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0. Introduction. Throughout the paper K denotes a fixed algebraically closed field.
All algebras considered are finite-dimensional associative /C-algebras with a unit element.
Moreover, they are assumed to be basic and connected. For an algebra A we denote by
mod(/4) the category of all finitely generated right /1-modules, and mod(A) denotes the
stable category of mod(/4), i.e. mod(A)/SP where SP is the two-sided ideal in mod(/l) of all
morphisms that factorize through projective /4-modules. Two algebras A and B are said to
be stably equivalent if the stable categories mod(A) and mod(B) are equivalent. The
study of stable equivalences of algebras has its sources in modular representation theory
of finite groups. It is of importance in this theory whether two stably equivalent algebras
have the same number of pairwise non-isomorphic nonprojective simple modules.
Another motivation for studying stable equivalences appears in the following context. If E
is a ^-algebra of finite global dimension then its derived category Dh(E) is equivalent to
the stable category mod(E) of the repetitive category E of E [15]. Thus the problem of a
classification of derived equivalent algebras leads in many cases to a classification of stably
equivalent selfinjective algebras.

We are interested in algebras which are stably equivalent to representation-infinite
selfinjective algebras whose Auslander-Reiten quivers consist only of generalized
standard components in the sense of Skowroriski [30]. It was announced in [34] that
representation-infinite selfinjective algebras, whose Auslander-Reiten quivers consist
only of generalized standard components, are standard algebras of polynomial growth (for
the needed definitions see Section 1). Since there is given a classification of such algebras
in [32] we can use it to describe algebras stably equivalent to representation-infinite
selfinjective algebras whose Auslander-Reiten quivers consist only of generalized standard
components. The following theorem is the main result of the paper.

THEOREM. Let B be a selfinjective representation-infinite algebra in which all com-
ponents of the Auslander-Reiten quiver TB are generalized standard. If C is an algebra
which is stably equivalent to B then C is a standard selfinjective algebra of polynomial
growth. Moreover B and C have the same number of pairwise non-isomorphic simple
modules.

Recall that the algebras stably equivalent to representation-finite selfinjective
algebras were classified by Riedtmann in [24,25,26,9]. Algebras stably equivalent to
tame trivial extensions were described in [20,23,22]. In both cases there was linked a
tilting-cotilting equivalence of some factor algebras to any stable equivalence. In our case
the situation is a little bit different. Any stable equivalence of B and C can be lifted to a
stable equivalence of Galois coverings B, C of B and C, respectively. Furthermore the
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2 ZYGMUNT POGORZALY

lifted stable equivalence of B and C is induced by a tilting-cotilting equivalence of some
subcategories in B and C.

1. Preliminaries.
1.1. Let K[X] be the polynomial algebra in one variable. Following Drozd [12] an

algebra A is called tame if, for any dimension d, there is a finite number of
/([A'J-zl-bimodules Qh l<i<nd, which are finitely generated and free as right
/cfA'j-modules, and satisfy the following condition: all but a finite number of
isomorphism classes of indecomposable A -modules of dimension d are of the form
K[X]/(X - \)®K[x]Qi f°r s o m e A e X and some /, l s / < nd.

Denote by fiA(d) the least number of bimodules Q, satisfying the above condition for
d. Then A is said to be of polynomial growth [31] if there is a natural number m such that
AM(rf) :£<*'".

1.2. Let R be a locally bounded /(-category [8]. We denote by mod(/?) the category
of all finite-dimensional contravariant functors from R to the category of /(-vector spaces.
For a group G of AT-linear automorphisms of R acting freely on the objects of R, R/G
denotes the quotient category [14] whose objects are the G-orbits of the objects of R.
There is a Galois covering functor F:R—>R/G which assigns to each object x its G-orbit
G . x. A locally bounded /(-category R is called simply connected [29] if it is triangular (its
quiver has no oriented cycles) and any Galois covering of R is trivial. A locally bounded
K-category R is called standard if it admits a Galois covering R'^R with R' simply
connected. To every algebra A we can attach the locally bounded /(-category RA whose
objects are formed by a complete set E of pairwise orthogonal primitive idempotents of
A, R(e,f) =fAe, e,feE, and the composition is induced by the multiplication in A. An
algebra A is called standard if the attached locally bounded /(-category RA is standard.

1.3. For an algebra A we shall denote by YA its Auslander-Reiten quiver [5], and by
T, T~ the Auslander-Reiten translations DTr and TrD, respectively [4]. We shall not
distinguish between an indecomposable module, its isomorphism class and the vertex of
YA corresponding to it. Moreover, we denote by YA the stable quiver of TA obtained from
YA by removing the T-orbits of all indecomposable projective modules and the T~-orbits
of all indecomposable injective modules and the arrows attached to them.

1.4. A connected component % of the Auslander-Reiten quiver YA of A is said to be
sincere if for each indecomposable projective /4-module P there is an /1-module X whose
isomorphism class is contained in % such that Hom/,(F, X)9^0.

1.5. Recall from [30] that a component % of the Auslander-Reiten quiver YA of an
algebra A is called generalized standard if rad=c(A', Y) = 0 for all modules X and Y from c€,
where radK(mod(/4)) is the intersection of all powers of the Jacobson radical rad(mod(/4))
of mod(A).

1.6. Following [13] a component T of YA (respectively, of YA) is said to be a tube if T
contains a cyclic path and its geometrical realization |7| is homeomorphic to 51 X MQ
where 5' is a unit circle and R,t is the set of non-negative real numbers. For a tube T the
set 5' x {0} of |7| called its mouth. A stable tube of rank n > 1 is a translation quiver of
the form ZAJ(t'). The stable tubes of rank one are said to be homogeneous. A family
& = (Tdiei of tubes in YA (respectively, in P^) is said to be standard if the full subcategory
of mod(/4) (respectively, mod(A)) formed by the objects of ST is equivalent to the
mesh-category K(2P) of J (see [27, Section 2]).
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1.7. Recall from [32] that a quasitube T is a component in YA such that its stable part
Ts is a tube.

1.8. Let n = (n[,n2,...,«,) be a natural f-tuple. A family ?T = (rA)A s P l / f , P , / ( = / (U
{°°}, of quasitubes in TA is said to be a tubular P^K-family of type n if the following
condition is satisfied: the stable part 2TS of ST is a disjoint union of stable tubes T\,
A e P ^ , such that t of these tubes have ranks nun2,...,n, and the remaining ones are
homogeneous.

1.9. Two components %, % ' n FA are said to be orthogonal if for any X e %,
Y e %, Hom^CA-, Y) = 0 = HomA{Y, X).

1.10. A cycle in mod(/4) is a sequence Mo—»A/,—> • • --»Mn = A/o of nonzero
non-isomorphisms between indecomposable ,4-modules. Following [33] A is said to be
cycle-finite if for every cycle in mod{A) all of morphisms on this cycle do not belong to
racT(modC4)).

1.11. Following [7,17] we shall say that a module Z in mod(/l) is a tilting
(respectively, cotilting) module if it satisfies the following conditions:

(1) Ext* (Z, - ) = 0; (respectively, E x £ ( - , Z) = 0);
(2) ExC(Z,Z) = 0;
(3) the number of non-isomorphic indecomposable summands of Z equals the rank

of the Grothendieck group K0(A) of A.
Two algebras A and F are said to be tilting-cotilting equivalent if there exist a

sequence of algebras A= AO,AU. .. ,Am,Am+i = F and a sequence of modules Z'A,
0<i<m, such that Ai+l = EndA(Z') and Z' is either a tilting or a cotilting module.

