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0. Introduction. Throughout the paper K denotes a fixed algebraically closed field.
All algebras considered are finite-dimensional associative K-algebras with a unit element.
Moreover, they are assumed to be basic and connected. For an algebra A we denote by
mod(A) the category of all finitely generated right A-modules, and mod(A) denotes the
stable category of mod(A), i.e. mod(A)/%P where P is the two-sided ideal in mod(A) of all
morphisms that factorize through projective A-modules. Two algebras A and B are said to
be stably equivalent if the stable categories mod(A) and mod(B) are equivalent. The
study of stable equivalences of algebras has its sources in modular representation theory
of finite groups. It is of importance in this theory whether two stably equivalent algebras
have the same number of pairwise non-isomorphic nonprojective simple modules.
Another motivation for studying stable equivalences appears in the following context. If £
is a K-algebra of finite global dimension then its derived category D(E) is equivalent to
the stable category mod(£) of the repetitive category E of E [15]. Thus the problem of a
classification of derived equivalent algebras leads in many cases to a classification of stably
equivalent selfinjective algebras.

We are interested in algebras which are stably equivalent to representation-infinite
selfinjective algebras whose Auslander—Reiten quivers consist only of generalized
standard components in the sense of Skowroriski [30]. It was announced in [34] that
representation-infinite selfinjective algebras, whose Auslander-Reiten quivers consist
only of generalized standard components, are standard algebras of polynomial growth (for
the needed definitions see Section 1). Since there is given a classification of such algebras
in [32] we can use it to describe algebras stably equivalent to representation-infinite
selfinjective algebras whose Auslander-Reiten quivers consist only of generalized standard
components. The following theorem is the main result of the paper.

THEOREM. Let B be a selfinjective representation-infinite algebra in which all com-
ponents of the Auslander—Reiten quiver Ty are generalized standard. If C is an algebra
which is stably equivalent to B then C is a standard selfinjective algebra of polynomial
growth. Moreover B and C have the same number of pairwise non-isomorphic simple
modules.

Recall that the algebras stably equivalent to representation-finite selfinjective
algebras were classified by Riedtmann in [24,25,26,9]. Algebras stably equivalent to
tame trivial extensions were described in (20,23,22]. In both cases there was linked a
tilting-cotilting equivalence of some factor algebras to any stable equivalence. In our case
the situation is a little bit different. Any stable equivalence of B and C can be lifted to a
stable equivalence of Galois coverings B, C of B and C, respectively. Furthermore the
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lifted stable equivalence of B and C is induced by a tilting-cotilting equivalence of some
subcategories in B and C.

1. Preliminaries.

1.1. Let K[X] be the polynomial algebra in one variable. Following Drozd [12] an
algebra A is called rame if, for any dimension d, there is a finite number of
K[X]-A-bimodules Q;, 1=i=n,, which are finitely generated and free as right
K[X]-modules, and satisfy the following condition: all but a finite number of
isomorphism classes of indecomposable A-modules of dimension d are of the form
K[X]/(X = A)®kxQ; for some A € K and some i, 1 =i=n,.

Denote by u,(d) the least number of bimodules Q; satisfying the above condition for
d. Then A is said to be of polynomial growth [31] if there is a natural number m such that
pad)=d".

1.2. Let R be a locally bounded K-category [8]. We denote by mod(R) the category
of all finite-dimensional contravariant functors from R to the category of K-vector spaces.
For a group G of K-linear automorphisms of R acting freely on the objects of R, R/G
denotes the quotient category [14] whose objects are the G-orbits of the objects of R.
There is a Galois covering functor F:R — R/G which assigns to each object x its G-orbit
G . x. A locally bounded K-category R is called simply connected [29] if it is triangular (its
quiver has no oriented cycles) and any Galois covering of R is trivial. A locally bounded
K-category R is called standard if it admits a Galois covering R'— R with R’ simply
connected. To every algebra A we can attach the locally bounded K-category R, whose
objects are formed by a complete set £ of pairwise orthogonal primitive idempotents of
A, R(e,f)=fAe, e, f € E, and the composition is induced by the multiplication in A. An
algebra A is called standard if the attached locally bounded K-category R, is standard.

1.3. For an algebra A we shall denote by I',; its Auslander—Reiten quiver [5], and by
7, ©~ the Auslander-Reiten translations DTr and TrD, respectively [4]. We shall not
distinguish between an indecomposable module, its isomorphism class and the vertex of
', corresponding to it. Moreover, we denote by [ the stable quiver of I', obtained from
I'4 by removing the t-orbits of all indecomposable projective modules and the 7~-orbits
of all indecomposable injective modules and the arrows attached to them.

1.4. A connected component € of the Auslander-Reiten quiver I',; of A is said to be
sincere if for each indecomposable projective A-module P there is an A-module X whose
isomorphism class is contained in € such that Hom,(P, X) #0.

1.5. Recall from [30] that a component € of the Auslander—Reiten quiver I'4 of an
algebra A is called generalized standard if rad*(X, Y) = 0 for all modules X and Y from 4,
where rad®(mod(A)) is the intersection of all powers of the Jacobson radical rad(mod(A))
of mod(A).

1.6. Following [13] a component T of I, (respectively, of I'};) is said to be a tube if T
contains a cyclic path and its geometrical realization |T| is homeomorphic to §' X Ry
where S' is a unit circle and Ry is the set of non-negative real numbers. For a tube T the
set S' X {0} of |T| called its mouth. A stable tube of rank n =1 is a translation quiver of
the form ZA./(7"). The stable tubes of rank one are said to be homogeneous. A family
T =(T})i, of tubes in ', (respectively, in I'};) is said to be standard if the full subcategory
of mod(A) (respectively, mod(A)) formed by the objects of 7 is equivalent to the
mesh-category K(J) of 7 (see 27, Section 2}).
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1.7. Recall from [32] that a quasitube T is a component in I, such that its stable part
T is a tube.

1.8. Let n=(n,,n,,...,n) be a natural ¢-tuple. A family 7 = (7)), cpx, P K=KU
{0}, of quasitubes in I', is said to be a wwbular P,K-family of type n if the following
condition is satisfied: the stable part 9° of J is a disjoint union of stable tubes T3,
A € P, K, such that ¢ of these tubes have ranks n),n,,...,n, and the remaining ones are
homogeneous.

1.9. Two components 4,, 4, in I', are said to be orthogonal if for any X € 4,
Y € 4, Hom,(X, Y)=0=Hom,(Y, X).

1.10. A cycle in mod(A) is a sequence My—M,—---— M, =M, of nonzero
non-isomorphisms between indecomposable A-modules. Following [33] A is said to be
cycle-finite if for every cycle in mod(A) all of morphisms on this cycle do not belong to
rad*(mod(A)).

1.11. Following [7,17] we shall say that a module Z in mod(A) is a tlting
(respectively, cotilting) module if it satisfies the following conditions:

(1) Ext3(Z,-) = 0; (respectively, Ext3(-, Z) = 0);

(2) Exty4(Z,2)=0;

(3) the number of non-isomorphic indecomposable summands of Z equals the rank
of the Grothendieck group Ky(A) of A.

Two algebras A and F are said to be tilting-cotilting equivalent if there exist a
sequence of algebras A=Ay, A,,...,A,,A,,.,=F and a sequence of modules Z/,
0=<i=m, such that A,,, =End,(Z) and Z' is either a tilting or a cotilting module.

