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Fundamentals of direct limit Lie theory

Helge Glöckner

Abstract

We show that every countable direct system of finite-dimensional real or complex Lie
groups has a direct limit in the category of Lie groups modelled on locally convex spaces.
This enables us to push all basic constructions of finite-dimensional Lie theory to the case
of direct limit groups. In particular, we obtain an analogue of Lie’s third theorem: every
countable-dimensional locally finite real or complex Lie algebra arises as the Lie algebra
of some regular Lie group (a suitable direct limit group).

Introduction

In this article, we develop the foundations of Lie theory for countable direct limits of finite-
dimensional Lie groups. For the purposes of this introduction, consider an ascending sequence
G1 ⊆ G2 ⊆ · · · of finite-dimensional real Lie groups, such that the inclusion maps are smooth
homomorphisms. Then G :=

⋃
n∈NGn is a group in a natural way, and it becomes a topological

group when equipped with the final topology with respect to the inclusion maps Gn → G (see
[HST01, TSH98]). A simple example is GL∞(R), the group of invertible matrices of countable size,
differing from the unit matrix at only finitely many places. Here GL∞(R) =

⋃
n GLn(R), where

GL1(R) ⊆ GL2(R) ⊆ · · · identifying A ∈ GLn(R) with diag(A, 1) ∈ GLn+1(R). Our goal is to make
G =

⋃
nGn a (usually infinite-dimensional) Lie group, and to discuss the fundamental constructions

of Lie theory for such groups.

Existing methods

Provided that certain technical conditions are satisfied (ensuring, in particular, that expG :=
lim−→ expGn : lim−→L(Gn) → lim−→Gn = G is a local homeomorphism at 0), the map expG restricts
to a chart making G a Lie group (see [NRW91, NRW93] and [NRW01, Appendix]). This method
applies, in particular, to GL∞(R) and other direct limits of linear Lie groups. It produces Lie groups
which are not only smooth, but real analytic in the sense of convenient differential calculus [Glo03a,
Remark 6.5]. It is also known that every Lie subalgebra of gl∞(R) := lim−→ gln(R) integrates to a
subgroup of GL∞(R) (see [KM97, Theorem 47.9]); this provides an alternative construction of the
Lie group structure on various direct limit groups. However, neither of these methods is general
enough to tackle arbitrary direct limits of Lie groups. In particular, examples show that expG need
not be injective on any zero-neighbourhood [Glo03a, Example 5.5]. Therefore, a general construction
of a Lie group structure on G =

⋃
nGn cannot make use of expG.
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A general construction principle

In [Glo03a], a smooth Lie group structure on G =
⋃
nGn was constructed in the case where all inclu-

sion maps are embeddings (for ‘strict’ direct systems). Strict direct limits of Lie groups are discussed
there as special cases of direct limits of direct sequencesM1 ⊆M2 ⊆ · · · of finite-dimensional smooth
manifolds and embeddings onto closed submanifolds. To make M :=

⋃
nMn a smooth manifold, one

starts with a chart φn0 of some Mn0 and then uses tubular neighbourhoods to extend φn already
constructed (possibly restricted to a smaller open set) to a chart φn+1 of Mn+1. Then lim−→φn is a
chart for M . In the present article, we generalize this construction principle in two ways. First, we
are able to remove the strictness condition. This facilitates to make

⋃
nMn a smoothly paracompact,

smooth manifold, for any ascending sequence of paracompact, finite-dimensional smooth manifolds
and injective immersions (Theorem 3.1, Proposition 3.6). Second, we generalize the method from the
case of smooth manifolds over R to the case of real- and complex analytic manifolds (Theorem 3.1,
Proposition 3.8). This enables us to turn G :=

⋃
nGn into a real analytic Lie group in the sense

of convenient differential calculus, respectively a complex Lie group, for any ascending sequence of
finite-dimensional real or complex Lie groups (Theorem 4.3).1 Each direct limit group G is regular
in the convenient sense (the argument from [KM97, Theorem 47.8] carries over). Moreover, G is a
regular Lie group in Milnor’s sense (Theorem 8.1): this is much harder to prove.

Lie theory for direct limit groups

Despite the fact that expG need not be well-behaved, all of the basic constructions of finite-
dimensional Lie theory can be pushed to the case of direct limit groups G =

⋃
nGn. Thus, subgroups

and Hausdorff quotient groups are Lie groups (Propositions 7.2 and 7.5), a universal complexifi-
cation GC exists (Proposition 7.13), subalgebras of L(G) integrate to analytic subgroups (Propo-
sition 7.11), and Lie algebra homomorphisms integrate to group homomorphisms in the expected
way (Proposition 7.10). Furthermore (Theorem 5.1), every locally finite real or complex Lie algebra
of countable dimension is enlargeable, i.e. it arises as the Lie algebra of some Lie group (a suit-
able direct limit group). Such Lie algebras have been studied by Yu. Bahturin, A. A. Baranov,
I. Dimitrov, K.-H. Neeb, I. Penkov, H. Strade, N. Stumme, A. E. Zalesskii, and others. If H ⊆ G is
a closed subgroup, then H is a conveniently real analytic (cω

R
-) submanifold of G. Furthermore, the

homogeneous space G/H can be given a cω
R
-manifold structure making π : G→ G/H a cω

R
-principal

bundle (Proposition 7.5). Similar results are available for complex Lie groups. We remark that spe-
cial cases of complexifications and homogeneous spaces of direct limit groups have already been used
in [NRW01, Wol04], in the context of a Bott–Borel–Weil theorem, respectively direct limits of prin-
cipal series representations. Universal complexifications of ‘linear’ direct limit groups G ⊆ GL∞(R)
were discussed in [Glo02a], in the framework of Baker–Campbell–Hausdorff (BCH)–Lie groups. For
special examples of direct limit manifolds of relevance for algebraic topology, see [KM97, § 47].

Variants

Although our main results concern the real and complex cases, some of the constructions apply
just as well to Lie groups over local fields (i.e. totally disconnected, locally compact, non-discrete
topological fields, such as the p-adic numbers), and are formulated accordingly. Readers mainly
interested in the real and complex cases are invited to read ‘K’ as R or C, ignore the definition of
smooth maps over general topological fields, and assume that all Lie groups are modelled on real
or complex locally convex spaces.

1More generally, we can create direct limit Lie groups for arbitrary countable direct systems of finite-dimensional real
or complex Lie groups. The bonding maps need not be injective.
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Fundamentals of direct limit Lie theory

1. Basic definitions and facts

We are working in two settings of differential calculus in parallel: (1) the Convenient Differential
Calculus of Frölicher, Kriegl and Michor; and (2) Keller’s C∞

c -theory (going back to Michal and
Bastiani), as used, e.g., in [Mil82, Mil83, Glo02a, Glo02b], and generalized to a general differential
calculus over topological fields in [BGN04]. For the basic notions of infinite-dimensional Lie theory
(L(G), expG, logarithmic derivative, product integral), see [KM97] and [Mil83].