2. Partially directed /(-categories.
2.1. Let A be a partially ordered set. A connected locally bounded /(-category R

whose Auslander-Reiten quiver consists only of generalized standard components is
defined to be ^-directed provided that there is a partition LJseA 3~S of the Auslander-
Reiten quiver FR onto the disjoint union of families 5~s of pairwise orthogonal
components such that the following conditions are satisfied:

(1) If X e add(Sr5|), Y e add (^ 2 ) and Hom*(A', Y) * 0 then 5, < 52.
(2) For every pair 8, a e A such that 8 < a and every pair of components <€ e 3~R,

2 e STa there exists a finite sequence {8U 82,..., 8r, 8r+] = a}<z A such that 5 < S , <
• • • < 5 r < 5 r + 1 , and there exists a sequence of modules {XO,XU... ,XnXr+i} such that
Xo G add(<£), Xi e add(y,), i = 1 , . . . , r, A'r+1 e add(S) and Hom«(A}, A}+1) # 0 for each
7 = 0 , l , . . . , r .

(3) There are at most finitely many projective vertices in every J"5, 5 e A.
A partition \_\Se&^s satisfying the above conditions is called ^-induced.
2.2. A /(-automorphism f:R^>R of a A-directed locally bounded /(-category R is

said to be A-induced if there is an automorphism f :A—> A of the partially ordered set A
such that the induced by / equivalence /y:mod(/?)—»mod(/?) satisfies the following
condition: if X e add(5«), 8 E A, then /y(Ar) e add(5}.(5)).

2.3. LEMMA. Le/ A be a linearly ordered set. If R is a A-directed locally bounded
K-category then every K-automorphism f:R—>Ris A-induced.

Proof. Assume that f.R^R is a ^-automorphism of a A-directed locally bounded
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/(-category R. Then the induced equivalence /y:mod(/?)-»mod(/?) preserves indecom-
posability of modules and irreducibility of morphisms. Thus Ff maps connected com-
ponents of TR onto connected components. First we shall show that Ff yields a bijection
between the set {3~s}ss& of families of pairwise orthogonal components. In order to do
this it is sufficient to show that if <£, 2> e 9~s, 8 e A, then /y(<6), Ff{Q>) e STS.. Suppose to
the contrary that /y(^) e STS. and Ff(2d) e STS- with 8' ¥> 8". Without loss of generality we
may assume that 8' < 8", for A is linearly ordered. Consider a sequence A'o, Xu... , Xr+X

of modules such that Xo e add(/y (<<?)), Xt e add(5i,), i = 1,. . . , r, Xr+1 e add(/y(S)) with
Hom^A}, Ay+1) ^ 0, / = 0 , 1 , . . . , r which exists by 2.1(2). Clearly 5' < 5, < . . . < 5" by
2.1(1). Applying /y-i we get that there is the sequence Ff-\(XQ), Ff-<{X\),... ,Ff-\{Xr),
Ff-,(Xr+1) of m o d u l e s s u c h t h a t HomR(Ff-,(Xj), Ff-,(Xj+i))^0, j = O,l,...,r, a n d
Fj-t(X0) e <#, Ff-\(Xr+\) e 2>. Then each indecomposable direct summand in Ff-<(Xj) e
5 " v with 5y,,>S by 2.1(1). Since Ff->(X0), Fri(Ar

r+1) e S^ hence all 5y,,= S which
contradicts the orthogonality of all components in STS. Consequently, if <g, 3> e 5"5 then
/yC<?), Ff(3)) e 9~s-. Hence /y induces a bijection /':A—»A given by the condition:
/ ' (S ) = o- iff there is an fi-module X e add(5"5) such that /y(A') e add(Sr^). In order to
finish the proof we should show that / ' : A —»A is an automorphism of the partially ordered
set A. Suppose that 8\ ^ 82 in A. Then for some X e add(5~Sl) and some V e a d d ( ^ 2 ) we
have Ff(X) e add(5}(Sl )) and Ff(Y) e add(STr(S2)). But R is A-directed, hence there are: a
sequence {au ... , ar, ar+x = 52}c: A with SiScr, and a sequence of /?-modules

{Xo,Xu...,X,,Xr+l} such that * 0 G add(^S l) , X,: e a d d ( ^ ) , * = 1 r, Xr+1 e
add(5"g2) with Homw(A}, Ar

y-+)) # 0, y = 0 , 1 , . . . , r, by 2.1(2). Since /y is an equivalence we
obtain by 2.1(1) the following sequence of inequalities: f'(8}) <f'(ax) < . . . < / ' ( c r r )<
f'(82). Consequently / ' ( 5 , ) < / ' ( 5 2 ) and / ' is an automorphism of A. Thus / is
A-induced. •

2.4. Following [32] a group G of /C-linear automorphisms of a locally bounded
K-category is said to be admissible if its action on the objects is free and has finitely many
orbits.

2.5. COROLLARY. Let A be a linearly ordered set. If R is a ^-directed locally bounded
K-category and C is an admissible infinite cyclic group of K-linear automorphisms of R
then G consists of A-induced K-automorphisms.

Proof Clear by Lemma 2.3.

2.6. LEMMA. Let A be an infinite linearly ordered set. If R is a A-directed locally
bounded K-category with infinitely many objects and G an admissible infinite cyclic group
of K-linear automorphisms of R then G is a group of automorphisms of A.

Proof. Under the assumptions of our lemma there is a map (-)' :AutK(R)^> Aut(A)
by Lemma 2.3, where / ' : A-» A is an automorphism of A such that, for / e Aut^(7?) and
for every X e a d d ( ^ ) , Ff(X) e add(^ r ( S ) ) . Observe that the restriction (-)c,of (-) ' to a
subgroup G in AutK(R) is a group homomorphism (-)'c:G-± Aut(A). Indeed, (idK)' = id^
by the definition of (-) ' . If g,f e G then the induced equivalence Fgf :mod(/?)—»mod(/?)
is of the form FKf = F^Fj- and (gf)' = g'f. Finally ( / " ' ) ' = ( / ' ) " ' is clear by the definition
of (-)'. Consequently (-)'a:G^ Aut(A) is a group homomorphism for every subgroup G
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of AutK(R). In order to finish the proof we should show that (-)'c is a monomorphism
when G is an admissible infinite cyclic group. In this case, if/' = idA and / = gz for some
z s Z, where g is a generator of G, then (g')z = idA since (-)'c is a homomorphism. But
the induced (by gz) equivalence Fg- = Fg... Fg maps every family STS, 8 e A, onto itself.
Thus Fg: can map projective vertices from a family STS, for a fixed 8 e A, only onto
projective vertices in the same family. Since R is A-directed there are at most finitely
many projective vertices in every family STir, a e A, by 2.1(3). If z is the minimal natural
number such that (g')z = idA then (g )z = g'... g' and g' # idA or z = 1. If z ^ 1 then
g'(50) < So or g'(50) > ^o for some 8n e A, because A is linearly ordered. In the first case
we obtain that (g')z(80) < (g')z~\8()) <. . . <g'(80)< 50 which contradicts the fact that
(g')z = idA. In the second case one gets a similar contradiction. Consequently z = 1. Then
G is not admissible, because it has infinitely many orbits of the objects of R. This proves
the lemma. •

2.7. Now we assume that there is given an infinite linearly ordered set A and an
infinite cyclic group G acting on A nontrivially and nontransitively. Fix an element 50 e A
and consider the set A\G. 50 with the induced order by that in A. Thus we have:

2.8. LEMMA. A\G. 8n is a disjoint union \_\ZEzAz of linearly ordered sets Az, z e Z,
such that the following conditions are satisfied:

(1) / / zt £ z2 and 5, e A,,, S2 e A,2 then 5, < 82.
(2) For any two Z\, Z2^7L there is an isomorphism AZl = At2 of partially ordered sets.
(3) There is a linear order on the set of the G-orbits A' = (A\G. 80)/G of A\G. 50

such that A' = Ao.

Proof Under the assumptions and the notations of 2.7 consider a generator / of G.
Then either 80<f(80) or f(S0) < So since / # i d A and A is linearly ordered. We shall
consider only the case 5() <f(80), because the other one is similar. In the case we obtain
inductively that fz(80)<fz+\80) for every integer z. We put A, ={8 e A:fz(80)< 8 <
fz+l(80)}. Since G acts on A nontrivially and nontransitively hence Az 5^0 for any integer
z. Since A, cA, z s Z, consider in A. the order of A. Thus Az is linearly ordered set
obviously and A\G. 50= \_\zezAz which proves (1).

