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Uniformization and Steinness

Stefan Nemirovski and Rasul Gazimovich Shaûkov

Abstract. It is shown that the unit ball inCn is the only complexmanifold that can universally cover
both Stein and non-Stein strictly pseudoconvex domains.

In this note we use methods from [5] to show that the unit ball in Cn is the only
simply connected complex manifold that can cover both Stein and non-Stein strictly
pseudoconvex domains.

Here a strictly pseudoconvex domain is a relatively compact domain in a com-
plex manifold such that its boundary admits a C2-smooth strictly plurisubharmonic
deûning function.

_eorem Let Y be the universal cover of a Stein strictly pseudoconvex domain. Sup-
pose that Y is not biholomorphic to the ball. _en any manifold covered by Y does not
contain compact complex analytic subsets of positive dimension. In particular, any other
strictly pseudoconvex domain covered by Y is Stein.

Examples of strictly pseudoconvex domains covered by the ball inC2 that contain
compact complex curves (and hence are not Stein) can be found in [2]. It is well
known that the ball covers compact complex manifolds as well.

Recall also from [4,5] that a Stein strictly pseudoconvex domain is covered by the
unit ball if and only if its boundary is everywhere locally CR-diòeomorphic to the
unit sphere.

_e theorem will follow immediately from the two lemmas below.

Lemma 1 Let π∶Y → D be a covering of a complex manifold D admitting a strictly
plurisubharmonic function φ∶D → R. If A ⊂ Y is an analytic subset of positive dimen-
sion, then its projection π(A) cannot lie in a compact subset in D.

Remark 2 _eassumptions of the lemma are satisûed ifD is (an unramiûed domain
over) a Stein manifold. However, there exist examples of complex manifolds with
strictly plurisubharmonic functions but no non-constant holomorphic functions [3].
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Proof Suppose that π(A) is contained in a compact subset of D. _en there exists a
sequence of points xn = π(yn) such that xn → x ∈ D, yn ∈ A, and

sup
π(A)

φ = lim
n→∞

φ(xn) = φ(x).

Let U ∋ x be a small ball in local coordinates centered at x and let U ′ ⊃ U be a slightly
larger ball. Let h be a non-negative smooth function on U ′ such that h(x) = 0, h
is positive on ∂U ∩ {φ ≤ φ(x)}, and the C2-norm of h is suõciently small. _en
φ̃ ∶= φ − h is a strictly plurisubharmonic function on U ′ such that

(1) φ̃(x) = φ(x)
and

(2) φ̃ ≤ φ(x) − ε on ∂U ∩ {φ ≤ φ(x)} for some ε > 0.
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Figure 1: Impossible analytic sets An .

Since U ′ is simply connected, π−1(U ′) = ⊔Vj , where Vj are disjoint open sets
and π∣Vj

is invertible. We then have yn ∈ Vα(n) for every n ≫ 1 and a suitable index
α(n). Set An ∶= π(A∩ Vα(n)). _is is a complex analytic subset of U ′ containing xn ;
see Fig. 1. Since An ⊂ {φ ≤ φ(x)} by the choice of x, it follows that φ̃ ≤ φ(x) − ε
on An ∩ ∂U = ∂(An ∩ U) by property (2) of φ̃. Hence, φ̃ ≤ φ(x) − ε on An ∩ U
by the maximum principle for plurisubharmonic functions on complex analytic sets
(see e.g., [1, §6.3]). However, φ̃(xn) → φ(x) as n → ∞ by (1), and we arrive at a
contradiction.

Lemma 3 Let π∶Y → D be the universal covering of a strictly pseudoconvex domain
by a complex manifold Y that is not biholomorphic to the ball. Suppose that π′∶Y → M
is a covering of a complex manifold containing a connected compact complex analytic
subset B ⋐ M of positive dimension. _en π(π′−1(B)) is contained in a compact subset
of D.

Remark 4 In this lemma, D does not need to be Stein.
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Proof Let φ∶D → (−∞, 0] be a plurisubharmonic deûning function for D. Follow-
ing [5, §2.3], consider the function ψ on M deûned by

ψ(x) ∶= ( sup
π′(y)=x

φ ○ π(y))
∗

,

where ∗ denotes the upper semicontinuous regularisation. As shown in [5, §2.3], it
follows from [5, Corollary 2.3] that ψ is plurisubharmonic and strictly negative on M.
(It is explained in [5, §3.2] how to modify the proof of [5, Corollary 2.3] for non-Stein
domains.) By the maximum principle,

ψ∣B ≡ const. < 0.

Hence,
φ ○ π(y) ≤ const. < 0 for all y ∈ π′−1(B),

and therefore π (π′−1(B)) is relatively compact in D.

Remark 5 _e key point in the proof of Lemma 3 is the application of [5, Corol-
lary 2.3]. _at result is a consequence of [5, Proposition 2.2], which is an extension of
the well-known Wong–Rosay theorem [6, 7] to universal coverings of strictly pseu-
doconvex domains in complex manifolds.

References

[1] E. M. Chirka, Complex analytic sets. Mathematics and its Applications (Soviet Series), 46, Kluwer
Academic Publishers, Dordrecht, 1989. http://dx.doi.org/10.1007/978-94-009-2366-9

[2] W. M. Goldman, M. Kapovich, and B. Leeb, Complex hyperbolic manifolds homotopy equivalent
to a Riemann surface. Comm. Anal. Geom. 9(2001), 61–95.
http://dx.doi.org/10.4310/CAG.2001.v9.n1.a3

[3] F. Forstnerič, A complex surface admitting a strongly plurisubharmonic function but no
holomorphic functions. J. Geom. Anal. 25(2015), 329–335.
http://dx.doi.org/10.1007/s12220-013-9430-9

[4] S. Nemirovski and R. Shaûkov, Uniformization of strictly pseudoconvex domains. I. Izv. Math.
69(2005), 1189–1202. http://dx.doi.org/10.1070/IM2005v069n06ABEH002295

[5] S. Nemirovski and R. Shaûkov, Uniformization of strictly pseudoconvex domains. II. Izv. Math.
69(2005), 1203–1210. http://dx.doi.org/10.1070/IM2005v069n06ABEH002296

[6] J.-P. Rosay, Sur une caractérisation de la boule parmi les domaines de Cn par son groupe
d’automorphismes. Ann. Inst. Fourier (Grenoble) 29(1979), ix, 91–97.

[7] B. Wong, Characterization of the unit ball in Cn by its automorphism group. Invent. Math.
41(1977), 253–257. http://dx.doi.org/10.1007/BF01403050

Steklov Mathematical Institute, Moscow, Russia
and
Fakultät für Mathematik, Ruhr-Universität Bochum, Germany
e-mail : stefan@mi.ras.ru

Department of Mathematics, _e University of Western Ontario, London ON N6A 5B7
e-mail : shafikov@uwo.ca

https://doi.org/10.4153/CMB-2017-062-2 Published online by Cambridge University Press

http://dx.doi.org/10.1007/978-94-009-2366-9
http://dx.doi.org/10.4310/CAG.2001.v9.n1.a3
http://dx.doi.org/10.1007/s12220-013-9430-9
http://dx.doi.org/10.1070/IM2005v069n06ABEH002295
http://dx.doi.org/10.1070/IM2005v069n06ABEH002296
http://dx.doi.org/10.1007/BF01403050
mailto:stefan@mi.ras.ru
mailto:shafikov@uwo.ca
https://doi.org/10.4153/CMB-2017-062-2