2. Partially directed K-categories.

2.1. Let A be a partially ordered set. A connected locally bounded K-category R
whose Auslander-Reiten quiver consists only of generalized standard components is
defined to be A-directed provided that there is a partition | 5., 5 of the Auslander-
Reiten quiver I'; onto the disjoint union of families J; of pairwise orthogonal
components such that the following conditions are satisfied:

(1) If X € add(75,), Y € add(T5,) and Homg(X, Y) #0 then 6, < §,.

(2) For every pair 8, o € A such that § <o and every pair of components 46 € I,
D e I, there exists a finite sequence {8;,6,,...,8,,6,+;=0}cA such that §=<4§, =

---=§,=38,,,, and there exists a sequence of modules {X,, X\,..., X,, X,+.} such that
Xo € add(€), X; eadd(T;), i=1,...,r, X,;, € add(D) and Homg(X;, X;.) #0 for each
j=0,1,...,r.

(3) There are at most finitely many projective vertices in every J;, 8§ € A.

A partition | |5.,7; satisfying the above conditions is called A-induced.

2.2. A K-automorphism f:R— R of a A-directed locally bounded K-category R is
said to be A-induced if there is an automorphism f’':A— A of the partially ordered set A
such that the induced by f equivalence F;:mod(R)— mod(R) satisfies the following
condition: if X e add(J;), 8 € A, then F;(X) € add(Ts))-

2.3. Lemma. Let A be a linearly ordered set. If R is a A-directed locally bounded
K-category then every K-automorphism f:R — R is A-induced.

Proof. Assume that f:R— R is a K-automorphism of a A-directed locally bounded
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K-category R. Then the induced equivalence F;:mod(R)— mod(R) preserves indecom-
posability of modules and irreducibility of morphisms. Thus F; maps connected com-
ponents of 'y onto connected components. First we shall show that F; yields a bijection
between the set {J;s}s.a Of families of pairwise orthogonal components. In order to do
this it is sufficient to show that if €, @ € J;, 6 € A, then F(%6), F/(9) € J5.. Suppose to
the contrary that F;(%) € J5 and F(9) e T with ' # §". Without loss of generality we
may assume that §' < 8", for A is linearly ordered. Consider a sequence X4, X,..., X+
of modules such that X, € add(F; (%)), X; e add(T5,), i =1,...,r, X,., € add(F(D)) with
Homg(X;, X;+1) #0, j=0,1,...,r which exists by 2.1(2). Clearly §'<§,=...=48" by
2.1(1). Applying F;-i we get that there is the sequence F;-i(Xo), Fr-«(X,),..., F-(X,),
Fy(X,+1) of modules such that Homg(F;-(X)), Fp-(X;+))#0, j=0,1,...,r, and
Fii(Xo) € 6, F;-(X,+1) € 2. Then each indecomposable direct summand in Fy-(X;) e

Ts. with §;,=48 by 2.1(1). Since Fp-(Xo), Fp-(X,+) € T hence all §;,=8 which
contradicts the orthogonality of all components in J5. Consequently, if €, 2 € J; then
F(%), F;(?)e J5. Hence F; induces a bijection f':A— A given by the condition:
f'(8) = o iff there is an R-module X e add(J;) such that F(X) € add(7,). In order to
finish the proof we should show that f':A— A is an automorphism of the partially ordered
set A. Suppose that 8, = 6, in A. Then for some X € add(J ;) and some Y e add(7;,) we
have F;(X) € add(Js,)) and F;(Y) e add(Js,). But R is A-directed, hence there are: a
sequence {oy,...,0,,0,.,=8}cA with § =0, and a sequence of R-modules
{Xo, X1,.. ., X,, X,1\} such that X,eadd(7;), X eadd(7,), i=1,...,r, X,. €

add(Js,) with Homg(X;, X;.,)#0,j=0,1,...,r, by 2.1(2). Since F;is an equivalence we
obtain by 2.1(1) the following sequence of inequalities: f'(8,))=f'(o)=...=f'(0,) =

f'(8,). Consequently f'(8,)=<f'(6,) and f’ is an automorphism of A. Thus f is
A-induced. 0O

2.4. Following [32] a group G of K-linear automorphisms of a locally bounded
K-category is said to be admissible if its action on the objects is free and has finitely many
orbits.

2.5. CoroLLARY. Let A be a linearly ordered set. If R is a A-directed locally bounded
K-category and G is an admissible infinite cyclic group of K-linear automorphisms of R
then G consists of A-induced K-automorphisms.

Proof. Clear by Lemma 2.3.

2.6. LemMA. Let A be an infinite linearly ordered set. If R is a A-directed locally
bounded K-category with infinitely many objects and G an admissible infinite cyclic group
of K-linear automorphisms of R then G is a group of automorphisms of A.

Proof. Under the assumptions of our lemma there is a map (-)": Autx(R)— Aut(A)
by Lemma 2.3, where f':A— A is an automorphism of A such that, for f € Autx(R) and
for every X e add(75), F;(X) € add(J(5)). Observe that the restriction (=) of (-) to a
subgroup G in Autk(R) is a group homomorphism (-)¢;: G — Aut(A). Indeed, (idg)’ = id,
by the definition of (-)". If g, f € G then the induced equivalence F,;:mod(R)— mod(R)
is of the form F,, = F,F; and (gf)' =g'f’. Finally (f~') = (f')™" is clear by the definition
of (-)'. Consequently (-);;: G — Aut(A) is a group homomorphism for every subgroup G
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of Autg(R). In order to finish the proof we should show that (-)s is a monomorphism
when G is an admissible infinite cyclic group. In this case, if f' =id, and f = g* for some
z € Z, where g is a generator of G, then (g')* = id, since (=) is a homomorphism. But
the induced (by g°) equivalence F:=F,... F, maps every family 5, 6 € A, onto itself.
Thus F,: can map projective vertices from a family J;, for a fixed & € A, only onto
projective vertices in the same family. Since R is A-directed there are at most finitely
many projective vertices in every family 7, ¢ € A, by 2.1(3). If z is the minimal natural
number such that (g')* =id, then (g')*=g’...g" and g'#id, or z=1. If z#1 then
g'(80) < 8y or g'(8,) > 8, for some &, e A, because A is linearly ordered. In the first case
we obtain that (g')*(8,) <(g')* " "(8y) <...<g'(8,) <8, which contradicts the fact that
(g')* =id,. In the second case one gets a similar contradiction. Consequently z = 1. Then
G is not admissible, because it has infinitely many orbits of the objects of R. This proves
the lemma. O

2.7. Now we assume that there is given an infinite linearly ordered set A and an
infinite cyclic group G acting on A nontrivially and nontransitively. Fix an element §, € A
and consider the set A\G . §, with the induced order by that in A. Thus we have:

2.8. LEMMA. ANG . 8, is a disjoint union | |, ., A, of linearly ordered sets A,, 7 € Z,
such that the following conditions are satisfied:

(1) Ifzu<z,and 6, € 4, 6, € A, then §, < 8,.

(2) For any two z,, z; € Z there is an isomorphism A, = A_, of partially ordered sets.

(3) There is a linear order on the set of the G-orbits A" = (A\G . 8,)/G of A\NG . §
such that A' = A,,. '

Proof. Under the assumptions and the notations of 2.7 consider a generator f of G.
Then either 8, <f(8,) or f(8,) <8, since f+#*idy and A is linearly ordered. We shall
consider only the case 8, <f(8,), because the other one is similar. In the case we obtain
inductively that f3(8,) <f**'(8,) for every integer z. We put A, ={8 € A:f3(8,) <8<
3 '(8y)}- Since G acts on A nontrivially and nontransitively hence A, # & for any integer
z. Since A, c A, z € Z, consider in A the order of A. Thus A, is linearly ordered set
obviously and A\NG . §,=| |,z A, which proves (1).