In order to prove (2) observe that for any two integers z,, z2 such that Z\ ^z2 the
restriction of fZ2~z' to A,, yields an isomorphism of A,, and A,2.

Now consider the set A' of the G-orbits of A\G. 80. Observe that there is a bijection
h : A()—* A' given by the formula h(8) = G. 8. This bijection induces a linear order on A'
such that A' = Ao as partially ordered sets.

2.9. Let R be a A-directed locally bounded /(-category, where A is a given partially
ordered set. Let Tw = LJ5eA ^« be a A-induced partition of TR. Then a family 3~&a, for
some So e A, is said to be separating [28] if for any 5,, 52 e A such that 5, < 5 0 < 82 and
any nonzero morphism f:X^>Y such that X e add(S^5|), Y e add(5s2) there are
Z E add(5s0), f:X^>Z,f2:Z-^>Y with / =/2/ , . Similarly, a component ^ in ST^ is called
separating if the above Z e add(^). Clearly, if all components of 3~Sa are separating then
^fi(1 is separating. The converse implication is not true in general.

2.10. LEMMA. Let A be an infinite linearly ordered set. Let R be a A-directed locally
bounded K-category that has a separating family SFSa. If G is an admissible infinite cyclic
group of K-linear automorphisms of R then for any g e G, 3~g'{Sn) is a separating family.
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Proof. Under the assumptions and the notations of our lemma consider a A-induced
partition YR = LJseA 3~S and an element g e G. We deduce from Lemma 2.3 that g is
A-induced. Then there is an automorphism g':A—>A of the partially ordered set A such
that the induced by g equivalence Fg:mod(R)-+mod(R) satisfies the following implica-
tion: if X e add(3Ts) then Fg(X) e add(5"g.(6)), 5 e A. Now suppose that X e add(STSl),

and 5, <g'(so):= S2. Let / : A " ^ y be any nonzero morphism. Then
o S f e r 1 ^ ) and F s - ,W6add(J ( g r , ( S ] ) ) , Fg-,(y) e

Fg-,(y). Since ST5(, is separating, there are Z e add(^,,),
Z, /2:Z-»Fg-i(y) such that Fg-.(/)=/2/i by 2.8. Therefore Fg(Z) e add(^.(S|l)) and
/ = Eg(f2)Fg(f). Consequently, ^"S(5(,) is a separating family of components, and our proof
is finished. •

3. Selfinjective standard algebras of polynomial growth.
3.1. The repetitive category (see [18]) of a locally bounded category R is the

selfinjective locally bounded category R whose objects are pairs (n,x) = xn, x e R, n e Z,
and R(xn,y,,) = {n}xR(x,y), R(xn + U yn) = {n} x DR(y,x), and R[xp,yq) = 0 if p^q,
q + 1, where DK denotes the dual space Hom/c(V, /C).

3.2. A Euclidean algebra is a representation-infinite tilted algebra of Euclidean type
having a complete slice in the preprojective component [28]. We shall use also tubular
algebras in the sense of Ringel. For the basic definitions and results concerning Euclidean
and tubular algebras we refer the reader to [28]. Recall that the extension type n^ of a
Euclidean algebra A is one of the following (p,q), l^p^q, (2,2,m), m s 2 , (2,3,3),
(2,3,4) or (2,3,5). The extension type n^ of a tubular algebra A is one of the following
(3,3,3), (2,4,4,), (2, 3,6) or (2,2,2,2). We shall call them, briefly, types.

3.3. The following theorem is the main result of [32].

THEOREM. Let B be a standard, selfinjective K-algebra. Then B is representation-
infinite of polynomial growth if and only if B is isomorphic to an algebra A/G, where A is
either a Euclidean or a tubular algebra and G is an admissible infinite cyclic group of
K-linear automorphisms of A.

3.4. LEMMA. Let A be a Euclidean algebra. Then A is a Z-directed locally bounded
K-category such that the Z-induced partition T^ = LJ^z 3~z satisfies the following
conditions:

(1) For any even z, ?TZ consists of one connected component which contains at least
one projective vertex, and whose stable Auslander-Reiten quiver is isomorphic to ZQA,
where QA is the ordinary quiver of A. Moreover, STZ contains only finitely many projective
vertices.

(2) For any odd z, &z is a tubular P^K-family of quasitubes, whose stable
Auslander-Reiten quiver is a tubular P^K-family of type nA.

(3) Every family ST, is a separating family of components.

Proof. See [32, 2.1].

3.5. LEMMA. Let A be a tubular algebra. Then A is a Q-directed locally bounded
K-category such that the Q-induced partition F^ = [_|</eo ^ satisfies the following
conditions:

(1) For every q e Q\Z, 3~q is a tubular VxK-family of type nA of stable tubes.
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(2) For any q e Z, STq is a tubular P^K-family of quasitubes which contains at least
one and at most finitely many projective vertices. Moreover, the stable Auslander-Reiten
quiver of STq is a tubular P^K-family of type nA.

(3) Every family 3~q is a separating family of components. Moreover, for q e (Q\Z)
every component in STq is a separating component.

Proof. See [32, 3.1] or [19, Section 3] or else [16].

3.6. LEMMA. Let A be a Euclidean algebra. If P, P' are indecomposable projective
A-modules and P e STZ, P' e STZ., Hom^P, P') ^ 0, then z < z' ^ z + 4.

Proof. The lemma is a consequence of [1, Proposition 2.5].

3.7. LEMMA. Let A be a tubular algebra. If P, P' are indecomposable projective
A-modules and P e 3~q, P' e STq., Hom^(P, P')^0 then q <q' <q + 3.

Proof. The lemma is a consequence of [1, Proposition 2.5].

4. The structure of the Auslander-Reiten quivers of some standard algebras.
4.1. Let R be a locally bounded /(-category and G an admissible group of /(-linear

automorphisms of R. Then there is a covering functor F:R^>R/G induced by the action
of G on R [14] which attaches to every object of R its G-orbit. Then FA denotes the
induced push-down functor FA:mod(/?)—»mod(/?/G) [8,14]. If G is torsion-free then Fx

preserves indecomposables, Auslander-Reiten sequences, and maps projective R-
modules onto projective /?/G-modules, injective R-modules onto injective /?/G-modules.

4.2. A locally bounded /(-category R is said to be locally support-finite [10,11] if for
every indecomposable projective /?-module P, the set of isomorphism classes of
indecomposable projective /?-modules P' such that there exists an indecomposable
finite-dimensional /?-module M with Homw(P, M) / O ^ H o m ^ P ' , M) is finite. If R is
locally support-finite /(-category then Fx is dense and induces a bijection between the set
(ind(/?)/ = )/G of the G-orbits of the isomorphism classes of finite-dimensional indecom-
posable /^-modules and the set ind(/?/G)/s of the isomorphism classes of indecom-
posable finite-dimensional /?/G-modules [10].

