on the traditions established by Euler, Venn and Peirce, and on more recent
seminal work by Sun-Joo Shin, we have developed a sound and complete reasoning system
that is purely diagrammatic. The spider diagram system presented in this paper is expres-
sively equivalent to first-order monadic logic with equality, making it more expressive than
the diagrammatic systems developed by Shin [37] and Hammer [19].

This work is part of an ongoing project to develop formal visual notations and associated
tool support. The effective use of diagrammatic notations for practical applications requires
computer-aided support tools. Currently, tools have been developed to generate concrete
diagrams from an abstract description [9], and for laying-out the resulting diagrams aesthet-
ically [15, 32, 35]. An automated theorem-prover has been developed for spider diagrams
[10], together with heuristics for generating readable proofs [13, 14].

The main intended application area for this work is the modelling and specification of
software systems. The focus of further work is on various systems of constraint diagrams
[4, 6, 7, 5, 16, 18, 28, 39, 40], which extend spider diagrams by incorporating (explicit)
universal quantification and relational navigation. All of the spider diagram reasoning rules
given in this paper extend to some restricted fragments of the constraint diagram notation,
presented in [38, 39, 40]. Along with further reasoning rules, these restricted fragments
are shown to be sound and complete. The strategy for proving completeness in our spider
diagram system extends to these restricted systems, although the details of the proof become
considerably more complex.

The syntax and semantics of the full constraint-diagram language have been formal-
ized [7]. Work is ongoing to develop formal reasoning rules for the full constraint-diagram
notation [3].

Constraint diagrams were designed to complement the visual notations that comprise the
Unified Modeling Language (UML) [33], which are used in modelling software systems.
Constraint diagrams provide a notation for expressing logical constraints, such as invariants
and operation pre-conditions and post-conditions, which, in UML, are expressed in the Ob-
ject Constraint Language (OCL) [45]. The OCL is essentially a stylized text-based version
of first-order predicate logic, so constraint diagrams provide an alternative language that is
more in keeping with the other diagrammatic notations within the UML. There is ample
informal evidence – the strong take-up of the mainly diagrammatic UML as the standard
for software modelling, and the relatively poor take-up of traditional formal methods by
the software industry – that software engineers prefer diagrammatic notations to traditional
mathematical notations.

191https://doi.org/10.1112/S1461157000000942 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000942

Spider diagrams

References

1. B. Dreben and D. Goldfarb, The decision problem. Solvable classes of quantifica-
tional formulas (Addison Wesley, 1979).190

2. L. Euler, Lettres a une princesse d’Allemagne sur divers sujets de physique et de
philosophie, vol. 2 (1761) Letters 102–108.145

3. A. Fish and J. Flower, ‘Investigating reasoning with constraint diagrams’, Proc.
Visual Languages and Formal Methods 2004, Electron. Notes Theor. Comput. Sci.
127 (Elsevier, 2005) 53–69.191

4. A. Fish and J. Howse, ‘Computing reading trees for constraint diagrams’, Proc.
AGTIVE 2003 (Applications of Graph Transformations with Industrial Relevance,
Charlottesville, Virginia) (Springer, 2003) 260–274.191

5. A. Fish and J. Howse, ‘Towards a default reading for constraint diagrams’, Proc.
Diagrams 2004 (International Conference on the Theory andApplication of Diagrams,
Cambridge), Lecture Notes in Artificial Intelligence 2980 (Springer, 2004) 51–65.191

6. A. Fish, J. Flower and J. Howse, ‘A reading algorithm for constraint diagrams’,
Proc. IEEE Symposium on Human Centric Computing Languages and Environments
(Auckland, New Zealand, October 2003) (IEEE Computer Society Press, 2003)
161–168.191

7. A. Fish, J. Flower and J. Howse, ‘The semantics of augmented constraint diagrams’,
J. of Visual Languages and Computing, to appear 2005.191

8. M. Fitting, First order logic and automated theorem proving (Springer, 1996).161

9. J. Flower and J. Howse, ‘Generating Euler diagrams’, Proc. Diagrams 2002 (Inter-
national Conference on the Theory and Application of Diagrams), Lecture Notes in
Artificial Intelligence 2317 (Springer, 2002) 61–75.152, 154, 155, 156, 191

10. J. Flower and G. Stapleton, ‘Automated theorem proving with spider diagrams’,
Proc. CATS 2004 (Computing: The Australasian Theory Symposium, Dunedin, New
Zealand), Electron. Notes Theor. Comput. Sci. 91 (Science Direct, 2004) 116–132.191

11. J. Flower, J. Howse and J. Taylor, ‘Nesting in Euler Diagrams: syntax, semantics
and construction’, J. Software and Systems Modeling 3 (2004) 55–67.159