1.1 Convenient Differential Calculus
Our source for Convenient Differential Calculus is [KM97], and we presume familiarity with the
basic ideas. The smooth maps and manifolds from convenient calculus will be called c∞

R
-maps and

c∞
R

-manifolds here. Maps and manifolds which are holomorphic in the convenient sense will be called
c∞
C

or cω
C
. Real analytic maps and manifolds in the convenient sense will be called cω

R
. Likewise for

Lie groups. The regular c∞
R

-Lie groups from convenient calculus (see [KM97, Definition 38.4]) will
be called c∞

R
-regular ; we call a c∞

C
-Lie group c∞

C
-regular or cω

C
-regular if its underlying c∞

R
-Lie group

is c∞
R

-regular. A cω
R
-Lie group G will be called cω

R
-regular if it is c∞

R
-regular and the right product

integral EvolrG(γ) : R → G of each cω
R
-curve γ : R → L(G) is cω

R
. The definitions of cω

R
-regularity

and cω
C
-regularity ensure the following.

Lemma 1.2. Given K ∈ {R,C}, let G and H be cω
K
-Lie groups, where G is simply connected and

H is cω
K
-regular. Then, for every bounded K-Lie algebra homomorphism α : L(G) → L(H), there

exists a unique cω
K
-homomorphism β : G→ H such that L(β) = α.

Proof. By [KM97, Theorem 40.3], there exists a unique c∞
R

-homomorphism β : G → H such that
L(β) = α. If K = R and γ : R → G is a cω

R
-curve, then β ◦ γ : R → H is a smooth curve with right

logarithmic derivative δr(β ◦ γ) = L(β) ◦ δrγ = α ◦ δrγ. Here α ◦ δrγ is cω
R
, whence its right product

integral β ◦ γ is cω
R
, by cω

R
-regularity. Hence, β is cω

R
. If K = C, then β is a c∞

R
-homomorphism

such that Tx(β) is C-linear for each x ∈ G, as T1(β) = α is C-linear. Hence, β is cω
C

by [KM97,
Theorem 7.19(8)].

1.3 Keller’s C∞c -theory and analytic maps
Let E and F be locally convex spaces over K ∈ {R,C}, U ⊆ E be open and f : U → F be a
map. If K = R and r ∈ N0 ∪ {∞}, then f is called Cr

R
if it is continuous and, for all k ∈ N0 such

that k � r, the iterated directional derivatives dkf(x, y1, . . . , yk) := Dy1 · · ·Dykf(x) exist for all
x ∈ U and y1, . . . , yk ∈ E, and define a continuous map dkf : U × Ek → F . The C∞

R
-maps are

also called smooth. If K = C, we call f a C∞
C

-map, Cω
C
, or complex analytic, if it is continuous

and given locally by a pointwise convergent series of continuous homogeneous polynomials [BS71,
Definition 5.6]. If K = R, we call f real analytic or Cω

R
if it extends to a complex analytic map

between open subsets of the complexifications of E and F . See [Mil82, Mil83, Glo02b] for further
information (also concerning the corresponding smooth and K-analytic Lie groups and manifolds).

1.4 General differential calculus
Let E and F be (Hausdorff) topological vector spaces over a non-discrete topological field K, U ⊆ E
be open, and f : U → F a map. According to [BGN04], f is called C1

K
if it is continuous and there

exists a (necessarily unique) continuous map f [1] : U [1] → F on U [1] := {(x, y, t) ∈ U × E × K :
x + ty ∈ U} such that f [1](x, y, t) = (1/t)(f(x + ty) − f(x)) for all (x, y, t) ∈ U [1] such that t �= 0.
Inductively, f is called Ck+1

K
if it is C1

K
and f [1] is Ck

K
; it is C∞

K
if it is Ck

K
for all k. As shown in

[BGN04], compositions of Ck
K
-maps are Ck

K
, and being Ck

K
is a local property. For maps between open

subsets of locally convex spaces, the present definitions of Ck
R
-maps and C∞

C
-maps are equivalent

to those from § 1.3 (see [BGN04, Propositions 7.4 and 7.7]). Analytic maps between open subsets
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H. Glöckner

of Banach spaces over a complete valued field K (as used in [Bou89, Ser92]) are C∞
K

(see [BGN04,
Proposition 7.20]). For further information, also concerning C∞

K
-manifolds and Lie groups modelled

on topological K-vector spaces, see [BGN04, Glo03b, Glo03c, Glo04].

1.5 Direct limits

A direct system in a category A is a pair S = ((Xi)i∈I , (φi,j)i�j), where (I,�) is a directed set,
each Xi an object of A, and each φi,j : Xj → Xi a morphism (‘bonding map’) such that φi,i = idXi
and φi,j ◦ φj,k = φi,k if i � j � k. A cone over S is a pair (X, (φi)i∈I), where X ∈ ob A and
φi : Xi → X is a morphism for i ∈ I such that φi ◦ φi,j = φj if i � j. A cone (X, (φi)i∈I) is
a direct limit cone over S in the category A if, for every cone (Y, (ψi)i∈I) over S, there exists a
unique morphism ψ : X → Y such that ψ ◦ φi = ψi for each i. We then write (X, (φi)i∈I) = lim−→S.
If the bonding maps and ‘limit maps’ φi are understood, we simply call X the direct limit of S
and write X = lim−→Xi. If T = ((Yi)i∈I , (ψi,j)i�j) is another direct system over I and (Y, (ψi)i∈I) a
cone over T , we call a family (ηi)i∈I of morphisms ηi : Xi → Yi compatible if ηi ◦ φi,j = ψi,j ◦ ηj
for i � j. Then (Y, (ψi ◦ ηi)i∈I) is a cone over S; we write lim−→ ηi := η for the morphism η : X → Y
such that η ◦ φi = ψi ◦ ηi. If there is a compatible family (ηi)i∈I with each ηi an isomorphism,
S and T are called equivalent. Then S has a direct limit if and only if T does; in this case, lim−→ ηi
is an isomorphism. Every countable direct set has a cofinal subsequence, whence countable direct
systems can be replaced by direct sequences, namely I = (N,�).

1.6 Direct limits of sets, topological spaces, and groups

If S = ((Xi)i∈I , (φi,j)i�j) is a direct system of sets, write (j, x) ∼ (k, y) if there exists i � j, k such
that φi,j(x) = φi,k(y); thenX := (

∐
i∈I Xi)/∼, together with the maps φi : Xi → X, φi(x) := [(i, x)],

is the direct limit of S in the category of sets. Here X =
⋃
i∈I φi(Xi). If each φi,j is injective, then

so is each φi, whence S is equivalent to the direct system of the subsets φi(Xi) ⊆ X, together with
the inclusion maps. This facilitates to replace injective direct systems by direct systems in which all
bonding maps are inclusion maps. If S := ((Xi)i∈I , (φi,j)) is a direct system of topological spaces
and continuous maps, then the direct limit (X, (φi)i∈I) of the underlying sets becomes the direct
limit in the category of topological spaces and continuous maps if we equip X with the DL-topology,
the final topology with respect to the family (φi)i∈I . Thus, U ⊆ X is open if and only if φ−1

i (U) is
open in Xi, for each i. If S is strict in the sense that each φi,j is a topological embedding, then each
φi is also a topological embedding [NRW93, Lemma A.5]. If ((Gi)i∈I , (φi,j)i�j) is a direct system of
groups and homomorphisms, then the direct limit (G, (φi)i∈I) of the underlying sets becomes the
direct limit in the category of groups and homomorphisms when equipped with the unique group
structure making each φi a homomorphism; the group inversion and multiplication on G are lim−→κi
and lim−→µi, in terms of those on the Gi.

For further information concerning direct limits of topological groups and topological spaces,
see [Glo03a, Han71, HST01, TSH98].