4.3. PROPOSITION. Let A be an infinite linearly ordered set. If R is a ^-directed locally
support-finite K-category which has a separating family 3~Su and G is an admissible infinite
cyclic group of K-linear automorphisms of R then there are a family ST of components in
TRIG, a linearly ordered set M¥=0 and a partition TH,c\Sr=\_}flLSM^ onto a disjoint
union of families of components such that the following conditions are satisfied:

(1) For every two different components 'i?, § E 5^, /i, e M, if X e <#, Y e 2) and
f:X—>Yisa nonzero morphism then there are Z e add(5~), /,: X —> Z, f2: Z —> Y such that

(2) / / /A,<M2 in M, Yeadd(5TMl), X e add(^M2) and f:X-+Y is a nonzero
morphism then there are Z e add(ST), f:X —» Z , f2:Z^>Y such that f = f2f\•

Moreover, if the induced action of G on A is nontransitive and there is a separating

family 9~S!i of components such that 80<8'0< g(80) for the generator g of G then
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(3) For every two different components %, 3) e ST, if X e <#, Y e 3) and f:X—>Yisa
nonzero morphism then there are Z e add(TR/c\^), /, :X —* Z, f2:Z—>Y such that f = f2f\-

Proof. Let R be a A-directed locally support-finite /(-category, where A is an infinite
linearly ordered set. Assume that G is an admissible infinite cyclic group of /(-linear
automorphisms of R. Let r« = LJSsA5s be a A-induced partition of YR, and STBa a
separating family of components, 50 e A. Denote by C the quotient category RIG. Then
F.R —*C denotes the covering functor induced by the action of G on R. FA:mod(/?)-H>
mod(C) is the induced push-down functor which is dense by 4.2, because R is locally
support-finite. Put 3~ = FX(TS{). We deduce from Lemma 2.8 that there is a linearly
ordered set M = A' such that Fc\5"has a partition L I ^ M ^ M

 o n t o a disjoint union of
families of components, where 5"M = F^{3~a), 8 e A is such an element that G. 8 = fi. Thus
for any two different components <#, 3) from F^(STS) if A' e <€, Y e 3) and f:X-+ Y is a
nonzero morphism then there are components c€' e 3~Si and 2)' e ST&2 with S|, 82 e G. 8
and there are /^-modules X' G C", 7 ' s 2)' with a nonzero morphism f':X'—> Y' such
that Fk(X') = X, FX(Y')=Y and FA(/ ' )=/ , for FA is dense. But /? is A-directed and
{ ŝIseA are t n e families of the A-induced partition of YR hence S, <82 by 2.1. Since 5,,
5 2 e G J hence there is 5() e G. 80 such that 5, < 5o< 82- Since ^ ( l is a separating family
hence we deduce from Lemma 2.10 that STs;t is a separating family. Then there are
Z' Eadd(^.), f'r.X'^Z', f'2:Z'^Y' such that f'=f2f[ by 2.9. Clearly FA(^.) = #
Thus FA(Z') = Z e add(ST) a n d / = / 2 / , , where FK{f\)= f:X-*Z and FK{f'2)= f2:Z->Y.
Consequently condition (1) is proved.

Now assume that fi\<fi2 in M, Y e add(S^Ml), A" e addC^) and f:X^>Y is a
nonzero morphism. Then there are 8,, S2 e A such that C. 5, = ^ ( , G. 82 = (JL2.
Moreover, there are X' E add(^2), Y' e add(^S|) and f'.X'^Y' such that FA(A") - X,
F^(Y') = y and FA(/') = / Since /? is A-directed and A is linearly ordered hence 52< 5,,
because /x,,</i,2. If there is no 8QGG.8O such that 82<8Q<8[ then /i2</o.i by the
definition of the order in A' (see the proof of Lemma 2.8), which contradicts the
assumption that At, < /Lt2. Thus there is 8'0 e G. 80 such that 82 < 8^< 5,. Therefore there
are Z' e add(^.), f\:X'^Z', f'2:Z'^Y' such that / ' =f2f\ for °TK is separating by
Lemma 2.10. Then there are Z = FX(Z') e 3~, Fk{f\) =/, :X^Z, FA(f2)=f2:Z^ Y such
tha t /= / 2 / , which proves condition (2).

The proof of (3) is similar to that of (1), since we can use conditions (1), (2) for the
family F^s;). We leave the details to the reader. D

4.4. If G is an admissible infinite cyclic group of /(-linear automorphisms of a locally
support-finite /(-category R then the quotient category R/G is a finite-dimensional
/(-algebra. For a finite-dimensional /(-algebra H a family ST of components in the
Auslander-Reiten quiver rH is defined to be weakly separating if there is a non-empty
linearly ordered set M and a partition r w \5"= UM^M ^ of r/y\5"onto a disjoint union
of families 5~M of components such that the conditions (l)-(3) of Proposition 4.3 are
satisfied. The set M will be called ST-induced.

4.5. THEOREM. / / B is a standard selfinjective representation-infinite K-algebra of
polynomial growth then there is a weakly separating family ST of components in Y'B with a
ST-induced set M of one of the following forms:

&2i+\ = {1,2, . . . , 2/ + 1}, / = 0,1,2, . . . , with the order as in N,
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A((>.i) = (0, /) n Q, i = 1,2,... , »Wr/j r/ze order as in Q.
Moreover, every family ST^ of the partition T/i\Sr=\_\IJLsM3')X is also a weakly

separating family of components in ru with a &'^-induced set which is isomorphic to M.

Proof. Let B be a standard selfinjective representation-infinite /(-algebra of polyno-
mial growth. Then B = A/G, where A is either a Euclidean or a tubular /(-algebra and G
is an admissible infinite cyclic group of /(-linear automorphisms of A by Theorem 3.3. If
A is a Euclidean /(-algebra then A is a Z-directed locally support-finite /(-category which
has a separating family STZ, z e Z, by Lemma 3.4. Thus B has a weakly separating family
3~ oi components in YB by Proposition 4.3. Moreover, the ^"-induced set M is of the form
A2/+1 = {1,2,. . . , 2/ + 1}. / = 0,1,2, . . . by its construction in the proof of Proposition 4.3
and by Lemma 3.4, 2.8, 2.10. If A is a tubular ^-algebra then A is a Q-directed locally
support-finite /(-category which has a separating family STq, q e Q, by Lemma 3.5.
Therefore B has a weakly separating family ?T of components in TB by Proposition 4.3.
Moreover, the ^"-induced set M is of the form A(cu) = (0,/) n Q, i = l , 2 , 3 , . . . , by its
construction in the proof of Proposition 4.3 and by Lemma 3.5, 2.8, 2.10. The last
statement of the theorem is clear. _ •

5. Selfinjective algebras with Auslander-Reiten quivers all of whose components are
generalized standard.

5.1. Throughout this section we shall assume that B is a standard selfinjective
representation-infinite ^-algebra of polynomial growth. Sometimes we shall use in the
notations of Theorem 4.5 the convention that the family ST has the index either 2/ + 2 if
M = A2,+i or i if M = A(()i).

5.2. Let ind(B) denotes the full subcategory in mod(fi) formed by the indecom-
posable iB-modules. For a nonzero non-isomorphism f:X—>Y we define its M-length
lM(f) as follows: it f = F^-.F^X)-* FA(Y), where Fx:mod(A)->mod(B) is the push-
down functor, then X e. 3~S{, Y e 5"fi2 and we put lM(f) = S2~ S,. Fur thermore , for a
nonzero non-isomorphism h\X^ Y in mod(B) we have a decomposition h:Xx@ ... ®

X,, —> V, ® . . . © V,,,, where X,, / = 1 , . . . , « , Yh j = 1, . . . , m, are indecomposable and
h = (h,j) with h/j-.X/^Yj. Then we define the M-length of h as lM(h)-max,j{lM(h,j)}.
Moreover for any isomorphism / we put /M(/) = 0. It is easy to verify that the above
definition does not depend on the choice of pullings-up X, Y, and so Ml-length of a
morphism is well-defined. For the algebra B we define its M-spread sprM(6) as
sup,M/{/M(/)}-

5.3. LEMMA. ifO^f-.X^Y is a morphism in mod(B) then there is a morphism
h:P—*P' between indecomposable protective B-modules P, P' such that /M(/) ^ /MC2)-

Proof. In order to prove the lemma consider the composed morphism /J, = wYfpx,
where px :P{X)—* X is a projective covering morphism and wy:Y—>I(Y) is an embed-
ding of Y into its injective hull. Then / M ( / I | ) ^ / M ( / ) - If we decompose hx:P(X)-*I(Y)
then there are an indecomposable direct summand P in P(X), an indecomposable direct
summand P' in I(Y) and a nonzero morphism h:P—*P' such that lM(h) = /M(^I) — '«(/)
by 5.2. •

5.4. If C is an admissible infinite cyclic group of /(-linear automorphisms of A and g
is a generator of G then g is a A-induced automorphism by Corollary 2.5, where A = Q or
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A = Z. Thus there is an automorphism g': A-» A associated to g as in 2.2. Then a A-stroke
of g is defined to be the natural number stA(g) = \g'(8) - S\ > 0 for any 8 e A. Clearly
stA(g) is independent of the choice of 5 e A.