In order to prove (2) observe that for any two integers z;, z, such that z; <z, the
restriction of f%7% to A,, yields an isomorphism of A, and A_,.

Now consider the set A’ of the G-orbits of ANG . §,. Observe that there is a bijection
h:Ay— A’ given by the formula #(8) = G . 8. This bijection induces a linear order on A’
such that A’ = A, as partially ordered sets.

2.9. Let R be a A-directed locally bounded K-category, where A is a given partially
ordered set. Let I'x = |sca 75 be a A-induced partition of I's. Then a family 7, for
some 8, € A, is said to be separating [28] if for any §,, 5, € A such that §, =<§,=4, and
any nonzero morphism f:X —Y such that X eadd(7;), Y €add(J;,) there are
Z eadd(J5;), firX—>Z,£,:Z—>Y with f =f,f,. Similarly, a component € in 7, is called
separating if the above Z e add(€). Clearly, if all components of T, are separating then
T s, 1s separating. The converse implication is not true in general.

2.10. LemMA. Let A be an infinite linearly ordered set. Let R be a A-directed locally
bounded K-category that has a separating family 5. If G is an admissible infinite cyclic
group of K-linear automorphisms of R then for any g € G, J,.(5,, is a separating family.
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Proof. Under the assumptions and the notations of our lemma consider a A-induced
partition 'y =] |s.a 5 and an element g € G. We deduce from Lemma 2.3 that g is
A-induced. Then there is an automorphism g':A— A of the partially ordered set A such
that the induced by g equivalence F,:mod(R)— mod(R) satisfies the following implica-
tion: if X e add(J;) then F,(X) e add(J,s), 6 € A. Now suppose that X e add(J;,),
Y €add(J;,) and 6,=g'(8p)=6,. Let f:X—Y be any nonzero morphism. Then
(€)7'(8)=8:,=(g')""(82) and F,-(X)eadd(T)-ys,), Fe-(Y) e add(T)-ysy),
Fo-(f): Fy-(X)— F,-(Y). Since 75, is separating, there are Z e add(J,), fi: Fy-(X)—
Z, fr:Z— F,(Y) such that F-(f)=ffi by 2.8. Therefore F,(Z) e add(J,s,) and
f = F.(f)F,(f). Consequently, T, is a separating family of components, and our proof
is finished. O

3. Selfinjective standard algebras of polynomial growth.

3.1. The repetitive category (see [18]) of a locally bounded category R is the
selfinjective locally bounded category R whose objects are pairs (n,x)=x,, x e R, n e Z,
and R(x,,y,) ={n} X R(x,y), R(xys1,yn)={n} < DR(y,x), and R(x,,y,)=0 if p+#q,
q + 1, where DV denotes the dual space Homg(V, K).

3.2. A Euclidean algebra is a representation-infinite tilted algebra of Euclidean type
having a complete slice in the preprojective component [28]. We shall use also tubular
algebras in the sense of Ringel. For the basic definitions and results concerning Euclidean
and tubular algebras we refer the reader to [28]. Recall that the extension type n, of a
Euclidean algebra A is one of the following (p,q), 1=p=gq, (2,2,m), m=2, (2,3,3),
(2,3,4) or (2,3,5). The extension type n, of a tubular algebra A is one of the following
(3,3,3), (2,4,4,), (2,3,6) or (2,2,2,2). We shall call them, briefly, types.

3.3. The following theorem is the main result of [32].

THEOREM. Let B be a standard, selfinjective K-algebra. Then B is representation-
infinite of polynomial growth if and only if B is isomorphic to an algebra A|G, where A is
either a Euclidean or a tubular algebra and G is an admissible infinite cyclic group of
K-linear automorphisms of A.

3.4. LemMA. Let A be a Euclidean algebra. Then A is a Z-directed locally bounded
K-category such that the Z-induced partition T;i=|]1,.29, satisfies the following
conditions:

(1) For any even z, I, consists of one connected component which contains at least
one projective vertex, and whose stable Auslander—Reiten quiver is isomorphic to ZQ 4,
where Q4 is the ordinary quiver of A. Moreover, I, contains only finitely many projective
vertices.

(2) For any odd z, 9, is a tubular P,K-family of quasitubes, whose stable
Auslander—Reiten quiver is a tubular P, K-family of type n,.

(3) Every family 7, is a separating family of components.

Proof. See (32, 2.1].

3.5. LeMMA. Let A be a tubular algebra. Then A is a Q-directed locally bounded
K-category such that the Q-induced partition T;=||,.q7, satisfies the following
conditions:

(1) For every q € Q\Z, J, is a tubular P, K-family of type n, of stable tubes.
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(2) For any q € Z, 9, is a tubular P,K-family of quasitubes which contains at least
one and at most finitely many projective vertices. Moreover, the stable Auslander-Reiten
quiver of I, is a tubular P,K-family of type n4.

(3) Every family J, is a separating family of components. Moreover, for q € (Q\Z)
every component in 7, is a separating component.

Proof. See [32, 3.1] or [19, Section 3] or else [16].

3.6, LEMMA. Let A be a Euclidean algebra. If P, P' are indecomposable projective
A-modules and P € J,, P' € 7., Hom;(P, P')#0, then z =z' =z + 4.

Proof. The lemma is a consequence of [1, Proposition 2.5].

 3.7. LemMa. Let A be a wubular algebra. If P, P' are indecomposable projective
A-modules and P e 9, P' € ., Hom;(P,P')#0 then q<q'<gq + 3.

Proof. The lemma is a consequence of [1, Proposition 2.5].

4. The structure of the Auslander—Reiten quivers of some standard algebras.

4.1. Let R be a locally bounded K-category and G an admissible group of K-linear
automorphisms of R. Then there is a covering functor F:R — R/G induced by the action
of G on R [14] which attaches to every object of R its G-orbit. Then F, denotes the
induced push-down functor F,:mod(R)—->mod(R/G) [8,14]. If G is torsion-free then F,
preserves indecomposables, Auslander—Reiten sequences, and maps projective R-
modules onto projective R/G-modules, injective R-modules onto injective R/G-modules.

4.2. A locally bounded K-category R is said to be locally support-finite (10, 11] if for
every indecomposable projective R-module P, the set of isomorphism classes of
indecomposable projective R-modules P’ such that there exists an indecomposable
finite-dimensional R-module M with Homg(P, M) # 0 # Homg(P', M) is finite. If R is
locally support-finite K-category then F, is dense and induces a bijection between the set

(ind(R)/ =)/G of the G-orbits of the isomorphism classes of finite-dimensional indecom-
posable R-modules and the set ind(R/G)/ = of the isomorphism classes of indecom-
posable finite-dimensional R/G-modules [10].

4.3. ProrosiTION. Let A be an infinite linearly ordered set. If R is a A-directed locally
support-finite K-category which has a separating family J5, and G is an admissible infinite
cyclic group of K-linear automorphisms of R then there are a family T of components in
TriG, a linearly ordered set M# @ and a partition Tg,c\T = |,cm T, onto a disjoint
union of families of components such that the following conditions are satisfied:

(1) For every two different components €, De J,, wneM, if Xe€, YeD and
f:X —Y is a nonzero morphism then there are Z € add(7), fi: X - Z, f,:Z— Y such that
f=hf

(2) If my<pp in M, Yeadd(7,), X eadd(J,,) and f:X—Y is a nonzero
morphism then there are Z € add(9), fi: X = Z, f,:Z— Y such that f = f, f;.