Lemma 1.7. Let X1 ⊆ X2 ⊆ · · · be an ascending sequence of topological spaces such that the
inclusion maps are continuous; equip X :=

⋃
n∈NXn with the final topology with respect to the

inclusion maps λn : Xn → X (the DL-topology). Then the following hold.

(a) If each Xn is T1, then so is X.

(b) If Un ⊆ Xn is open and U1 ⊆ U2 ⊆ · · · , then U :=
⋃
n Un is open in X and the DL-topology

on U = lim−→Un coincides with the topology induced by X.

(c) If each Xn is locally compact, then X is Hausdorff.

(d) If each Xn is T1 and K ⊆ X is compact, then K ⊆ Xn for some n.
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Proof. (a) Let x ∈ X. Then λ−1
n ({x}) is either {x} or empty, hence closed in the T1-space Xn.

Hence, {x} is closed in X.
(b) and (c) This is proved in [Han71, Proposition 4.1(ii)] and [Glo03a, Lemma 3.1] for strict

direct sequences, but the strictness is not used in the proofs.
(d) If not, for each n we find xn ∈ K \Xn. Then D := {xn : n ∈ N} ⊆ K is closed in X (and

thus compact), as D∩Xn is finite and thus closed, for each n. On the other hand, D = lim−→(D∩Xn)
for the topology induced by X, as D is closed in X. Now D ∩Xn being discrete, this entails D is
discrete and hence finite (being also compact) – contradiction.

1.8 Let E be a countable-dimensional vector space over a non-discrete, locally compact topo-
logical field K (e.g. K = R or C). Then the finest vector topology on E is locally convex and
coincides with the so-called finite topology, the final topology with respect to the inclusion maps
F → E, where F ranges through the set of finite-dimensional vector subspaces of E (and F is
equipped with its canonical Hausdorff vector topology). Thus, the finite topology on E is the
DL-topology on E = lim−→F . See [Glo03a] and the references therein for these standard facts.
The space K

∞ := K
(N) = lim−→K

n of finite sequences will always be equipped with the finite topology.
We shall frequently identify K

n with the subspace K
n × {0} of K

∞, and K
m with K

m × {0} ⊆ K
n

if n � m.

Lemma 1.9. Let K be R, C or a local field, and E be a K-vector space of countable dimension,
equipped with the finite topology. Let E1 ⊆ E2 ⊆ · · · be an ascending sequence of finite-dimensional
vector subspaces of E such that

⋃
n∈NEn = E, and Un ⊆ En be open sets such that U1 ⊆ U2 ⊆ · · · .

Let f : U → F be a map to a topological K-vector space F , defined on the open subset U :=
⋃
n∈N Un

of E. Then the following hold.

(a) Given r ∈ N0 ∪ {∞}, f is Cr
K

if and only if fn := f |Un : Un → F is Cr
K

for each n.

(b) If K ∈ {R,C} and F is locally convex and Mackey complete, then f is C∞
K

if and only if it is
c∞
K

. Furthermore, f is cω
K

if and only if f |Un is cω
K

for each n ∈ N.

Proof. (a) For K = R and locally convex F , the assertion is covered by [Glo03a, lines preceding
Lemma 4.1]. This also implies the claim for K = C, r = ∞, F locally convex because then f is C∞

R

with df(x, •) complex linear for each x (since df(x, •)|En = dfn(x, •)), whence f is complex analytic
by [Glo02b, Lemma 2.5].

To prove the general case, we may assume that r < ∞. Lemma 1.7(b) settles the case r = 0.
If r � 1, note that U [1]

1 ⊆ U
[1]
2 ⊆ · · · and U [1] =

⋃
n U

[1]
n . The product topology on E × E × K

is the finite topology (cf. [Glo03a, Proposition 3.3]) and hence induces on U [1] the topology
making it the direct limit topological space U [1] = lim−→U

[1]
n (Lemma 1.7(b)). By induction, the

cone (F, (f [1]
n )n∈N) of Cr−1

K
-maps induces a Cr−1

K
-map g : U [1] = lim−→U

[1]
n → F , determined by

g|
U

[1]
n

= f
[1]
n . As g is continuous and extends the difference quotient map, f is C1

K
with f [1] = g.

Now f being C1
K

with f [1] = g of class Cr−1
K

, the map f is Cr
K
.

(b) If f is C∞
K

, then it is c∞
K

. If f is c∞
K

, then f |Un is c∞
K

for each n and thus C∞
K

, as dimK(En) <∞.
Hence f is C∞

K
, by (a). Given a cω

R
-curve γ : R → U and t0 ∈ R, pick an open relatively compact

neighbourhood J ⊆ R of t0. Then γ(J) ⊆ Un for some n by Lemma 1.7(d), and thus γ|J is cω
R

if
f |Un is. The remainder is now obvious.

A map f : R
∞ → R which is Cω

R
on each R

n need not be Cω
R

[KM97, Example 10.8]. For this
reason, we have to work with the weaker concept of cω

R
-maps.
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2. Extension of charts

In this section, we explain how a chart of a submanifold M1 ⊆ M2 (or its restriction to a slightly
smaller open set) can be extended to a chart of M2.

Lemma 2.1. Let M1 and M2 be finite-dimensional smooth (respectively real analytic) manifolds
over R, of dimensionsm1 and m2, respectively. Assume that M1 ⊆M2 and assume that the inclusion
map λ : M1 →M2 is a smooth (respectively real analytic) immersion. Let φ1 : U1 → V1 be a chart
of M1, where U1 is open in R

m1 and V1 is an open, relatively compact, contractible subset of M1.
Then there exists a chart φ2 : U2 → V2 of M2 such that U2∩(Rm1×{0}) = U1×{0}, φ2(x, 0) = φ1(x)
for all x ∈ U1, and such that V2 ⊆M2 is relatively compact and contractible.

Proof. Because C := V1 ⊆ M1 is compact, the map λ|C is a topological embedding. Now V1 being
open in C, we deduce that V1 = λ|C(V1) is open in λ(C), whence there exists an open subset
W ⊆ M2 such that W ∩ λ(C) = V1. Since λ(C) is closed in M2, the preceding formula shows that
V1 is closed in W . After shrinking W , we may assume that W is σ-compact, and relatively compact
in M2. Then V1 is a closed submanifold of the σ-compact, relatively compact, open submanifold W
of M2.

Smooth case. By [Lan99, Theorem IV.5.1], V1 admits a smooth tubular neighbourhood in W ,
i.e. there exists a C∞

R
-diffeomorphism ψ : V2 → P from some open neighbourhood V2 of V1 in

W onto some open neighbourhood P of the zero-section of some smooth vector bundle π : E → V1

over V1, such that ψ|V1 = idV1 (identifying V1 with the zero-section of E).

Real analytic case. Being σ-compact, W is Cω
R
-diffeomorphic to a closed real analytic submani-

fold of R
k for some k ∈ N0 (see [Gra58b, Theorem 3]), whence W admits a real analytic Riemannian

metric g. Using the real analytic Riemannian metric, the classical construction of tubular neigh-
bourhoods provides a real analytic tubular neighbourhood ψ : V1 ⊇ V2 → P ⊆ E.