5.5. PROPOSITION. Let A be either a Euclidean or a tubular algebra. Let G be an
admissible infinite cyclic group of K-linear automorphisms of A, g a generator of G and
B =A/G. Then the following conditions are equivalent:

(1) All components in TH are generalized standard.
(2) One of the following conditions holds:
(2a) stA(g)>sprM(B).
(2b) stA(g) = sprM(fi) and for every indecomposable projective B-Module P it holds

that P and the injective hull /(top(P)) of top(P) do not belong to b e same component
in T«.

Proof. First we shall show that condition (2) implies condition (1). Assume that
stA(g)>sprM(B). Suppose to the contra.y that there is a component % in VH which is not
generalized standard. Then .there a. X, Y e <& and 0^f:X-+Y such that / e
rad*(mod(fi)). Since. A is locally suppo .-finite, there are X, 9 s ind(^), 0 # / : £ - > 7
with X e STSi, Y e 2T8l such that FX(J) ==/, FX(X) = X, FA(Y) = Y. But all components in
T^ are generalized standard hence 8X¥^82. We deduce from Corollary 2.5 that g is
A-induced, so there is an automorphism g':A —»A such that if Z e 3~s then FK{Z) e STg^s),
where Fg is an automorphism of mod(/4) induced by g. Since X, Y e ^ hence there is a
natural number n such that either (g')"(5i) = 2̂ or (g')""(Si) = 82. Then stA(g) < |5, - S2\
and clearly lM(f) = \8i - S2\ <sprM(B). Consequently stA(g)<sprM(B) which contradicts
our assumption. Thus every component in TH is generalized standard.

Now assume that stA(g) = sprM(fi) and for every indecomposable projective B-
module P it holds that P and /(top(f)) do not belong to the same component. Again
suppose to the contrary that there is a component <# in FB which is not generalized
standard. Hence there are X, Y e % and 0^f:X^ Y such that / e rad=c(mod(B)). Then
by Lemma 5.3 there are indecomposable projective fl-modules P, P' and 0¥^h:P^ P'
such that h e rad*(mod(B)). Clearly we can choose P as an indecomposable direct
summand in P(X) and P' as /(top(P)). Then we can consider the following composed
morphism wnfp, where p:P^>X is induced by a covering morphism P(X)—*X,
n: Y^> y/rad(im(/)) is an epimorphism and w: Y/rad(im(/))—>P' is induced by an
embedding V/rad(im(/))-»/(y/rad(im(/))). Then O^wxfp e rad"(mod(fi)). Since
stA(g) = sprM(fi) hence P and P' belong to the same component which contradicts our
assumption. Consequently, every component in VB is generalized standard.

Now assume that every component in TB is generalized standard. First we shall show
that stA(g)>sprM(fl). Suppose to the contrary that stA(g)<sprM(fi). Then there is
OT^/IP—»P' between indecomposable projective ^-modules such that /iy(/)>stA(g) by
Lemma 5.3. Since A is locally support-finite hence there is 0 # / : P - » P ' in mod(A),
where P e ^ , , P' e ^ and FX(P) = P, FX(P') = P', F,(f) = / , |fi, - 52| > stA(g). But A is
A-directed, so 52 > 5, and 8i<g'(8i)<82 or 8, <(g')~'(S,)< 82, because A is linearly
ordered. We shall consider only the first case since the other one is similar. If A is tubular
then there exists 8,, e <Q such that S,<8,,<g'(5i) and g'(8,)<g'(S,,)<82. Clearly/
factorizes through a module Wx from add(5"5n) and through a module W2 from add(^,(i5(i))
by Lemma 3.5. We can choose W, e add(^) and W2 e. add(F(,('S)), where % is a
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component from 3~Sn by [16, Section 2], because we can choose 50 <= (Q\Z). Thus
J^ttJu where /,:/>-»#„ f2:W^W2, ?3:W2-»P'. Therefore FA(/2):FA(^,)-»FA(^2)
is a morphism from rad";(mod(B)) and Fx(Wt), FX(W2) e add(FAC^)) which contradicts
generalized standardness of the components in TB. If A is Euclidean then stA(g) > 2 by
Lemma 3.6 and we obtain similarly that FA(STZ), z even, is not a generalized standard
component in TB by Lemma 3.4. Consequently we have proved that stA(g) > sprM(B). In
order to finish our proof we should only show that if stA(g) = sprM(fl) then P and
/(top(f)) do not belong to the same component, where P is any indecomposable
projective B-module. Suppose to the contrary that there is an indecomposable projective
fi-module P such that P, I(top(P)) e %. Then the composed morphism wp¥=0, where
p-.P^top(P), w:top(P)->I(top(P)) and wp e rad*(mod(B)). This contradicts the as-
sumption that all components in YB are generalized standard. Thus the proposition
follows. •

5.6. COROLLARY. / / B is a selfinjective representation-infinite K-algebra with all
components in Y' B generalized standard then the following conditions are satisfied:

(1) There is a partition YB = \_\veN3~v such that for every v e N, STV is a weakly
separating family of components and N\{v} is isomorphic to A2,+i, i^l or to A(0,>, / ^ 3.

if

.f

Proof. Since any selfinjective representation-infinite ^-algebra B with all com-
ponents in YB generalized standard is a standard algebra of polynomial growth by [34]
hence the corollary is clear by Theorem 4.5, Proposition 5.5 and Lemma 3.6, 3.7, 5.3. •

5.7. Under the assumptions and the notations of 5.6 we have the following.

COROLLARY. IfO^f-.X—» V is a morphism such that its coset modulo SP(X, Y)f ¥=Q
then

if
if

Proof. Observe that by [21] we have the following fact. For every nonprojective
indecomposable fi-module X there is O^p-.T'CIX->X such that for any 0# / :V-»A r

there is h:r~QX-*Y with p=fh, where Q is the Heller's loop-space functor. Thus
l,,\{V)(f) is maximal, where /VO, iff / acts from r~QX into X. Then for any hereditary
algebra H a simple verification shows that //v\{v}(/) — 2. For canonical tubular algebra E it
follows from [23, Lemma 1.6] that lN\{v}(f) — U- Since for a Euclidean algebra A we have
mod(/4) is equivalent to mod(H) and for a tubular algebra A we have mod(A) is
equivalent to mod(E), the corollary follows. •

6. Components of algebras stably equivalent to algebras whose components are
generalized standard.

6.1. Throughout this section we assume that B is a selfinjective representation-
infinite /(-algebra such that all components in Ya are generalized standard. Moreover, we
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assume that C is an algebra which is stably equivalent to B and <J>:mod(S)—»rnod(C) is a
fixed equivalence. We shall denote by <J>~' a quasi-inverse of O. It is well-known and easy
to prove that C is also selfinjective.

6.2. LEMMA. Let X, Y be two nonprojective indecomposable C-modules which belong
to a component <€ in Tc. Iff e rad^A", V) is a nonzero morphism then f = 0.