Moreover, if the induced action of G on A is nontransitive and there is a separating
family T, of components such that 8,< 8,<g(8,) for the generator g of G then
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(3) For every two different components €, D e J,if X €6, Y e Dand f:X—->Yisa
nonzero morphism then there are Z € add(Fg;c\7), fi: X = Z, ,:Z— Y such that f = f, f,.

Proof. Let R be a A-directed locally support-finite K-category, where A is an infinite
linearly ordered set. Assume that G is an admissible infinite cyclic group of K-linear
automorphisms of R. Let I'x=|]s.4 75 be a A-induced partition of I'x, and T a
separating family of components, §, € A. Denote by C the quotient category R/G. Then
F:R— C denotes the covering functor induced by the action of G on R. F,:mod(R)—
mod(C) is the induced push-down functor which is dense by 4.2, because R is locally
support-finite. Put J = F,(T;). We deduce - from Lemma 2.8 that there is a linearly
ordered set M= A" such that I'c\J has a partition | |, ., 7, onto a disjoint union of

- families of components, where J,, = F,(J5), 6 € A is such an element that G. § = u. Thus
for any two different components €, @ from F(9;) if X €4, Ye D and f: X —->Yis a
nonzero morphism then there are components €' € 75 and 9’ € I, with §,, 6, € G. 8
and there are R-modules X' e C’, Y' € 9@’ with a nonzero morphism f':X'— Y’ such
that FL(X')=X, F,\(Y')=Y and F(f')=f, for F, is dense. But R is A-directed and
{Ts}s<a are the families of the A-induced partition of I's hence 6, <8, by 2.1. Since §,,
8, € G. 6 hence there is 8, € G . §, such that §, < §,< §,. Since T, is a separating family
hence we deduce from Lemma 2.10 that J; is a separating family. Then there are
Z' eadd(Ty), f1:X'=Z', f3:Z'= Y’ such that f'=f;f| by 2.9. Clearly F(95)=9.
Thus F(Z')=Z e add(J) and f =f,f;, where F,(f1)=fi:X—Z and F,(f3)=f:Z—-Y.
Consequently condition (1) is proved.

Now assume that p,<u, in M, Y eadd(7,,), X eadd(J,,) and f: X —Y is a
nonzero morphism. Then there are §,, 6,eA such that G.8,=u,, G.8;= u,.
Moreover, there are X' e add(J5,), Y’ € add(J5,) and f': X' — Y’ such that F,(X') =X,
F(Y'y=Y and F\(f')=f Since R is A-directed and A is linearly ordered hence §,< §,,
because u, < p,. If there is no ;e G. §, such that §,< ;< 8, then u,<pu, by the
definition of the order in A’ (see the proof of Lemma 2.8), which contradicts the
assumption that p, < u,. Thus there is §; € G . §; such that §, < §,< §,. Therefore there
are Z' eadd(Ts,), f1:X'—>Z', f2:Z'—> Y’ such that f' =f,f| for T is separating by
Lemma 2.10. Then there are Z=F\(Z')e I, F\(f1)=fi:X>Z, F(f3)=f,:Z—Y such
that f = f, f; which proves condition (2).

The proof of (3) is similar to that of (1), since we can use conditions (1), (2) for the
family F,(J5;). We leave the details to the reader. O

4.4. If G is an admissible infinite cyclic group of K-linear automorphisms of a locally
support-finite K-category R then the quotient category R/G is a finite-dimensional
K-algebra. For a finite-dimensional K-algebra H a family J of components in the
Auslander-Reiten quiver I'y, is defined to be weakly separating if there is a non-empty
linearly ordered set M and a partition I' N\ =| |, .\ 9, of [';\ T onto a disjoint union
of families 7, of components such that the conditions (1)-(3) of Proposition 4.3 are

satisfied. The set M will be called J-induced.

4.5. THEOREM. If B is a standard selfinjective representation-infinite K-algebra of
polynomial growth then there is a weakly separating family T of components in [y with a
T-induced set M of one of the following forms:

Ay ={1,2,...,2i+1},i=0,1,2,..., with the order as in N,
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Bon=00,NNQ,i=1,2,..., with the order as in Q.
Moreover, every family J, of the partition T'y\T =||,.m T, is also a weakly
separating family of components in Iy with a J,-induced set which is isomorphic to M.

Proof. Let B be a standard selfinjective representation-infinite K-algebra of polyno-
mial growth. Then B = A /G, where A is either a Euclidean or a tubular K-algebra and G
is an admissible infinite cyclic group of K-linear automorphisms of A by Theorem 3.3. If
A is a Euclidean K-algebra then A is a Z-directed locally support-finite K-category which
has a separating family 7, z € Z, by Lemma 3.4. Thus B has a weakly separating family
I of components in I'; by Proposition 4.3. Moreover, the 7-induced set M is of the form
Ayiv1={1,2,...,2i+1}. i=0,1,2,... by its construction in the proof of Proposition 4.3
and by Lemma 3.4, 2.8, 2.10. If A is a tubular K-algebra then A is a Q-directed locally
support-finite K-category which has a separating family J,, ¢ € @, by Lemma 3.5.
Therefore B has a weakly separating family 9 of components in I'y by Proposition 4.3.
Moreover, the J-induced set M is of the form 48, =(0,/)NQ, i=1,2,3,..., by its
construction in the proof of Proposition 4.3 and by Lemma 3.5, 2.8, 2.10. The last
statement of the theorem is clear. O

5. Selfinjective algebras with Auslander—Reiten quivers all of whose components are
generalized standard.

5.1. Throughout this section we shall assume that B is a standard selfinjective
representation-infinite K-algebra of polynomial growth. Sometimes we shall use in the
notations of Theorem 4.5 the convention that the family J has the index either 2i + 2 if
M=A, oriif M=Ay,.

5.2. Let ind(B) denotes the full subcategory in mod(B) formed by the indecom-
posable B-modules. For a nonzero non-isomorphism f:X — Y we define its M-length
Iu(f) as follows: if f = F,(f): F(X)— F,(Y), where F,:mod(A)— mod(B) is the push-
down functor, then X e Tss Ye s, and we put ly(f)=8;— 8,. Furthermore, for a
nonzero non-isomorphism 4:X — Y in mod(B) we have a decomposition h:X,® ... ®
X, - Y& ... ®Y,, where X,, I=1,...,n, Y, j=1,...,m, are indecomposable and
h=(h;) with h;:X,— Y, Then we define the M-length of & as ly(h) = max, {ly(h;)}.
Moreover for any isomorphism f we put [,(f)=0. It is easy to verify that the above
definition does not depend on the choice of pullings-up X, ¥, and so M-length of a
morphism is well-defined. For the algebra B we define its M-spread spry(B) as

SUP(»#f{[M(f)}-

53. Lemma. If 0#f: X =Y is a morphism in mod(B) then there is a morphism
h:P— P’ between indecomposable projective B-modules P, P' such that ly(f) < l(h).