12. J. Flower, J. Howse, J. Taylor and S. Kent, ‘A visual framework for modelling
with heterogeneous notations’, Proc. HCC 2002 (IEEE Symposium on Human Centric
Computing Languages and Environments, Arlington) (IEEE Computer Society Press,
2002) 71–73.156

13. J. Flower, J. Masthoff and G. Stapleton, ‘Generating readable proofs: a heuristic
approach to theorem proving with spider diagrams’, Proc. Diagrams 2004 (Interna-
tional Conference on the Theory and Application of Diagrams, Cambridge), Lecture
Notes in Artificial Intelligence 2980 (Springer, 2004) 166–181.191

14. J. Flower, J. Masthoff and G. Stapleton, ‘Generating proofs with spider diagrams
using heuristics’, Proc. VLC 2004 (10th International Conference on Distributed Mul-
timedia Systems, International Workshop on Visual Languages and Computing, San
Francisco) (Knowledge Systems Institute, 2004) 279–285.191

15. J. Flower, P. Rodgers and P. Mutton, ‘Layout metrics for Euler diagrams’, Proc.
IV 2003 (7th International Conference on Information Visualisation, London) (IEEE
Computer Society Press, 2003) 272–280.191

192https://doi.org/10.1112/S1461157000000942 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000942

Spider diagrams

16. J. Gil, J. Howse and S. Kent, ‘Constraint diagrams: a step beyond UML’, Proc.
TOOLS USA 1999 (Santa Barbara, California) (IEEE Computer Society Press, 1999)
453–463.191

17. J. Gil, J. Howse and S. Kent, ‘Formalising spider diagrams’, Proc. VL 1999 (IEEE
Symposium onVisual Languages) (IEEE Computer Society Press, 1999) 130–137.146

18. J. Gil, J. Howse and S. Kent, ‘Towards a formalization of constraint diagrams’,
Proc. HCC 2001 (IEEE Symposium on Human-Centric Computing, Stresa) (IEEE
Computer Society Press, 2001) 72–79. 191

19. E. Hammer, Logic and visual information (CSLI Publ., 1995). 146, 152, 163, 191

20. D. Harel, ‘On visual formalisms’, Diagrammatic reasoning (ed. J. Glasgow,
N. H. Narayan and B. Chandrasekaran, MIT Press, 1998) 235–271.

21. J. Howse, F. Molina, S.-J. Shin and J. Taylor, ‘Type-syntax and token-syntax in
diagrammatic systems’, Proc. FOIS 2001 (2nd International Conference on Formal
Ontology in Information Systems, Maine, USA) (ACM Press, 2001) 174–185. 147,
152

22. J. Howse, F. Molina, S.-J. Shin and J. Taylor, ‘On diagram tokens and types’,
Proc. Diagrams 2002 (International Conference on the Theory and Application of
Diagrams), Lecture Notes in Artificial Intelligence 2317 (Springer, 2002) 76–90. 147

23. J. Howse, F. Molina and J. Taylor, ‘SD2: a sound and complete diagrammatic
reasoning system’, Proc. ASC 2000 (Artificial Intelligence and Soft Computing, Banff)
(IASTED/ACTA Press, 2000) 402–408. 147, 149, 151, 152

24. J. Howse, F. Molina and J. Taylor, ‘On the completeness and expressiveness of spi-
der diagram systems’, Proc. Diagrams 2000 (International Conference on the Theory
and Application of Diagrams), Lecture Notes in Artificial Intelligence 1889 (Springer,
2000) 26–41. 151, 152

25. J. Howse, F. Molina and J. Taylor, ‘A sound and complete diagrammatic reason-
ing system’, Proc. VL 2000 (IEEE Symposium on Visual Languages, Seattle) (IEEE
Computer Society Press, 2000) 127–136. 147, 149, 151, 152

26. J. Howse, F. Molina, J. Taylor and S. Kent, ‘Reasoning with spider diagrams’,
Proc. VL 1999 (IEEE Symposium on Visual Languages, Tokyo, Sept. 1999) (IEEE
Computer Society Press) 138–147.

27. J. Howse, F. Molina, J. Taylor, S. Kent and J. Gil, ‘Spider diagrams: a diagram-
matic reasoning system’, J. Visual Languages and Computing 12 (2001) 299–324.