In either case, after shrinking V2 and P , we may assume that P is balanced, i.e. [−1, 1]P ⊆ P
(using the scalar multiplication in the fibres of E). Being a vector bundle over a contractible,
σ-compact base manifold, E is trivial. This is well known in the smooth case [Hir76, Corollary 4.2.5].
For the real analytic case, note that E is associated to a real analytic GL(F )-principal bundle over
the σ-compact, contractible Cω

R
-manifold V1, where F := R

m2−m1 is the fibre of E. This principal
bundle is trivial by [Tog67, Teorema 5] (combined with [Hir76, Corollary 4.2.5]), and hence so is E.
(Compare also [Anc76, Gua02].)

By the preceding, we find an isomorphism of smooth (respectively real analytic) vector bundles
θ : E → V1×R

m2−m1 . Then κ : φ−1
1 ×id : V1×R

m2−m1 → U1×R
m2−m1 ⊆ R

m2 is a C∞
R

- (respectively
Cω
R
-) diffeomorphism, and U2 := κ(θ(P )) is an open subset of R

m2 such that U2 ∩ (Rm1×{0}) = U1.
Then φ2 := (κ ◦ θ ◦ ψ)−1|V2

U2
: U2 → V2 is a C∞

R
- (respectively Cω

R
-) diffeomorphism from U2 onto

the open subset V2 of M2, such that φ2(x, 0) = φ1(x) for all x ∈ U1. Since V2 ⊆ W , the set V2 is
relatively compact in M2. To see that V2 is contractible, we only need to show that so is P , as V2

and P are homeomorphic. Let H : [0, 1]×V1 → V1 be a homotopy from idV1 to a constant map. The
map [0, 1] ×P → P , (t, x) �→ (1− t)x (which uses scalar multiplication in the fibres) is a homotopy
from idP to π|P . The map [0, 1]×P → P , (t, x) �→ H(t, π(x)) is a homotopy from π|P to a constant
map. Thus, idP is homotopic to a constant map and thus P is contractible.

Definition 2.2. Let K be R, C or a local field, and | · | be an absolute value on K defining its
topology. Given n ∈ N0 and r > 0, we let

∆n
r := {(x1, . . . , xn) ∈ K

n : |xj | < r for all j = 1, . . . , n}
be the n-dimensional polydisk of radius r around 0. If we wish to emphasize the ground field, we
also write ∆n

r (K) for ∆n
r .
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If K is a local field, we define C∞
K

-immersions (and C∞
K

-submersions) between finite-dimensional
C∞
K

-manifolds analogous to the K-analytic case [Ser92]. Because an inverse function theorem holds
for C∞

K
-maps [Glo03b], C∞

K
-immersions and submersions have the usual properties.

Lemma 2.3 (Extension Lemma). Let K be R, C or a local field. Let M be a finite-dimensional
C∞
K

-manifold (or a finite-dimensional real analytic manifold), of dimensionm ∈ N0, and φ : ∆n
r →M

be a C∞
K

(respectively real analytic) injective immersion, where n ∈ {0, 1, . . . ,m} and r > 0. Then,
for every s ∈ ]0, r[ , there exists a C∞

K
-diffeomorphism (respectively a real analytic diffeomorphism)

ψ : ∆m
s → V onto an open subset V of M such that ψ(x, 0) = φ(x) for all x ∈ ∆n

s . If K is a local
field, the conclusion remains valid for s = r. The subset V ⊆M can be chosen relatively compact.

Proof. Let s ∈ ]0, r[ and t ∈ ]s, r[.

The case of smooth or analytic manifolds over K = R. We equip M1 := φ(∆n
r ) with the smooth

(respectively real analytic) manifold structure making φ|M1 : ∆n
r → M1 a diffeomorphism. Then

the inclusion map λ : M1 →M is an immersion, V1 := φ(∆n
t ) is a relatively compact, contractible,

σ-compact open subset of M1, and φ1 := φ|V1
∆n
t

: ∆n
t → V1 is a chart for M1. By Lemma 2.1, there

exists a C∞
R

- (respectively Cω
R
-) diffeomorphism φ2 : U2 → V2 from an open subset U2 of R

m onto
an open subset V2 of M such that U2 ∩ (Rn×{0}) = ∆n

t ×{0} and φ2(x, 0) = φ1(x) = φ(x) for all
x ∈ ∆n

t . Now ∆n
s ⊆ R

n being compact, we find ε > 0 such that ∆n
s × ∆m−n

ε ⊆ U2. Then

ψ : ∆m
s →M, ψ(x, y) := φ2

(
x,
ε

s
y
)

for x ∈ ∆n
s , y ∈ ∆m−n

s

is a mapping with the required properties.

The case K = C. The map φ|∆n
t

is an embedding of complex manifolds, whence so is
f : ∆n

1 → M , f(x) := φ(tx). By [Roy74, Proposition 1], there exists a holomorphic embedding
F : ∆m

s/t × ∆n−m
1 → M such that F (x, 0) = f(x) for all x ∈ ∆n

s/t. Then ψ : ∆m
s → M , ψ(x, y) :=

F ((1/t)x, (1/s)y) (where x ∈ ∆n
s , y ∈ ∆m−n

s ) is a holomorphic embedding with the desired
properties.

Relative compactness of V . By the real or complex case already discussed, there exists an
extension ψ̃ : ∆m

t → Ṽ of φ|∆n
t
. Then V := ψ̃(∆m

s ) is a relatively compact open subset of M ,
and ψ := ψ̃|V∆m

s
has the desired properties.

The case where K is a local field. In this case, ∆n
r is compact, whence φ is a C∞

K
-diffeomorphism

from ∆n
r onto the compact C∞

K
-submanifold M1 := imφ of M . The proof of [Glo03a, Lemma 8.1]

(tackling the K-analytic case) carries over verbatim to the case of C∞
K

-manifolds; we therefore find a
C∞
K

-diffeomorphism θ : ∆n
r ×O

m−n →M such that θ(x, 0) = φ(x), where O is the maximal compact
subring of K. Pick a ∈ K

× such that a∆m−n
r ⊆ O

m−n; then ψ : ∆m
r → M , ψ(x, y) := θ(x, ay) for

x ∈ ∆n
r , y ∈ ∆m−n

r (respectively its restriction to ∆m
s ) is the required chart for M .

3. Direct limits of finite-dimensional manifolds

Let K be R, C or a local field. Throughout this section, we let S := ((Mi)i∈I , (λi,j)i�j) be a
direct system of finite-dimensional C∞

K
-manifolds Mi and injective C∞

K
-immersions λi,j : Mj →Mi.

We let (M, (λi)i∈I) be the direct limit of S in the category of topological spaces, and abbreviate
s := sup{dimK(Mi) : i ∈ I} ∈ N0 ∪ {∞}. Our goal is to make M a manifold, and study its basic
properties.

Theorem 3.1. There exists a uniquely determined C∞
K

-manifold structure on M , modelled on the
complete, locally convex topological K-vector space K

s, which makes λi : Mi → M a C∞
K

-map,
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for each i ∈ I, and such that (M, (λi)i∈I) = lim−→S in the category of C∞
K

-manifolds modelled
on topological K-vector spaces (and C∞

K
-maps). For each i ∈ I and x ∈ Mi, the differential

Tx(λi) : Tx(Mi) → Tλi(x)(M) is injective. For each r ∈ N0, the Cr
K
-manifold underlying M satisfies

(M, (λi)i∈I) = lim−→S in the category of Cr
K
-manifolds modelled on topological K-vector spaces.