Proof. In order to prove the lemma consider the composed morphism h, =wy fpy,
where py:P(X)— X is a projective covering morphism and wy:Y — I(Y) is an embed-
ding of Y into its injective hull. Then ly(h,) = ly(f). If we decompose h,:P(X)— I(Y)
then there are an indecomposable direct summand P in P(X), an indecomposable direct
summand P’ in /(Y) and a nonzero morphism £ : P — P’ such that lyy(h) = lyy(h) = Ly (f)
by 52. O

5.4. If G is an admissible infinite cyclic group of K-linear automorphisms of A and g
is a generator of G then g is a A-induced automorphism by Corollary 2.5, where A = Q or
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A =7. Thus there is an automorphism g':A— A associated to g as in 2.2. Then a A-stroke
of g is defined to be the natural number sty(g) =1|g'(8) — 8|>0 for any & € A. Clearly
sta(g) is independent of the choice of & € A.

5.5. PrROPOSITION. Let A be either a Euclidean or a tubular algebra. Let G be an
admissible infinite cyclic group of K-linear automorphisms of A, g a generator of G and
B =A/G. Then the following conditions are equivalent:

(1) All components in Iy are generalized standard.

(2) One of the following conditions holds:

(2) sta(g) > spraa(B).

(2b) sta(g) = spru(B) and for every indecomposable projective B-Module P it holds
that P and the injective hull I(top(P)) of top(P) do not belong to t ¢ same component
in F,,.

Proof. First we shall show that condition (2) implies condition (1). Assume that
sta(g) > spry(B). Suppose to the contrs.y that there is a component € in I'; which is not
generalized standard. Then :there a.- X, Ye ¥ and 0#f: X —Y such that fe
rad*(mod(B)). Since, A is locally suppc .-finite, there are X, ¥ eind(A), 0#f: X >V
with X e Ts,» Y € J5; such that F(f) =f, R(X)=X, FE(Y) =Y. But all components in
I'; are generalized standard hence §, 7562 We deduce from Corollary 2.5 that g is
A-induced, so there is an automorphlsm g':A— Asuch that if Z € J; then F,(Z) € T45),
where F, is an automorphism of mod(A) induced by g. Since X, Y € € hence there isa
natural number n such that either (g')"(8,) =8, or (g')™"(6,) = 62 Then sta(g) =18, — 8,
and clearly ly(f) =8, — 8,| =spry(B). Consequently sty(g) = spry(B) which contradicts
our assumption. Thus every component in I'y, is generalized standard.

Now assume that sti(g) =spry(B) and for every indecomposable projective B-
module P it holds that P and /(top(P)) do not belong to the same component. Again
suppose to the contrary that there is a component € in I'y; which is not generalized
standard. Hence there are X, Y € ¥ and 0# f:X — Y such that f e rad*(mod(B)). Then
by Lemma 5.3 there are indecomposable projective B-modules P, P’ and 0#h:P— P’
such that h erad”(mod(B)). Clearly we can choose P as an indecomposable direct
summand in P(X) and P’ as /(top(P}). Then we can consider the following composed
morphism wnfp, where p:P— X is induced by a covering morphism P(X)— X,
n:Y - Y/rad(im(f)) is an epimorphism and w:Y/rad(im(f))— P’ is induced by an
embedding Y/rad(im(f))— I(Y/rad(im(f))). Then 0% wnfp e rad”(mod(B)). Since
sta(g) = spry(B) hence P and P’ belong to the same component which contradicts our
assumption. Consequently, every component in 'y is generalized standard.

Now assume that every component in Iy, is generalized standard. First we shall show
that sty(g) =spry(B). Suppose to the contrary that sty(g) <spry(B). Then there is
0#f:P— P’ between indecomposable projective B-modules such that ly(f) > sts(g) by
Lemma 5.3. Since A is locally support- -finite hence there is 0#f:P— P’ in mod(A)
where P e T, Pe Js, and FE(P)=P,F(P)=P', F(f)=f,16, — 8, >sts(g). But 4 is
A-directed, so 8,>6, and 6,<g'(6,)< 8§, or §, <(g’)"(8,)<82, because A is linearly
ordered. We shall consider only the first case since the other one is similar. If A is tubular
then there exists 8,e @ such that 8, <§,<g'(8,) and g'(8,)<g’'(8,) <8, Clearly f
factorizes through a module W, from add(J5,) and through a module W, from add(J,.(s,,)
by Lemma 3.5. We can choose W, eadd(%4) and W, e add(F,(%)), where € is a
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component from 7 by [16, Section 2], because we can choose 8, e (Q\Z). Thus
F =Fhf, where Ji:P>W,, h:W,—>W,, f: Wz—-> P'. Therefore F,(f):F(W,)— F(W,)
is a morphism from rad*(mod(B)) and F,(W,), F(W,) € add(F,(€)) which contradicts
generalized standardness of the components in I's. If A is Euclidean then st (g) >2 by
Lemma 3.6 and we obtain similarly that F,(J,), z even, is not a generalized standard
component in I'; by Lemma 3.4. Consequently we have proved that sty(g) = spry(B). In
order to finish our proof we should only show that if sty(g)=spry(B) then P and
I(top(P)) do not belong to the same component, where P is any indecomposable
projective B-module. Suppose to the contrary that there is an indecomposable projective
B-module P such that P, I(top(P)) € €. Then the composed morphism wp # 0, where
p:P—top(P), w:top(P)— I(top(P)) and wp e rad*(mod(B)). This contradicts the as-
sumption that all components in I'y are generalized standard. Thus the proposition
follows. [

5.6. CoroLLARY. If B is a selfinjective representation-infinite K-algebra with all
components in I'y generalized standard then the following conditions are satisfied:

(1) There is a partition Ty =|_|,cn T, such that for every ve N, 7, is a weakly
separating family of components and N\{v} is isomorphic to ;.\, i =1 or to Ay, i = 3.

4 if N\M{vi=Ay.,
(2) SprN\(V)(B)_{3 if N\{vi=A4,

Proof. Since any selfinjective representation-infinite K-algebra B with all com-
ponents in I'; generalized standard is a standard algebra of polynomial growth by [34]
hence the corollary is clear by Theorem 4.5, Proposition 5.5 and Lemma 3.6, 3.7, 5.3. O

5.7. Under the assumptions and the notations of 5.6 we have the following.

CoroLLARY. If 0#f:X — Y is a morphism such that its coset modulo P(X,Y)f #0
then

2 if N\{vi=Ay.,iz1,
bl = {1% if N\{v}=Apiz1
Proof. Observe that by [21] we have the following fact. For every nonprojective
indecomposable B-module X there is 0% p:7" QX — X such that for any 0#f:Y - X
there is h:7 QX — Y with p =fh, where Q is the Heller’s loop-space functor. Thus
Liw(f) is maximal, where f#0, iff f acts from 7~QX into X. Then for any hereditary
algebra H a simple verification shows that IN\M( f) =2. For canonical tubular algebra E it
follows from [23, Lemma 1.6] that /y.;,;(f) = 13. Since for a Euclidean algebra A we have
mod(A) is equivalent to mod(H) and for a tubular algebra A we have mod(A) is
equivalent to mod(E), the corollary follows. O

6. Components of algebras stably equivalent to algebras whose components are
generalized standard.

6.1. Throughout this section we assume that B is a selfinjective representation-
infinite K-algebra such that all components in I'; are generalized standard. Moreover, we
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assume that C is an algebra which is stably equivalent to B and ®:mod(B)—mod(C) is a
fixed equivalence. We shall denote by ®~' a quast-inverse of ®. It is well-known and easy
to prove that C is also selfinjective.

6.2. LEMMA. Let X, Y be two nonprojective indecomposable C-modules which belong
to a component G in T¢c. If f e rad™(X, Y) is a nonzero morphism then f = 0.