28. S. Kent, ‘Constraint diagrams: visualising invariants in object oriented models’, Proc.
OOPSLA97, ACM SIGPLAN Notices 32 (1997) 327–341. 146, 191

29. O. Lemon, ‘Comparing the efficacy of visual languages’, Words, proofs and diagrams
(ed. D. Barker-Plummer, D. I. Beaver, J. van Benthem and P. Scotto di Luzio, CSLI
Publications, 2002) 47–69. 152

30. R. Lull, Ars magma (Lyons, 1517). 145

31. F. Molina, ‘Reasoning with extended Venn–Peirce diagrammatic systems’, PhD The-
sis, University of Brighton, 2001. 147, 149, 151, 152, 158, 160, 161, 165, 176, 177

32. P. Mutton, P. Rodgers and J. Flower, ‘Drawing graphs in Euler Diagrams’, Proc.
Diagrams 2004 (International Conference on the Theory andApplication of Diagrams,
Cambridge, March 2004), Lecture Notes in Artificial Intelligence 2980 (ed. A. Black-
well, et al., Springer, 2004) 66–81. 191

193https://doi.org/10.1112/S1461157000000942 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000942

Spider diagrams

33. Object Management Group, ‘Unified Modeling Language specification’, available
at www.omg.org. 146, 191

34. C. Peirce, Collected papers, vol. 4 (Harvard Univ. Press, 1933). 146

35. P. Rodgers, P. Mutton and J. Flower, ‘Dynamic Euler diagram drawing’, Proc.
VLHCC 2004 (Visual Languages and Human Centric Computing, Rome) (IEEE Com-
puter Society Press, 2004) 147–156. 191

36. P. Scotto di Luzio, ‘Patching up a logic of Venn diagrams’, Proc. 6th CSLI Workshop
on Logic, Language and Computation (CSLI Publications, Stanford, 2000). 147

37. S.-J. Shin, The logical status of diagrams (Cambridge Univ. Press, 1994). 145, 146,
147, 151, 152, 191

38. G. Stapleton, ‘Reasoning with constraint diagrams’, PhD Thesis, University of
Brighton, August 2004. 147, 173, 191

39. G. Stapleton, J. Howse and J. Taylor, ‘A constraint diagram reasoning system’,
Proc. VLC 2003 (Distributed Multimedia Systems, International Conference on Vi-
sual Languages and Computing, Florida International University, Miami) (Knowledge
Systems Institute, 2003) 263–270. 191

40. G. Stapleton, J. Howse and J. Taylor, ‘A decidable constraint diagram reasoning
system’, J. Logic Comput., to appear 2005. 191

41. G. Stapleton, J. Howse, J. Taylor and S. Thompson, ‘What can spider diagrams
say?’ Proc. Diagrams 2004 (International Conference on the Theory and Application
of Diagrams, Cambridge, March 2004), Lecture Notes in Artificial Intelligence 2980
(ed. A. Blackwell, et al., Springer, 2004) 112–127. 147

42. G. Stapleton, S. Thompson, J. Howse and J. Taylor, ‘The expressiveness of spider
diagrams’, J. Logic Comput. 14 (2004) 857–880. 190

43. J. Venn, ‘On the diagrammatic and mechanical representation of propositions and
reasonings’, The London, Edinburgh and Dublin Philosophical Magazine and Journal
of Science 9 (1880) 1–18. 145

44. A. Verroust and M.-L. Viaud, ‘Ensuring the drawability of extended Euler dia-
grams for up to 8 sets’, Proc. Diagrams 2004 (International Conference on the Theory
and Application of Diagrams, Cambridge, March 2004), Lecture Notes in Artificial
Intelligence 2980 (ed. A. Blackwell, et al., Springer, 2004) 128–141. 152, 156

45. J. Warmer and A. Kleppe, The Object Constraint Language: precise modeling with
UML (Addison-Wesley, 1998). 147, 191

John Howse John.Howse@brighton.ac.uk
Gem Stapleton G.E.Stapleton@brighton.ac.uk
John Taylor John.Taylor@brighton.ac.uk

http://www.brighton.ac.uk/cmis/research/vmg/

School of Computing, Mathematical and Information Sciences
University of Brighton
Watts Building
Brighton BN2 4GJ
United Kingdom

194https://doi.org/10.1112/S1461157000000942 Published online by Cambridge University Press

file:www.omg.org
mailto:John.Howse@brighton.ac.uk
mailto:G.E.Stapleton@brighton.ac.uk
mailto:John.Taylor@brighton.ac.uk
http://www.brighton.ac.uk/cmis/research/vmg/
https://doi.org/10.1112/S1461157000000942

	Introduction
	Spider diagrams: syntax
	Abstract spider diagrams
	Concrete spider diagrams

	Semantics
	Diagrammatic reasoning
	Rules of transformation of diagrams
	Derived reasoning rules

	Soundness
	Completeness
	Completeness for unitary alpha-diagrams
	Associated contour diagrams
	Associated zone diagrams
	Associated alpha-diagrams
	Combining alpha-diagrams
	Extended diagrams
	Completeness theorem

	Expressiveness
	Conclusion and further work