Proof. After passing to a cofinal subsequence of an equivalent direct system (cf. § 1.6), we may
assume without loss of generality that I = N, M1 ⊆ M2 ⊆ · · · , and that the immersion λn,m is the
inclusion map for all n,m ∈ N such that n � m. We let M :=

⋃
n∈NMn, equipped with the final

topology with respect to the inclusion maps λn : Mn →M ; then (M, (λn)n∈N) = lim−→((Mn), (λn,m))
in the category of topological spaces. We abbreviate dn := dimK(Mn) and cn := dn+1 − dn.

Let A be the set of all maps φ : Pφ → Qφ ⊆M such that Pφ =
⋃
n∈N Pn ⊆ K

s, Qφ =
⋃
n∈NQn,

and φ = lim−→φn for some sequence (φn)n∈N of charts φn : Pn → Qn ⊆Mn, where each Pn is an open
(possibly empty) subset of K

dn , Qn open in Mn, and Qm ⊆ Qn and φn|Qm = φm whenever n � m.
Here Lemma 1.7(b) allows us to interpret the open subsets Pφ ⊆ K

s and Qφ ⊆ M as the direct
limits lim−→Qn and lim−→Pn in the category of topological spaces, whence φ is continuous. Because each
φn is injective, φ is also injective, and furthermore φ is surjective, by definition of Qφ. If V ⊆ Pφ is
open, then V ∩ Pn is open in Pn, whence Sn := φn(V ∩ Pn) is open in Qn. Because S1 ⊆ S2 ⊆ · · · ,
the union φ(V ) =

⋃
n∈N Sn is open in Qφ (Lemma 1.7(b)). Thus, φ is an open map. We have shown

that φ is a homeomorphism.
We claim that A is a C∞

K
-atlas for M . We first show that

⋃
φ∈AQφ = M . To this end, let x ∈M .

Then there exists � ∈ N0 such that x ∈ M�. Define rn := 1 + 2−n for n ∈ N. We let φn : Pn → Qn
be the chart of Mn with Pn := Qn := ∅, for all n < �. We pick a chart ψ� : ∆d�

r�
(K) → W� ⊆ M�

of M� around x, such that ψ�(0) = x. Inductively, the Extension Lemma 2.3 provides charts ψn :
∆dn
rn → Wn ⊆ Mn for n ∈ {� + 1, � + 2, . . . } such that ψn|

∆
dn−1
rn

= ψn−1|
∆
dn−1
rn

(identifying K
dn−1

with K
dn−1 × {0} ⊆ K

dn). Define Pn := ∆dn
1 , Qn := ψn(Pn), and φn := ψn|QnPn : Pn → Qn for n � �.

Then Pφ :=
⋃
n∈N Pn is open in K

s, Qφ :=
⋃
n∈NQn is open in M , and φ := lim−→φn : Pφ → Qφ is an

element of A, with x ∈ Qφ, as desired.

Compatibility of the charts. Assume that φ := lim−→φn : Pφ → Qφ and ψ := lim−→ψn : Pψ → Qψ are
elements of A, where φn : Pn → Qn and ψn : An → Bn. Let x ∈ φ−1(Qψ). Then φ(x) ∈ Qφ ∩ Qψ,
entailing that there exists � ∈ N such that φ(x) ∈ Q�∩B�. Then x ∈ Pn∩φ−1

n (Bn) =: Xn for all n � �.
Since Xn is open in K

dn and X� ⊆ X�+1 ⊆ · · · , the union X :=
⋃
n��Xn is open in K

s. Furthermore,
the coordinate changes τn := ψ−1

n |Qn∩Bn ◦ φn|Xn : Xn → ψ−1
n (Qn) =: Yn are C∞

K
-diffeomorphisms,

for all n � �. By Lemma 1.9(a), the map ψ−1|Yφ(X) ◦ φ|X = lim−→n�� τn : X →
⋃
n�� Yn =: Y is C∞

K
,

entailing that the bijection τ := ψ−1|Qφ∩Qψ ◦ φ|φ−1(Qψ) : φ−1(Qψ) → ψ−1(Qφ) is C∞
K

on some open
neighbourhood of x. As x was arbitrary, τ is C∞

K
and the same reasoning shows that so is τ−1.

Thus A is an atlas making M a C∞
K

-manifold modelled on K
s.

Each λn is smooth. To see this, assume that n ∈ N and x ∈ Mn. As just shown, there exists
a chart φ : Pφ → Qφ in A, say φ = lim−→φk with charts φk : Pk → Qk ⊆ Mk for k ∈ N, such that
x ∈ Pn. Then φ−1 ◦ λn ◦ φn = φ−1 ◦ φn : K

dn ⊇ Pn → P ⊆ K
s is the inclusion map and hence

smooth, and its differential at x is injective. Hence λn is smooth on the open neighbourhood Qn
of x, and Tx(λn) is injective. As x was arbitrary, λn is smooth.

Direct limit property and uniqueness. Fix r ∈ N0 ∪ {∞}. Assume that Y is a Cr
K
-manifold

modelled on a topological K-vector space E and fn : Mn → Y a Cr
K
-map for each n ∈ N such that

(Y, (fn)n∈N) is a cone over S; thus fn|Mm = fm if n � m. Then there is a uniquely determined map
f : M → Y such that f |Mn = fn for all n ∈ N. Since M = lim−→Mn as a topological space, f is
continuous. If x ∈M , we find a chart φ : Pφ → Qφ of M around x in the atlas A, where φ = lim−→φn
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for charts φn : Pn → Qn ⊆ Mn. Let ψ : V → W ⊆ Y be a chart for Y , where V ⊆ E is open.
Then U := (f ◦ φ)−1(W ) is an open subset of Pφ ⊆ K

s, and Un := U ∩ Pn is open in Pn ⊆ K
dn

for each n. Consider g := ψ−1 ◦ (f ◦ φ)|WU : U → V . Then g|Un = ψ−1 ◦ (fn ◦ φn)|WUn : Un → V is
Cr
K

for each n ∈ N. Hence, g is Cr
K

by Lemma 1.9(a), whence so is f on the open neighbourhood
Qφ of x and hence on all of M , as x was arbitrary. Thus (M, (λn)n∈N) = lim−→S in the category of
Cr
K
-manifolds, for all r ∈ N0 ∪ {∞}. The uniqueness of a C∞

K
-manifold structure on M with the

described properties follows from the universal property of direct limits.

Throughout the remainder of this section, M will be equipped with the C∞
K

-manifold structure
just defined. In the proofs, we shall always reduce to the case where I = N and M1 ⊆M2 ⊆ · · · (by
the above argument), without further mention.

Proposition 3.2. If F ⊆ K is a non-discrete, closed subfield, then (M, (λi)i∈I) = lim−→S also in the
category of C∞

F
-manifolds (e.g. K = C, F = R).

Proof. Let A be the C∞
K

-atlas of M described in the proof of Theorem 3.1. Given a non-discrete
closed subfield F ⊆ K, let AF be the corresponding atlas obtained when considering each Mi merely
as a C∞

F
-manifold over F. Then A ⊆ AF, entailing that (M, (λn)n∈N ) = lim−→S also in the category

of C∞
F

-manifolds.