Proof. Under the assumptions and the notations of the lemma suppose to the
contrary that there is f € rad*(m8d(C)) with f # 0. Then there is 0 # d: X, — Y, such that
®(X,) =X, ®(Y,) =Y and &(d) = f. Since the stable Auslander-Reiten quiver is invariant
under taking stable equivalences by [6] hence there is a component %, in T such that X,
Y, € 6. Observe that therg is such d':X,— Y, that ®(d’)=f and d’ e rad”(mod(B)).
Indeed, if f erad*(mod(C)) then f=flh_h_,,\...h_1hoh, ... h,_\h,.f;, where h; e
rad(mod(C)), so it is neither a split epimorphism nor a split monomorphism, j = —s,
-s+1,...,-1, 0, 1,...,r. Moreover, for arbitrary large natural s or r, f has a
decomposition of the above form. Thus we can choose d' =d1__,. ...ttt

.. t,_.t,d! such that d(d))=fl, P =f, (b)y=h, j=—s,...,~1,0, 1,...,r. Bul
passing from a decomposition fih_,...h_ihoh,.. . hfl to fih_s_ih_y... h_jhoh,
.o hh fl, we decompose fi=fi. h_,r, and f/=h,. f/s, in the following way. If
fi:@®i.Z,— Y with all Z; indecomposable, i=1,...,n, then for every i=1,...,n

4
there is an Auslander-Reiten sequence of the form 0— Z;, »R;— t7(Z,)— 0 by [4].

Clearly fi=(fi1,...,fin), Where f;;:Z;,— Y. Then we know from [4] that there is a
morphism f;,,;:R;,— Y such that f; ;= fi,, /.. Thus putting

L 0 0 ... 0

0O 4L 0 ... 0

firm=(firrts- s femnyand h_g =
00 ... 0 |
we obtain a decomposition f; = f,h_,_, with h_,_, € rad(mod(C)). Dually one decom-
poses f; = h,,, f;+1. Thus for arbitrary large natural s or r, d' has a decomposition of the
above form. Therefore d’ € rad"(mod(B)) and d' = d since ®(d’) = ®(d) = f. Since d” # 0

hence d’'#0, and so we get a contradiction to our assumption on generalized
standardness of all components in I';, which finishes the proof.

6.3. Lemma. If 0#f: X > Y is such a morphism that f e rad*(mod(C)) and X,
Y e add(%€) are without projective direct summands, where € is a component in U, then f
factorizes through a module W e add(I' -\ 6).

Proof. Assume that 0#f:X —>Y with X, Y eadd(%) without projective direct
summands, f e rad*(mod(C)), where € is a component in I'c. Since f e rad™(mod(C))
there is a decomposition f=fh_....h_hoh,... h.f], where h;erad(mod(C)),
j=-s5,...,-1,0,1,...,r. Moreover, for arbitrary large s or r, f has a decomposition of
this form.

Passing from f=fh_ ... h_yhoh, .. . hf'to f=fih_soy...h_(hoh, ... h.f] we
decompose f.=f..1h__, as in the proof of Lemma 6.2. Passing from f=
fehog.  h_ojhohy oo hf] o f=fh_ .. hohoh .. hofs, we decompose f)=
h.+1 f'+) as in the proof of Lemma 6.2.
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Let hj:W,—W,_,j=-s+1,...,-1,0,1,...,r. Clearly we may assume that all W,

J
are in add(‘@) Indeed if W, e add(I'c\€) then f factorizes through W, and the required
condition (in the lemma) holds. If W,

has a decomposition W, ®@ W, wnth W, e add(%)
and W} e add(I'c\€) then we can con51der the morphism fih_, ... h;,_\h kb

" " " —
h f,. , where h/l)+ ). W”+ 1 W/", /"+ 1= (h/”+ 1 hj(ﬁ‘ 1 )’ h/()+ L ul](l'*‘ 1 ‘4/10’ hj() -

h
( )W @ Wi W,
Jo
j==s5,...,0,...,r
Now consider the case when r can be arbitrarily large. Then there is j, € N such that

all h; are epimorphisms for j=j, by the construction of decompositions of f given

—1. In the same way we can assume that im(fsh_; ... h;) € add(¥6),

in the proof of Lemma 62. If h;,...hf #0 then & '(h, ...hf))=
®~'(hy) ... 7' (h)P7'(f/)#0. Thus we can choose h; in rad(mod(B)) such that
h; —<b l( ) j=Jo....,r, because stable equivalences preserve irreducible morphisms.
Hence there is a morphlsm h in mod(B) such that h=®~ '(h! . hf?) and h=
m Chif!, where f!'=®7'(f"). Consequently, h erad*(mod(B)) and h:® '(X)—

( W, ). This means that the component ®~'(€) in I'y is not generalized standard which
contradlcts our assumption made in 6.1.

If h; ... h f,=0 then hj ...h,f; factorizes through the projective cover P of W,
The same reasoning as in the first part of the proof shows that we may consider the largest
direct summand P’ in P with P’ € add(%). Then it is clear that the induced morphism
p:P’— W, has a decomposition p =h;, ... h,p" for some p":P— W, by projectivity of
P since h; are epimorphisms for j =j,. Thus p e rad*(mod(C)). Furthermore, p factorizes
through P'/soc(P'), because p = p, « for an irreducible morphism z: P’ — P’/soc(P’). It is
obvious that p, e rad”(mod(C). Moreover p, #0, because the canonical epimorphism
q:P'[soc(P')— top(P ) factorizes through p, hence g = Ip, for some [: ,“—>top(P’). But
q # 0, because ¢ is an epimorphism. Hence p, #0. Thus as in the case h; ... A, f/ #0 we
get a contradiction to generalized standardness of the component &~ l((6)

In the case when s can be arbitrarily large dual arguments apply and the lemma

follows. O

6.4. LEMMA. Let 6 be a component in T'¢. If X,Y € € and 0#f:X — Y such that
f e rad™(mod(C)) then there are X, Y, € 6, W € add(I'c\6) and h,: X, - W, h,:W Y,
such that h, # 0 and hy #0.

Proof. Let € be a component in I'c. If X,Y e % and 0#f:X—Y such that
f erad*(mod(C)) then there is a module W, e add(I'c\C) and there are fi: X —» W,
f:W,— Y such that f = f,f, by Lemma 6.3. If there is a direct summand V in im(f) with
V e add(I'\ 6) then the required condition holds for W=V, X, =X, Y, =Y, h: X >V
an epimorphism and h,:V — Y a monomorphism. If im(f) € add(%) then consider im(f;).
If there is a direct summand V, in im(f;) such that V; e add(I'c\ %) then there is an
epimorphism ¢:im(f;)— im(f) and take t,:V,— Z, as a restriction of ¢ to V| composed
with a projection from im(f) onto an indecomposable direct summand in im(f) such that
pty #0, where p:Z,— S is a projection and S is a simple C-module. Thus the composed
morphism ¢ =1,1, has the properties #0, t e rad”(mod(C)), where ,:X -V, is an
epimorphism. This contradicts Lemma 6.2. Hence im(f;) € add(%€). Applying the usual
duality D to im(f,) we obtain similarly that im(f,) € add(€). Since f#0 there is an
indecomposable direct summand X, in im(f;) and there is an indecomposable direct
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summand Y, in im(f) such that gv # 0, where v: X, — W, is a monomorphism induced by
fi and q:W,— Y, is an epimorphism induced by f,. Consequently the required condition
holds for X,, Y;,, W =W,, h, =v, h, = g and the proof is finished. O

6.5. LemmAa. If € is a component in Ty such that there are X,Y e €, an indecom-
posable W e add(I';\6) and 0#h,: X > W, 0#h,;:W > Y then € does not contain a
projective vertex.