Proof. Under the assumptions and the notations of the lemma suppose to the
contrary that there i s / e radac(m6*d(C)) wi th /VO. Then there is O^diX^ Y, such that
^A",) = X, 0(7 , ) = Y and <&(d) =f. Since the stable Auslander-Reiten quiver is invariant
under taking stable equivalences by [6] hence there is a component ^ , in r w such that Xx,
Y, e %. Observe that there, is such d ' : * , - * Y, that <i>(dj=f and d' E radK(mod(fi)).
Indeed, if / e rad*(mod(C)) then / = / > _ , /* - ,+1 . . . /I_I/JO/J,~.. . hr-xhrf"r, where hj e
rad(mod(C)), so it is neither a split epimorphism nor a split monomorphism, j = —s,
—s + l,...,—l, 0, l , . . . , r . Moreover, for arbitrary large natural s or r, f has a
decomposition of the above form. Thus we can choose d' = d'st-st-s+i ... t-ltotl

. . . tr_xtrd! such that <J>(̂ ) = £ , <&(d?) =£[, (*/,) = hj, j = -s,. . . , - 1 , 0, 1,. . . , r. But
passing from a decomposition f'sh-s... h-lhoh] .. . hrf" to /" ̂  _,_, /r _ v _, /z _ v. . . h-.)h{)h\
... hrhr+xf"+\ we decompose f's=f's+\h-s+i a n d f"=hr+xf"+x in the following way. If
/ . , : ©J'=i Z,—> Y with all Z, indecomposable, i = l , . . . , w , then for every i = l,...,n

there is an Aus lander -Re i ten sequence of the form 0-»Z,--»/?,•-» T ~ ' ( Z , - ) - > 0 by [4].

Clearly/ .v = (/ .v, i , . . . , / j . , ,) , where / ^ : Z , - - » y . Then we know from [4] that there is a

morphism/ .J+ u :7? , - -> Y such that/.,,,• = /.J+,.,•/,•. Thus putting

(/, 0 0 . . . (T

0 /2 0 . . . 0

0 0 . . . 0 / „ ,

we obtain a decomposition f's =f's+\h-s-l with A_,_, E rad(mod(C)). Dually one decom-
poses / " = /jr+1 f"+,. Thus for arbitrary large natural i- or r, d' has a decomposition of the
above form. Therefore d' e radsc(mod(fi)) and rf^ = d since ^(J^) = $ ( J ) = / . Since cT T^O
hence rf'^0, and so we get a contradiction to our assumption on generalized
standardness of all components in rf l , which finishes the proof.

6.3. LEMMA. / / O^f-.X^Y is such a morphism that f e rad*(mod(C)) and X,
y e add(^) are without projective direct summands, where % is a component in F c , then f
factorizes through a module W e add(rcA

Proof. Assume that 0^f:X^Y with X, Y e add(^) without projective direct
summands, / e rad'c(mod(C)), where % is a component in Tc. Since / e rad*(mod(C))
there is a decomposition /' =f'sh_s... h-xhah\ ... hrf", where /?, e rad(mod(C)),
/ = -s,.. . , - 1 , 0, 1,. . . , r. Moreover, for arbitrary large s or r, f has a decomposition of
this form.

Passing from f=f'sh-s... h^lhoh] .. . h,.f" to / =/^+1/?_v_, . . . Z?-,/?,,/?, . . . h,.f" we
decompose f's=f's+]h-s-\ as in the proof of Lemma 6.2. Passing from / =
f'sh _ , . . . / ? _ , hoh i . . . hrf" to / = f'sh _ , . . . / /_ , /?„/? , . • • /»,•+1 /"+1 we decompose / ; =
/?,.+,/,"+, as in the proof of Lemma 6.2.
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Let hj\ Wj—> V^_|, j = -s + 1,.. . , —1, 0, 1, . . . , r. Clearly we may assume that all W}

are in add(^). Indeed, if Wjn e add(rc\
(ig) then /factorizes through Wju and the required

condition (in the lemma) holds. If Wjn has a decomposition W'jn® W"n with W'h e add(<#)
and Wy" e add(Fc\<#) then we can consider the morphism f'sh-, ... hj _xh) h) + lhj +2

...hrf';, w h e r e h'ji&,: W, I+ , _ W ) a , hii)+l = (h'il)+], h]u+x), h"h+,: WJII+ , -> w; , ; /*,,=

j : VKjo© W,"-» W,u_|. In the same way we can assume that im( />_ , . . . hj) e add(^),

j = -s,... , 0 , . . . , r.
Now consider the case when r can be arbitrarily large. Then there is j0 e ÎJ such that

all hj are epimorphisms for y > j 0 by the construction of decompositions of / given
in the proof of Lemma 6.2. If hju.. . hrf" # 0 then ®-\hjn.. .hrf") =
<^~\hj^.. .<t>~](hJ.)<$>-](l2)?iO. Thus we can choose h) in rad(mod(B)) such that
hj_ = <&~{(hj), j=jo,...,r, because stable equivalences preserve irreducible morphisms.
Hence there is a morphism h in mod(B) such that h = <£>~](hJu... hrf") and h =
tija...h'~f"r, where /7 = d>~' (/T). Consequently, h £ rad;(mod(fi)) and h:<b~\X)-*
4>"'(Wy(i). This means that the component <t~1(<#) in TB is not generalized standard which
contradicts our assumption made in 6.1.

If hia... hrf" = 0 then hin.. . hrf" factorizes through the projective cover P of Wja.
The same reasoning as in the first part of the proof shows that we may consider the largest
direct summand P' in P with P' e add(^). Then it is clear that the induced morphism
p:P' —> Wjn has a decomposition p = hjn.. . hrp" for some p":P-* Wr+[ by projectivity of
P since hj are epimorphisms for j >/0. Thus p e radac(mod(C)). Furthermore, p factorizes
through P'/soc(P'), because/? =p,;rfor an irreducible morphism n:P'^>P'/soc(P'). It is
obvious that px e rad=c(mod(C). Moreover £ ^ 0 , because the canonical epimorphism
q:P'/soc(P')—> top(P') factorizes through px hence q -lp, for some l':WJn—>top(P'). But
q #0 , because q is an epimorphism. Hence £±^0. Thus as in the case hjn... hrf"¥^0 we
get a contradiction to generalized standardness of the component <J>~'C<?).

In the case when 5 can be arbitrarily large dual arguments apply and the lemma
follows. D

6.4. LEMMA. Let ^ be a component in Tc- If X,Y e<€ and O^f-.X-* Y such that
f e rad'(mod(Q) then there are Xu 7, e <<?, W e add(r c \«) and h, :*,-> W, h2: W-* y,
such that hj^^O and hj #0.

Proof. Let U e a component in Tc. If X, Y e % and 0?±f:X-*Y such that
/ G rad=c(mod(C)) then there is a module W, e add(Fc\C) and there are /, :X^WX,
f2: W, —» V such that / =/2/i by Lemma 6.3. If there is a direct summand V in im(/) with
V e add(rc\

cg) then the required condition holds for W = V,Xi=X,Yl = Y, ht :X^> V
an epimorphism and h2: V —* Y a monomorphism. If im(/) E add(^) then consider im(/,).
If there is a direct summand V] in im(/,) such that V, e a d d ( r c \ ^ ) then there is an
epimorphism r:im(/,)->im(/) and take ti:V]^Z] as a restriction of t to V, composed
with a projection from im(/) onto an indecomposable direct summand in im(/) such that
pt] 7^0, where p :Z | ->5 is a projection and S is a simple C-module. Thus the composed
morphism t = ttt2 has the properties t ̂ 0, t e rad*(mod(C)), where t2:X^>Vt is an
epimorphism. This contradicts Lemma 6.2. Hence im(/i) e add^i?). Applying the usual
duality D to im(/2) we obtain similarly that im(/2) e add(tg). Since /T^O there is an
indecomposable direct summand Xx in im(/,) and there is an indecomposable direct
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summand Y, in im(/2) such that qv ¥= 0, where v: A", -» Wt is a monomorphism induced by
/, and q: W, —> Y, is an epimorphism induced by /2. Consequently the required condition
holds for A",, Y,, W = Wu h{ = v, h2 = q and the proof is finished. D

6.5. LEMMA. / / % is a component in TB such that there are X, Y e <#, an indecom-
posable W eadd^flX'i?) and 0 # h^. A" -» W, O ^ / i ^ W ^ Y f/ien <g does nof con/aw a
projective vertex.