Proposition 3.3. Assume that Ui ⊆ Mi is open and λi,j(Uj) ⊆ Ui whenever i � j. Then U :=⋃
i∈I Ui is open in M . For the C∞

K
-manifold structure induced by M on its open subset U , we have

(U, (λi|UUi)i∈I) = lim−→((Ui)i∈I , (λi,j |UiUj )i�j) in the category of C∞
K

-manifolds.

Proof. Given open subsets Un ⊆ Mn such that M1 ⊆ M2 ⊆ · · · , their union U :=
⋃
n∈N Un is open

in M and the topology induced by M on U makes U the direct limit lim−→Un (Lemma 1.7(b)). We
define an atlas AU for U turning U into the direct limit of the C∞

K
-manifolds Un, analogous to the

definition of A in the proof of (a). Then AU ⊆ A, whence (U,AU ) coincides with U , considered as
an open submanifold of M .

Proposition 3.4. Assume that f : X → M is a Cr
K
-map, where r ∈ N0 ∪ {∞} and X is a

Cr
K
-manifold modelled on a metrizable topological K-vector space E (or a metrizable, locally path-

connected topological space, if r = 0). Then every x ∈ X has an open neighbourhood S such that

f(S) ⊆ λi(Mi) for some i ∈ N and such that λ−1
i ◦ f |λi(Mi)

S : S →Mi is Cr
K
.

Proof. Let x ∈ X. The assertion being local, in the case of manifolds we may assume that X is an
open subset of E. Choose a metric d on X defining its topology, and k ∈ N such that f(x) ∈ Mk.
Let φ = lim−→φn : P → Q be a chart of M around f(x), where φn is a chart of Mn for all n � k, of
the form φn : ∆dn

1 → Qn ⊆ Mn (see the proof of Theorem 3.1). If f−1(Qn) is not a neighbourhood
of x for any n � k, we find xn ∈ f−1(Q)\f−1(Qn) such that d(xn, x) < 2−n. Thus xn → x, entailing
that C := {f(xn) : n ∈ N} ∪ {f(x)} is a compact subset of Q such that C �⊆ Qn for any n � k.
Since Q = lim−→Qn, this contradicts Lemma 1.7(d). Hence, there exists n � k such that f−1(Qn) is a
neighbourhood of x. Let S := (f−1(Qn))0 be its interior. Then S → K

s, y �→ φ−1(f(y)) = φ−1
n (f(y))

is a Cr
K
-map taking its values in the closed vector subspace K

dn of K
s, whence also its co-restriction

φ−1
n ◦f |QnS : S → ∆dn

1 is Cr
K

[BGN04, Lemma 10.1]. As φn is a chart, this means that f |Mn
S is Cr

K
.

Proposition 3.5. If K ∈ {R,C} and x ∈ M , where x = λj(y) say, then the connected component
C of x ∈M in M is

⋃
i∈I λi(Ci) ∼= lim−→i�j Ci, where Ci is the connected component of λi,j(y) in Mi.

Proof. Given x ∈ Mn, we let C and Cm be its connected component in M and Mm, respectively
for m � n. Then

⋃
m�n Cm ⊆ C. If z ∈ C, then we find a continuous curve γ : [0, 1] → M

such that γ(0) = x and γ(1) = z. Since [0, 1] is compact, using Proposition 3.4 we find m � n such
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that γ([0, 1]) ⊆Mm, and such that γ|Mm : [0, 1] →Mm is continuous. Thus z ∈ Cm. Hence, indeed,
C =

⋃
m�n Cm.

Proposition 3.6. If K is R or C and Mi is paracompact for each i ∈ I, then the C∞
K

-manifold M
is also a c∞

K
-manifold, and (M, (λi)i∈I) = lim−→S in the category of c∞

K
-manifolds. Furthermore, M is

smoothly paracompact as a C∞
R

-manifold: For every open cover of M , there exists a C∞
R

-partition
of unity subordinate to the cover.

Proof. Assume that K = R. In order that M be smoothly paracompact, we only need to show that
every connected component C of M is smoothly paracompact. Pick c ∈ C. We may assume that
c ∈M1 after passing to a cofinal subsystem; we let Cn be the connected component of c in Mn for
each n ∈ N. Then

⋃
n∈NCn is the connected component of c in M (see Proposition 3.5) and hence

coincides with C; furthermore, C = lim−→Cn, by Proposition 3.3. After replacing M with C and Mn

with Cn for each n, we may assume that each Mn is a connected, paracompact finite-dimensional
C∞
R

-manifold and hence σ-compact. This entails that M =
⋃
n∈NMn is σ-compact and therefore

Lindelöf. Hence, by [KM97, Theorem 16.10], M will be smoothly paracompact if we can show that
M is smoothly regular in the sense that, for every x ∈ M and open neighbourhood Ω of x in M ,
there exists a smooth function (‘bump function’) f : M → R such that f(x) �= 0 and f |M\Ω = 0.

If each λn,m is a topological embedding onto a closed submanifold, thenM is a regular topological
space (see [Han71, Proposition 4.3(ii)]), whence smooth regularity passes from the modelling space2

to M (cf. [Glo03a, Proof of Theorem 6.4]). In the fully general case to be investigated here, we
do not know a priori that M is regular, whence we have to prove smooth regularity of M by
hand. Essentially, we need to go once more through our construction of charts and build up bump
functions step by step. Let x ∈M and Ω be an open neighbourhood of x in M . Passing to a co-final
subsequence, we may assume that x ∈M1.

Let rn := 1 + 2−n for n ∈ N and ∆dn
rn := ∆dn

rn (R). Pick a chart ψ1 : ∆d1
r1 → W1 ⊆ M1 of

M1 around x, such that ψ1(0) = x and such that W1 is relatively compact in M1 ∩ Ω. Define
Q1 := ψ1(∆d1

1 ). We choose compact subsets K1,j of M1 such that W1 ⊆ K0
1,1 ⊆ K1,1 ⊆ K0

1,2 ⊆
K1,2 ⊆ K0

1,3 ⊆ · · · and M1 =
⋃
j∈NK1,j. There exists a smooth function h1 : ∆d1

r1 → R such that
supp(h1) ⊆ ∆d1

1 and h1(0) = 1. Define f1 : M1 → R, f1(y) := 0 if y �∈ W1, f1(y) := h1(ψ−1
1 (y)) if

y ∈W1. Then f1 is smooth, supp(f1) ⊆ Q1, and f1(x) = 1.
The Extension Lemma 2.3 provides a chart ψ2 : ∆d2

r2 → W2 ⊆ M2 onto an open, relatively
compact subset W2 of M2 ∩ Ω such that ψ2|∆d1

r2

= ψ1|∆d1
r2

. We choose compact subsets K2,j of M2

such that K1,j ⊆ K0
2,j and W2 ⊆ K0

2,1 ⊆ K2,1 ⊆ K0
2,2 ⊆ K2,2 ⊆ · · · and M2 =

⋃
j∈NK2,j. Then

K1,1 \Q1 is a compact subset of M1 and hence also of M2. Therefore, A := ψ−1
2 (K1,1 \Q1) is closed

in ∆d2
r2 , and it does not meet the compact subset supp(h1) ⊆ ∆d1

1 ⊆ ∆d2
r2 (which is mapped into Q1

by ψ2). Hence, there exists ε ∈ ]0, 1[ such that A ∩ (supp(h1)×∆d2−d1
ε ) = ∅. We let ξ : R → R be a

smooth function such that ξ(0) = 1 and supp(ξ) ⊆ ]−ε2, ε2[. Then

h2 : ∆d2
r2 → R, h2(y, z) := h1(y) · ξ((‖z‖2)2) for y ∈ ∆d1

r2 , z ∈ ∆d2−d1
r2

(where ‖ · ‖2 is the euclidean norm on R
d2−d1) is a smooth map such that supp(h2) ⊆ ∆d2

1 .
Then f2(y) := 0 if y �∈W2, f2(y) := h2(ψ−1

2 (y)) for y ∈W2 defines a smooth function f2 : M2 → R.
We have supp(f2) ⊆ Q2 := ψ2(∆d2

1 ), and f2|K1,1 = f1|K1,1 , because f2|Q1 = f1|Q1 by definition and
also f2|K1,1\Q1

= 0 = f1|K1,1\Q1
.