Proof. Let € be a component in I'g such that there are X, Y e €, an indecomposable
W eadd(T'z\€) and 05#h,: X > W, 0#h,:W Y. Suppose to the contrary that €
contains a projective vertex. We know from Corollary 5.6 that I'y; = | |, .y 7,, where for
every ve N, 7, is a weakly separating family of components. Moreover, for every ve N
we have that N\{v} is isomorphic to Ay, i=1, or Ay, i=3. Let €€ 7, voe N. Let
Wed,. If N\{vo}=A,, i =3, then i =3. Indeed, if i >3 then either Iy(h,)>15 or
Iy(hy) > 1% which contradicts Corollary 5.7. If i =3 then Iy(h,) = Iy(h,) = 13, because
X,Ye% and W el'z\46 But we know from [6,21] and Corollary 5.7 that there is
0%#t:7”QW — W such that [y(t) =15 We infer by [6; Proposition 4.1] that the simple
functor from mod(B) to mod(K) concentrated in 77'Q(W) is the socle of Homg(-, W).
Thus there is r:77'Q(W)— X such that h;r=1 Consequently, 77'Q(W)e 4. Dual
arguments show that TQ™'(W) e 4.

For any indecomposable projective B-module R we have the following Auslander-
Reiten sequence (see [5])

0—rad(R)— R @rad(R)/soc(R)— R/soc(R)— 0

because B is selfinjective, and so every projective module is projective-injective and its top
is simple as well as its socle. Thus 7Q7'(soc(R)) = t(R/soc(R)) =rad(R).

If there is a projective vertex P in € then Q7 '(rad(P)) belongs to the same
component as W. But Q '(rad(P))=top(P). If we consider an injective envelope
I(top(P)) of the simple B-module top(P) then I(top(P)) is indecomposable projective-
injective and soc(/(top(P))) = top(P). Then Q~'(top(P)) = I(top(P))/soc(I(top(P))) and
1Q~'(top(P)) =rad(/(top(P))) by the above Auslander-Reiten sequence. Since
Q7 '(W) e € hence rad(I(top(P)))= 1Q~'(top(P)) € ¢ which contradicts Proposition
5.5(2b) for all components in I'; are generalized standard. The proof in the case when
N\{vg} = A, ., i =1, is similar and we leave the details to the reader. O

6.6. LEMMA. If € is a component in T which is not generalized standard, then 6
contains a projective vertex or a simple one.

Proof. Assume that 4 is a component in I' which is not generalized standard. Then
there are X, Y € € and 0# f:X — Y such that f e rad*(mod(C)). Clearly we may assume
that X and Y are not projective. Indeed, if X is projective then f=ff;, where
fi: X — X/soc(X) is an epimorphism and f,: X /soc(X)— Y. Moreover, we deduce from
Lemma 6.3 that f factorizes through a module W e add(I'c\ 6). Thus £, factorizes through
the same W, and so f, € rad”(mod(C)). Consequently we may consider X /soc X instead
of X and f; instead of f Dual arguments show that Y can be chosen nonprojective. We
obtain from Lemma 6.2 that f =0. If im(f) € add(I'c\€) then f = h,h,, where h,: X —
im(f) is an epimorphism and h,:im(f)— Y is a monomorphism. Thus hy, h,#0 by
[27). If Ty = U,cn T, and N\{v,} is isomorphic to A, then i=3 and Iy(h,) =13,
Iy(h;)=15 by Corollary 5.7. But we have an epimorphism p:P(im(f))— im(f).
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Therefore there is a morphism ¢:P(>im(f))/soc(P(im(f)))— X such that th, is an
epimorphism. Thus t4, # 0 and if P(im(f))/soc(P(im(f))) does not belong to add(€) then
In(th,) > 1% which contradicts Corollary 5.7. If N\{v,} is isomorphic to A, then i=1
and Iy(h,) =2, Iy(h,) =2. Repeating the above arguments we get that P(im(f)) e add(%).

If there is no direct summand Z in im(f) such that Z € add(I'c\ 6) then we infer by
Lemma 6.4 that f = h,h,, where h: X > W, h,:W—Y and W e add(I'c\6). Thus there
is a submodule W, in W such that there is an epimorphism ¢,: X — W, and there is an
epimorphism t,: W, — im(f). If W, € add(%) then consider the module W, = im(k,). There
are monomorphisms v,:im(f)— W, and v,: W,— Y. Furthermore there is an epimorph-
ism g : W — W, such that h,h, = v,qh,. Since v,v, is a monomorphism there is no nonzero
direct summand W; in W, such that W} e add(I"-\ €), because we get a contradiction to
LLemma 6.2 otherwise. Consequently we can consider gw instead of f, where w: W, —» W is
a monomorphism. Thus, applying dual arguments to those in the case im(f) € add(I'c\
%), one obtains that € contains a simple module. In order to finish our proof we should
consider the case when there is a direct summand W in W, such that W; e add(T'¢:\ ).
But in that case we get a contradiction to Lemma 6.2, because t,¢, is an epimorphism. [

6.7. PROPOSITION. Oné of the following conditions holds:

(1) All components in T are generalized standard.

(2) There is a partition Ty =|],cn T, such that for every voe N, N\{vy} is
isomorphic to A ;).

Proof. Fix a partition 'y = | |,.n 9, described in Corollary 5.6. Assume for the
proof of the proposition that N\{v} is isomorphic either to A, i >3, or to Ay, i =1
Suppose to the contrary that there is a component 4 in ' which is not generalized
standard. Then there are X,Y e 6, 0#f: X —>Y such that f e rad*(mod(C)). From
Lemma 6.2 we have f=0. Furthermore we know from Lemma 6.3 that there is
W e add(T'c\€) and there are f,: X — W, f,:W — Y such that f =f,f,. Using Lemma 6.4
we can choose f;, f,, W in such a way that f; # 0 # f,. Therefore it is obvious by Corollary
5.7 that 'y = | |, .~ 7, with N\{v,} isomorphic to A;, because we assumed that it is not
isomorphic to A3, But for N\{vg} isomorphic to A; we deduce from Lemma 3.4 that
there is v, € A; such that J, consists of one component which contains projective
vertices. Thus, if P is a projective vertex in 7, and /(top(P)) is the injective envelope of
top(P) then P,I(top(P))e J,, by 3.1 which contradicts (by Proposition 5.5) the
assumption that all components in 'z are generalized standard. Consequently the
proposition is proved. O

7. Selfinjective algebras of type A ;).

7.1. Throughout this section we shall assume that B is a representation-infinite
selfinjective algebra such that all components in I’y are generalized standard, and there is
a partition I'y = ||,y 7., Wwhere N\{vy} is isomorphic to A3y, vy € N. Moreover C is
stably equivalent to B and ®:mod(B)— mod(C) is a fixed equivalence.