Proof. Let ̂  be a component in TB such that there are A", y e 'S, an indecomposable
W eadd(rB\<g) and 0#/ii:A'^>W, O ^ i W - ^ Y . Suppose to the contrary that %
contains a projective vertex. We know from Corollary 5.6 that TB = \_\vsN STV, where for
every v e N, STV is a weakly separating family of components. Moreover, for every v e N
we have that N\{v} is isomorphic to A2, + ,, i ̂  1, or A(0</), i s 3. Let <% e ^V|), v0 e N. Let
W e STvr If NVjVolsA,,,,,), / > 3 , then / = 3. Indeed, if ( > 3 then either lN{h\)>lk or
lN(h2)>l-i which contradicts Corollary 5.7. If / = 3 then lN{hK) = lN(h2) = H, because
A", Ye<g and W e r s \ ^ . But we know from [6,21] and Corollary 5.7 that there is
0 ^ _ / : T ~ Q W - » W such that /*,(/) = l i We infer by [6; Proposition 4.1] that the simple
functor from mod(fl) to mod(/C) concentrated in T~^C1(W) is the socle of Hom»(-, W).
Thus there is r:T~'Q(W)-»X such that thr = t. Consequently, T~ 'Q(W) e <g. Dual
arguments show that TQ~ ' (W) e ^.

For any indecomposable projective B-module R we have the following Auslander-
Reiten sequence (see [5])

R 0rad(/?)/soc(/?)-> R/soc(R)^> 0

because 6 is selfinjective, and so every projective module is projective-injective and its top
is simple as well as its socle. Thus TQ~\SOC(R)) = r(R/soc(R)) = rad(/?).

If there is a projective vertex P in ^ then Q"1(rad(P)) belongs to the same
component as W. But Q~'(rad(/))) = top(F). If we consider an injective envelope
/(top(P)) of the simple B-module top(P) then /(top(P)) is indecomposable projective-
injective and soc(/(top(P))) = top(P). Then Q"'(top(P)) =/(top(P))/soc(/(top(/>))) and
Tf2~'(top(P))srad(/(top(/)))) by the above Auslander-Reiten sequence. Since
TQ.-](W)e<8 hence rad(/(top(F))) = rQ~'(top(P)) e <# which contradicts Proposition
5.5(2b) for all components in TB are generalized standard. The proof in the case when
N\{v,,} = A2,+i, / ̂  1, is similar and we leave the details to the reader. •

6.6. LEMMA. // % is a component in Tc which is not generalized standard, then *%
contains a projective vertex or a simple one.

Proof. Assume that % is a component in Fc which is not generalized standard. Then
there are X, Y E % and 0# / :A ' - ^ Ysuch that/ e rad;e(mod(C)). Clearly we may assume
that X and Y are not projective. Indeed, if X is projective then f=f2f\, where
/, :X—* AVsoc(A') is an epimorphism and/2:A'/soc(A')^ Y. Moreover, we deduce from
Lemma 6.3 that / factorizes through a module W e add(r c \^) . Thus/2 factorizes through
the same W, and so f2 e rad*(mod(C)). Consequently we may consider AVsoc X instead
of X and f2 instead of / Dual arguments show that Y can be chosen nonprojective. We
obtain from Lemma 6.2 that / = 0. If im(/) e add(rc\

(i?) then / = h2hu where h\ :X -*
im(/) is an epimorphism and /z2:im(/)—>Y is a monomorphism. Thus Z ,̂ hj^O by
[27]. If TB= UvsNSTv and /V\{v,,} is isomorphic to A,,,,,, then i = 3 and / N ( / I | ) ^ 1 5 ,

/yv(/j2)<l5 by Corollary 5.7. But we have an epimorphism p:P(i
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Therefore there is a morphism t:P(im(f))/soc(P(im(f)))—>X such that f/z, is an
epimorphism. Thus th+^O and if /)(im(/))/soc(P(im(/))) does not belong to add (<<?) then
lN(thi)>l2- which contradicts Corollary 5.7. If /V\{v0} is isomorphic to A2,+i, then i = l
and lN{h\) <2, lN(h2) ^ 2 . Repeating the above arguments we get that P(\m(f)) e add(^).

If there is no direct summand Z in im(/) such that Z e add(Fc\
(i?) then we infer by

Lemma 6.4 that f = h2hu where h,:X-+ W, h2: W-* Y and W e add(Fc\<g). Thus there
is a submodule W, in W such that there is an epimorphism tl:X—>W[ and there is an
epimorphism t2: W, —»im(/). If W, e add(^) then consider the module W2 = \m(h2). There
are monomorphisms vl:\m(f)^W2 and v^W^—»V. Furthermore there is an epimorph-
ism q: W —> W2 such that /J2/J, = v2qh\. Since w2u, is a monomorphism there is no nonzero
direct summand W'2 in W2 such that W2 e add(Fc\<<f), because we get a contradiction to
Lemma 6.2 otherwise. Consequently we can consider qw instead of/, where w: W, —> W is
a monomorphism. Thus, applying dual arguments to those in the case im(/) e add(Fc\
<€), one obtains that <# contains a simple module. In order to finish our proof we should
consider the case when there is a direct summand W\ in W, such that W\ e add(Fc\

<^).
But in that case we get a contradictien to Lemma 6.2, because t2tx is an epimorphism. D

6.7. PROPOSITION. One of the following conditions holds:
(1) All components in F c are generalized standard.
(2) There is a partition T,, = \_\VBN3'V such that for every v()<=N, N\{v0} is

isomorphic to A(()>3).

Proof. Fix a partition FB = |_|ve/v 5"v described in Corollary 5.6. Assume for the
proof of the proposition that N\{v0} is isomorphic either to A(()i/), / > 3, or to A2,+i, i s 1.
Suppose to the contrary that there is a component ^ in F c which is not generalized
standard. Then there are X, Y e <€, 0¥=f:X^>Y such that / e rad;e(mod(C)). From
Lemma 6.2 we have / = 0. Furthermore we know from Lemma 6.3 that there is
W eadd(rc\<g) and there are /, :X^ W, f2: W^ Y such tha t /= / 2 / , . Using Lemma 6.4
we can choose f\,f2, W in such a way t h a t ^ # O ^ ^ . Therefore it is obvious by Corollary
5.7 that FB = \_\veN9~v with N\{vn} isomorphic to A3, because we assumed that it is not
isomorphic to A(03). But for NXlvg} isomorphic to A3 we deduce from Lemma 3.4 that
there is v, e A3 such that 5TV| consists of one component which contains projective
vertices. Thus, if P is a projective vertex in 3~Vi and /(top(F)) is the injective envelope of
topCP) then P, /(top(P)) e STVl by 3.1 which contradicts (by Proposition 5.5) the
assumption that all components in rB are generalized standard. Consequently the
proposition is proved. •

7. Selfinjective algebras of type A(U<3).
7.1. Throughout this section we shall assume that B is a representation-infinite

selfinjective algebra such that all components in Tti are generalized standard, and there is
a partition F« = {JV£NSTV, where N\{v0} is isomorphic to A(03), v(l e N. Moreover C is
stably equivalent to B and <l>:inod(fi)->mod(C) is a fixed equivalence.