Proceeding in this way, we find charts ψn : ∆dn
rn → Wn ⊆ Mn with relatively compact image

Wn ⊆ Ω, compact subsets Kn,j of Mn with union Mn such that Wn ⊆ Kn,1, Kn,j ⊆ K0
n,j+1

2See [KM97, Theorem 16.10] or [Glo03a, Proof of Theorem 6.4] for the smooth regularity of R∞.
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and Kn−1,j ⊆ K0
n,j for all n, j ∈ N, n � 2; and smooth maps fn : Mn → R such that supp(fn) ⊆

Qn := ψn(∆dn
1 ) and fn+1|Kn,n = fn|Kn,n for all n ∈ N, whence

fm|Kn,n = fn|Kn,n for all n,m ∈ N such that m � n. (1)

Let Un be the interior K0
n,n of Kn,n in Mn. Then U1 ⊆ U2 ⊆ · · · and M =

⋃
n∈N Un, whence

M = lim−→Un as a smooth manifold by Proposition 3.3. By (1), the smooth maps fn|Un form a
cone and hence induce a smooth map f : M → R, such that f |Un = fn|Un for each n ∈ N. Then
f(x) = f1(x) = 1. If y ∈ M \ Ω, we find n ∈ N such that y ∈ Un. Then f(y) = fn(y) = 0 because
supp(fn) ⊆ Qn ⊆Wn ⊆ Ω. Hence, f is a bump function around x carried by Ω, as desired. Thus M
is smoothly paracompact.

Direct limit properties when K ∈ {R,C}. Since M (respectively its underlying real manifold)
is smoothly regular, M is smoothly Hausdorff, i.e. C∞

R
(M,R) separates points on M . Let A be an

C∞
K

-atlas for M . Being a smoothly Hausdorff C∞
K

-manifold modelled on a Mackey complete locally
convex space, (M,A) can be made a c∞

K
-manifold (c∞(M),A) by replacing its topology with the

final topology with respect to the given charts, when the topology on the modelling space has been
replaced with its c∞-topology. Since c∞(Ks) = K

s, the topology on M remains unchanged, and thus
c∞(M) = M . In view of Lemma 1.9(b), the desired direct limit properties can be checked as in the
proof of Theorem 3.1.

Proposition 3.7. Assume that also T := ((Ni)i∈I , (µi,j)i�j) is a direct system of finite-dimensional
C∞
K

-manifolds and injective C∞
K

-immersions, over the same index set. Then also

P := ((Mi ×Ni)i∈I , (λi,j × µi,j)i�j)

is such a direct system. Let (N, (µi)) = lim−→T . The C∞
K

-maps ηi := λi × µi : Mi × Ni → M × N
define a cone (M ×N, (ηi)i∈I) over P, which induces a C∞

K
-diffeomorphism

η : lim−→(Mi ×Ni) → (lim−→Mi) × (lim−→Ni).

Proof. Let en := dimK(Nn) and t := sup{en : n ∈ N}. The map ζ : K
s+t = lim−→K

dn+en → K
s × K

t

analogous to η is an isomorphism of topological vector spaces [Glo03a, Proposition 3.3], [HST01,
Theorem 4.1]. Let A be the atlas for M =

⋃
n∈NMn from the proof of Theorem 3.1; let B and C be

analogous atlases for N =
⋃
n∈NNn and P :=

⋃
n∈N(Mn×Nn). Then D := {φ×ψ : φ ∈ A, ψ ∈ B} is

a C∞
K

-atlas making M × N the direct product of M and N in the category of C∞
K

-manifolds.
Since {(φ × ψ) ◦ ζ|ζ−1(Pφ×Pψ) : φ ∈ A, ψ ∈ B} ⊆ C, the map η = id : P → M × N is a
C∞
K

-diffeomorphism.

Proposition 3.8. If K = R, each Mi is a finite-dimensional, real analytic manifold and each λi,j
an injective, real analytic immersion, then there exists a cω

R
-manifold structure on M such that

M = lim−→S in the category of cω
R
-manifolds (and cω

R
-maps), and which is compatible with the above

C∞
R

-manifold structure on M . Analogues of Propositions 3.3, 3.4 and 3.7 hold for the cω
R
-manifold

structures (and cω
R
-maps).

Proof. Using the Cω
R
-case of the Extension Lemma 2.3, the construction described in the proof

of Theorem 3.1 provides a subatlas B of the C∞
R

-atlas A consisting of charts φ = lim−→φn where
each φn is a Cω

R
-diffeomorphism. Using Lemma 1.9(b), the above arguments show that the chart

changes for charts in B are cω
R
, whence indeed M has a compatible cω

R
-manifold structure. Similarly,

Lemma 1.9(b) entails the validity of the cω
R
-analogues of Propositions 3.3 and 3.7. The proof of

Proposition 3.4 carries over directly.

Remark 3.9. As a consequence of Proposition 3.4 (and Proposition 3.5), for the singular homology
groups of M over a commutative ring R we have (Hk(M), (Hk(λi))i∈I) = lim−→(Hk(Mi), (Hk(λi,j)i�j))
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for all k ∈ N0. Likewise, given � ∈ I and x ∈ M�, for the homotopy groups we have
πk(M,λ�(x)) = lim−→πk(Mi, λi,�(x)).

4. Direct limits of finite-dimensional Lie groups

Let K be R, C or a local field, and S := ((Gi)i∈I , (λi,j)i�j) be a countable direct system of finite-
dimensional C∞

K
-Lie groups Gi and C∞

K
-homomorphisms λi,j : Gj → Gi; if char(K) > 0, we assume

that each λi,j is an injective immersion. In this section, we construct a direct limit Lie group for S,
and discuss some of its properties.

Remark 4.1. (a) As in the classical real and complex cases, every finite-dimensional C∞
K

-Lie group
over a local field K of characteristic 0 admits a C∞

K
-compatible analytic Lie group structure, and

every C∞
K

-homomorphism between such groups is K-analytic [Glo03c]. However, for every local
field K of positive characteristic, there exists a one-dimensional C∞

K
-Lie group which does not

admit a finite-dimensional K-analytic Lie group structure compatible with the given topological
group structure [Glo05]. Thus, smooth Lie groups are properly more general than analytic Lie
groups here.