7.2. LemMa. T'¢ contains a sincere tube which is generalized standard.

Proof. We deduce from Lemma 6.6 that all components, which do not contain a
projective module or a simple one, are generalized standard. If we carry over the partition
Iy=1]ven T, via ® then we have I'c = ||,y .. Without loss of generality we may
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assume that N =[0,3)N Q. Since C is a finite-dimensional algebra there are only finitely
many rational numbers g € [0, 3) such that J contains projective or simple modules.
Thus we can choose a rational number g, € [0, 3) such that g, ¢ {0, 3, 1, 13,2,24} and all
components in J,, are generalized standard. But we have that for every simple C-module
S either a projection p:P(S)/soc(P(S))— S or an injection w:S— rad(/(S)) factorizes
through a module from add(7;,). But p #0 and w # 0 hence for 7 =®7'(p), u = d~'(w)
it holds that either 7 or u factorizes through a module from add(%), where € ranges over
all components in 7, by Lemma 3.5(1). Therefore either p or w factorizes through a
module from add(%’), where €’ ranges over all components in 7, . Consequently every

component in 7, is a generalized standard sincere tube and the lemma follows. O

7.3. Fix a generalized standard sincere tube 7 in I'.. Denotes by [ the annihilator
annc(T) of T in C, which is the intersection of the annihilators of all modules from T.
Clearly [ is nonzero, because soc(C) < [. Moreover | c rad(C) hence T is a sincere tube in

I'y, where F = C/I.
7.4. LEmma. F is cycle-finite.
Proof. Repeat the arguments from the proof of {23, Lemma 2.9].

7.5. Lemma. C is a representation-infinite selfinjective standard algebra of polynomial
growth.

Proof. It is clear that C is representation-infinite selfinjective. The final part of the
lemma can be deduced from a result of Skowrofiski and Yamagata [35] which says that if
a selfinjective algebra C has a generalized standard sincere stable tube 7 such that
F = C/ann(T) is cycle-finite then C is standard of polynomial growth. Thus our lemma
follows by Lemma 7.2 and Lemma 7.4. O

8. Proof of the main result.

8.1. Let B be a selfinjective representation-infinite algebra such that all components
of I, are generalized standard. Let C be an algebra which is stably equivalent to B and let
®:mod(B)— mod(C) be a fixed equivalence.

8.2. Lemma. C is a representation-infinite selfinjective standard algebra of polynomial
growth.

Proof. We know from Proposition 6.7 and Lemma 7.5 that all components of I'¢ are
generalized standard or C is a representation-infinite selfinjective standard algebra of
polynomial growth. But in the case when all components of I'- are generalized standard it
follows from [34, Theorem 3.13] that C is representation-infinite selfinjective standard
algebra of polynomial growth. O

8.3. LEMMA. Let A be an infinite linearly ordered set and let R be a A-directed locally
bounded K-category. Let G be an admissible infinite cyclic group of K-linear automorph-
isms of R such that for every nonprojective X € J5, 8, € A, and every indecomposable Y
if Homg(X, Y)#0 then Y € T, with 6,= 8, <g'(8,), where I'x = | |51 T5 is a A-induced
partition of ', and g is a generator of G which satisfies § <g'(8), 8 € A. If F,:mod(R)—
mod(R/G) is an induced by the action of G on R push-down functor and Hom, (U, V) #
0, U, V €ind(R), then Hom.(U, V) = Homg,(F,(U), F,(V)) as K-linear spaces.
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Proof. Under the assumptions and the notations of the lemma observe that if
f:U—V is such a morphism in mod(R) that f#0 then F,(f):F,(U)— F,(V) satisfies
F.(f)#0. Indeed, F, preserves projective modules and factorizations of morphisms
through projective modules. Let U,V e ind(R) and U € 75, 85 € A. If Homg(U, V)#0
then V e J; with §,= 8, <g'(8,) by the assumption. But the G-orbit of V intersects with
LLse(s0e s T in exactly one point V. Thus the lemma follows. [J

8.4. Let A be an infinite linearly ordered set. An admissible infinite cyclic group G of
K-linear automorphisms of a A-directed locally bounded K-category R is called stably
admissible if it satisfies the following condition: for every A-induced partition of I’y and
for every nonprojective X € J;, and every nonprojective indecomposable R-module Y if
Homg (X, Y)#0 then Y € 75 with 8,= 6, <g'(8,), where g is a generator of G such that
g'(8)>6,86 eA.

8.5. ProrosiTiON. Let A be an infinite linearly ordered set. Let R,, R, be two
selfinjective A-directed locally bounded K-categories. Let G, be a stably admissible group of
K-linear automorphisms of R;, i =1,2. If R,/G, is stably equivalent to R,/G, then R, is
stably equivalent to R,.

Proof. Under the assumptions and the notations of the proposition assume that
®:mod(R,/G,)— mod(R,/G,) is a fixed equivalence. Let F;,:mod(R;)— mod(R;/G)),
i=1,2 be an induced by the action of G; on R; push-down functor. We shall construct an
equivalence W:mod(R,)— mod(R,) as follows. Since ® preserves the stable Auslander—
Reiten quiver ' ,;, and F;, maps components of I',, onto components of I'x,g, i =1, 2,
hence we can carry over the partition of I'x, onto the partition of I's,. Thus we may
assume that if nonprojective X,Y e J5 I, then there is 8, € A such that there are
nonprojective X', Y' € 5, Tk, such that ®(F,,(X))=F,(X') and ®(F(Y))=
F,,(Y")). Fix a family 75, in g, 8o € A. Choose a family T, in I'g, in such a way that for
every nonprojective X € T, there is Y € T, satisfying ®(F, ,(X)) = F,,(Y). It is possible
to do this by the above choice of the partition | 5., T of I'k,. Then for every X € J;, we
put W(X)=Y with Y e J;, as above. If g;, i =1,2 is a generator of G; satisfying the
condition in 8.4 and g/:A— A is an automorphism induced by g;, i =1,2, then clearly
g1 =gz by the choice of the partition of I'x,. Therefore for any z € Z if X € J4y(s,, then
we can find the only Y € J(y:s, such that ®(F (X)) = F,(Y). We put W(X) =Y again.
Moreover, for every § e [8o,g1(80)] there is exactly one o € [8,,g2(8,)] such that for
every nonprojective X e I there is exactly one Y € 7, with ®(F, \(X)) = F,.(Y). Again
for X € I5 we put W(X)=Y, where Y e J, and O(F, (X)) =F,,(Y). Now we can
prolongate W for the objects of the shifted families T sy 2 € Z, 8 € [8, 81(60)]. In this
way we have defined W for the indecomposable objects. Furthermore we prolongate W
for the objects of mod(R,) additively. Moreover, for every 0# f: X — Y in mod(R,) we
define W(f) = h:W(X)— W(Y), where ®F, ,(f)) = F (k). It is easy to verify that W is a
well-defined functor. Clearly W is dense by its definition. Finally W is fully faithful by
Lemma 8.3 and the proposition follows.

Proof of Theorem. Let B be a representation-infinite selfinjective algebra such that
all components of 'y are generalized standard. Then B is standard of polynomial growth
by [34, Theorem 3.13] and so B = A/G by Theorem 3.3, where A is Euclidean or tubular
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and G is an admissible infinite cyclic group of K-linear automorphisms of A. If C is stably
equivalent to B then C is also a representation-infinite selfinjective standard algebra of
polynomial growth by Lemma 8.2. Thus C = A,/G,, where A, is Euclidean or tubular and
G, is an admissible infinite cyclic group of K-linear automorphisms of A,. It is clear that
A is Euclidean (respectively, tubular) iff A, is Euclidean (respectively, tubular). It is
obvious by Corollary 5.7 that G, G, are stably admissible. Then we deduce from
Proposition 8.5 that A and A, are stably equivalent. Thus A, A, are tilt-cotilting
equivalent algebras by [3] and they have the same number of pairwise non-isomorphic
simple modules by [17]. Furthermore, if g is a generator of G and g, is a generator of G,
then sti(g)=sti(g,). Consequently, B and C have the same number of pairwise
non-isomorphic simple modules which finishes the proof. [
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