7.2. LEMMA. F C contains a sincere tube which is generalized standard.

Proof. We deduce from Lemma 6.6 that all components, which do not contain a
projective module or a simple one, are generalized standard. If we carry over the partition
r« = LlfeN^v via <J) then we have F c = [JVSN^V- Without loss of generality we may
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assume that N = [0,3) D Q. Since C is a finite-dimensional algebra there are only finitely
many rational numbers q e [0,3) such that 3~'q contains projective or simple modules.
Thus we can choose a rational number qn e [0, 3) such that qn £ {0, 5,1,15,2,2j} and all
components in ZT'qa are generalized standard. But we have that for every simple C-module
5 either a projection p:P(S)/soc(P(S))-*S or an injection w.S^rad(l(S)) factorizes
through a module from add(^/()). But p ¥= 0 and w ̂  0 hence for n = <£>~[(p), u = <t>~\w)
it holds that either n or u factorizes through a module from add^g), where <# ranges over
all components in STqn by Lemma 3.5(1). Therefore either p or w factorizes through a
module from addC#'), where <ti>' ranges over all components in 3"qa. Consequently every
component in ST'qn is a generalized standard sincere tube and the lemma follows. •

7.3. Fix a generalized standard sincere tube T in Fc. Denotes by D the annihilator
annc(7) of T in C, which is the intersection of the annihilators of all modules from T.
Clearly I is nonzero, because soc(C) c I. Moreover D c rad(C) hence T is a sincere tube in
T,,, where F = C/l.

7.4. LEMMA. F is cycle-finite.

Proof. Repeat the arguments from the proof of [23, Lemma 2.9].

7.5. LEMMA. C is a representation-infinite selfinjective standard algebra of polynomial
growth.

Proof. It is clear that C is representation-infinite selfinjective. The final part of the
lemma can be deduced from a result of Skowroriski and Yamagata [35] which says that if
a selfinjective algebra C has a generalized standard sincere stable tube T such that
F = C/annc(T) is cycle-finite then C is standard of polynomial growth. Thus our lemma
follows by Lemma 7.2 and Lemma 7.4. •

8. Proof of the main result.
8.1. Let B be a selfinjective representation-infinite algebra such that all components

of FB are generalized standard. Let C be an algebra which is stably equivalent to B and let
<t>:mod(ff) —>mod(C) be a fixed equivalence.

8.2. LEMMA. C is a representation-infinite selfinjective standard algebra of polynomial
growth.

Proof. We know from Proposition 6.7 and Lemma 7.5 that all components of F c are
generalized standard or C is a representation-infinite selfinjective standard algebra of
polynomial growth. But in the case when all components of F c are generalized standard it
follows from [34, Theorem 3.13] that C is representation-infinite selfinjective standard
algebra of polynomial growth. •

8.3. LEMMA. Let A be an infinite linearly ordered set and let R be a ^-directed locally
bounded K-category. Let C be an admissible infinite cyclic group of K-linear automorph-
isms of R such that for every nonprojective X e STRa, 8O E A, and every indecomposable Y
if Horn »(X, Y) # 0 then Y e STh with 8{)<8{ <g'(8{)), where Fw = |J«eA ^ is a ^induced
partition ofYR and g is a generator of G which satisfies 8 <g'(8), 8 E A. If FA:mod(R)—*
mod(R/G) is an induced by the action of G on R push-down functor and HornN(U, V) ¥=
0, U, V € ind(R), then HomK(U, V) = HomKlc;(Fx(U), F,(V)) as K-linear spaces.
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Proof. Under the assumptions and the notations of the lemma observe that if
f-.U^V is such a morphism in mod(#) that / # 0 then FA(/):FA({/)-»Fk(V) satisfies
Fk{f)^0. Indeed, FA preserves projective modules and factorizations of morphisms
through projective modules. Let U, V e 'md(R) and U e 9~So, 80 e A. If Hom«(t/, V)^0
then V e 3~Rx with 50< 5, <g'(5()) by the assumption. But the G-orbit of V intersects with
LUe[s,K>;'<s,,)| &s in exactly one point V. Thus the lemma follows. •

8.4. Let A be an infinite linearly ordered set. An admissible infinite cyclic group G of
/("-linear automorphisms of a A-directed locally bounded /C-category R is called stably
admissible if it satisfies the following condition: for every A-induced partition of TR and
for every nonprojective X e SFSa and every nonprojective indecomposable /^-module V if

\ 7 ) ^ 0 then Y e STSl with 6,,< 5, <g'(80), where g is a generator of G such that
g'(8)>8, 8 e A .

8.5. PROPOSITION. Le/ A fee a« infinite linearly ordered set. Let /?,, /?2

selfinjective A-directed locally bounded K-categories. Let G, be a stably admissible group of
K-linear automorphisms of Rh i = 1, 2. / / R\IG\ is stably equivalent to R2/G2 then Rt is
stably equivalent to R2.

Proof. Under the assumptions and the notations of the proposition assume that
<I>:mod(/?,/G,)^mod(fl2/G2) is a fixed equivalence. Let F(-,A:mod(7?,-)-»mod(/?,-/G,-),
/ = 1, 2 be an induced by the action of G, on /?, push-down functor. We shall construct an
equivalence W: mod(/?,) —> mod(/?7) as follows. Since <i> preserves the stable Auslander-
Reiten quiver r«| /G| and F;-A maps components of YRj onto components of TK.,C., i = 1,2,
hence we can carry over the partition of TW| onto the partition of TK2. Thus we may
assume that if nonprojective X,Y £ STSl c PW| then there is S2 e A such that there are
nonprojective X',Y' e9\(=r^ such that <t>(F],,(X)) = F2,(X') and d>(Fu,(Y)) =
^2.A(^'))- F'X

 a family 3~Sit in TRl, 80 e A. Choose a family 3~'Sl in r^2 in such a way that for
every nonprojective X e 2TSu there is V e ST'Si satisfying ty(F\^(X)) = F2A(Y). It is possible
to do this by the above choice of the partition \_\SsA ST's of TRl. Then for every X e STSn we
put ^(X) = V with Y e ST'Si as above. If g,, i = 1,2 is a generator of C, satisfying the
condition in 8.4 and g,':A^>A is an automorphism induced by g,, / = 1,2, then clearly
5i =^2 by the choice of the partition of TRr Therefore for any z e Z if X e (̂i,i)-(«,,) t n e n

we can find the only Y e ^ j , . - , ^ , such that *(FM(A")) = F2.A(y). We put V(JQ = V again.
Moreover, for every S e [80, g'\(S0)] there is exactly one a e[8ug2(8])] such that for
every nonprojective X e 3~s there is exactly one Y e. &'„ with <5(Fi A(Ar)) = F2A(y). Again
for Xe&s we put V ^ ) = 7, where 7 e Ta and *(F,,A(A")) = F2,A(V). Now we can
prolongate V for the objects of the shifted families ^o,,,)-(S), z e Z, 5 E [50,g!(5())]. In this
way we have defined W for the indecomposable objects. Furthermore we prolongate W
for the objects of rnod(/?,) additively. Moreover, for every O^f-.X-^Y in mod(/?,) we
define W(f) = h:xV(X)->xV(Y), where <&F|,A(/)) = FKA(fe). It is easy to verify that W is a
well-defined functor. Clearly V is dense by its definition. Finally V is fully faithful by
Lemma 8.3 and the proposition follows. •

Proof of Theorem. Let B be a representation-infinite selfinjective algebra such that
all components of TB are generalized standard. Then B is standard of polynomial growth
by [34, Theorem 3.13] and so B =A/G by Theorem 3.3, where A is Euclidean or tubular
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and G is an admissible infinite cyclic group of /(-linear automorphisms of A. If C is stably
equivalent to B then C is also a representation-infinite selfinjective standard algebra of
polynomial growth by Lemma 8.2. Thus C = AJGU where Ax is Euclidean or tubular and
G, is an admissible infinite cyclic group of /(-linear automorphisms of A^ It is clear that
A is Euclidean (respectively, tubular) iff /4, is Euclidean (respectively, tubular). It is
obvious by Corollary 5.7 that G, G, are stably admissible. Then we deduce from
Proposition 8.5 that A and At are stably equivalent. Thus A, Ax are tilt-cotilting
equivalent algebras by [3] and they have the same number of pairwise non-isomorphic
simple modules by [17]. Furthermore, if g is a generator of G and g, is a generator of G,
then sta(g) = sta(gi). Consequently, B and C have the same number of pairwise
non-isomorphic simple modules which finishes the proof. •
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