(b) Consider the field K := F2((X)) of formal Laurent series over F2 := Z/2Z, and its open
compact subring F2[[X]] of formal power series. Then the squaring map σ : F2[[X]]× → F2[[X]]×,
σ(x) := x2 is a K-analytic (and hence smooth) homomorphism which is injective (since F2[[X]]×

is isomorphic to the power (Z2)N of the group of 2-adic integers as a group by [Wei67, ch. II-3,
Proposition 10], and thus torsion-free) but not an immersion because f ′(x) = 2 id = 0 for all
x ∈ F2[[X]]×. This explains that an extra hypothesis is needed in positive characteristic.3

Associated injective quotient system
If K = R (or if char(K) > 0, in which case we obtain trivial subgroups), we let Nj :=

⋃
i�j kerλi,j

for j ∈ I. If K is a local field of characteristic 0, we let Nj =
⋃
i�j kerλi,j for j ∈ I and note that Nj

is locally closed and hence closed in Gj , because Gj has an open compact subgroup U which satisfies
an ascending chain condition on closed subgroups. If K = C, we let Nj ⊆ Gj be the intersection
of all closed complex Lie subgroups S of Gj such that

⋃
i�j kerλi,j ⊆ S. Then Nj is a complex Lie

subgroup of Gj (as Gj satisfies a descending chain condition on closed, connected subgroups), and
thus Nj is the smallest closed, complex Lie subgroup of Gj containing

⋃
i�j kerλi,j. By minimality,

Nj is invariant under inner automorphisms and hence a normal subgroup of Gj .
Then, in either case, there is a uniquely determined K-Lie group structure on Gj := Gj/Nj

which makes the canonical quotient homomorphism qj : Gj → Gj a submersion. Each λi,j
factors to a C∞

K
-homomorphism λi,j : Gj → Gi, uniquely determined by λi,j ◦ qj = qi ◦ λi,j.

Then S = ((Gi)i∈I , (λi,j)i�j) is a direct system of finite-dimensional C∞
K

-Lie groups and injective
C∞
K

-homomorphisms λi,j : Gj → Gi; it is called the injective quotient system associated with S
(cf. [NRW91]). Each λi,j is an injective immersion of class C∞

K
.

Remark 4.2. The example C
× σ→ C

× σ→ · · · with the squaring map σ : C
× → C

×, σ(z) := z2 shows
that

⋃
i�j ker λi,j need not be a complex Lie subgroup of Gj .

Theorem 4.3. For S and S as before, the following hold.

(a) A direct limit (G, (λi)i∈I) for S exists in the category of C∞
K

-Lie groups modelled on topo-
logical K-vector spaces; G is modelled on the locally convex topological K-vector space K

s,

3Slightly more generally, to establish Theorem 4.3 for char(K) > 0, it would be enough to assume that Gj/Nj

admits a C∞
K -Lie group structure for each j ∈ I which makes the quotient map Gj → Gj/Nj a submersion, where

Nj :=
⋃
i�j kerλi,j , and that the induced homomorphisms Gj/Nj → Gi/Ni be immersions, for all i � j.
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where s := sup{dimKGi : i ∈ I} ∈ N0 ∪ {∞}. Forgetting the K-Lie group structure, we also
have (G, (λi)i∈I) = lim−→S in the categories of sets, abstract groups, topological spaces, topo-
logical groups, the category of C∞

K
-manifolds modelled on topological K-vector spaces, and

the category of C∞
F

-Lie groups modelled on topological F-vector spaces, for every non-discrete
closed subfield F of K. Furthermore, L(λi) : L(Gi) → L(G) is injective for each i ∈ I, and

(L(G), (L(λi))i∈I) = lim−→((L(Gi))i∈I , (L(λi,j))i�j) (2)
in the category of locally convex K-vector spaces (and in the categories of sets, K-Lie algebras,
topological spaces, topological K-Lie algebras, topological K-vector spaces, and C∞

K
-manifolds;

also in the category of cω
K
-manifolds, if K ∈ {R,C}).

(b) Set λi := λi ◦ qi for i ∈ I. If K �= C or if K = C and Nj =
⋃
i�j ker λi,j for each j ∈ I,

then (G, (λi)i∈I) = lim−→S in the category of C∞
K

-Lie groups modelled on topological K-vector
spaces, and also in the categories of smooth manifolds modelled on topological K-vector spaces,
Hausdorff topological spaces, and (Hausdorff) topological groups.

(c) If K = C, then (G, (λi)i∈I) = lim−→S in the category of complex Lie groups modelled on complex
locally convex spaces.

(d) If K = R, then G is a c∞
R

-regular c∞
R

-Lie group which is smoothly paracompact. Furthermore,
(G, (λi)i∈I) = lim−→S in the category of c∞

R
-Lie groups, and in the category of c∞

R
-manifolds.

(e) If K = C, then G is a c∞
C

-regular, c∞
C

-Lie group such that (G, (λi)i∈I) = lim−→S in the category

of c∞
C

-Lie groups and (G, (λi)i∈I) = lim−→S in the category of c∞
C

-manifolds.

(f) If K = R, then there exists a cω
R
-regular, cω

R
-Lie group structure on G, compatible with the

C∞
R

-Lie group structure from (a), such that (G, (λi)i∈I) = lim−→S in the category of cω
R
-Lie

groups. For the underlying cω
R
- manifold, we have (G, (λi)i∈I) = lim−→S in the category of such

manifolds.

Proof. (a) Let (G, (λi)i∈I) be a direct limit for S in the category of topological groups; then
(G, (λi)i∈I) = lim−→S also in the categories of sets, groups, and topological spaces [TSH98, Theo-
rem 2.7]. Thus, Theorem 3.1 provides a C∞

K
-manifold structure on G making (G, (λi)i∈I) a direct

limit of S in the category of C∞
K

-manifolds modelled on topological K-vector spaces, and also in
the category of C∞

F
-manifolds, for every non-discrete closed subfield F ⊆ K (Proposition 3.2). Let

θ : G→ G, g �→ g−1 and θi : Gi → Gi be the inversion maps; let µ : G×G→ G and µi : Gi×Gi → Gi
be multiplication. Then θ := lim−→ θi is C∞

K
, as G = lim−→Gi in the category of C∞

K
-manifolds. Likewise,

µ = lim−→µi is C∞
K

on lim−→(Gi × Gi) and hence on G × G, in view of Proposition 3.7. Hence, G is a
C∞
K

-Lie group. Every cone (H, (fi)i∈I) of C∞
K

-homomorphisms fi : Gi → H to a C∞
K

-Lie group H
uniquely determines a map f : G → H such that f ◦ λi = fi for all i; then f is a homomorphism
since G = lim−→Gi as a group, and f is C∞

K
since G = lim−→Gi as a C∞

K
-manifold. Thus G = lim−→Gi as

a C∞
K

-Lie group (and, likewise, as a C∞
F

-Lie group).

Determination of the Lie algebra of L(G). T := ((L(Gi))i∈I , (L(λi,j))i�j) is a countable, strict
direct system of Lie algebras, since L(λi,j) is injective for all i � j. We recall from [Glo03a, HST01]
that T has a direct limit (g, (φi)i∈I) in the category of topological K-Lie algebras; here g carries the
finite topology (see § 1.8), each φi is injective, and (g, (φi)i∈I) = lim−→T also holds in the categories of
sets, K-Lie algebras, topological spaces, topological K-vector spaces, and locally convex topological
K-vector spaces. By Lemma 1.9(a), furthermore (g, (φi)i∈I) = lim−→T in the category of C∞

K
-manifolds

and C∞
K

-maps (and also in the category of cω
K
-manifolds and cω

K
-maps by Lemma 1.9(b), if K = R

or C). The mappings L(λi) : L(Gi) → L(G) form a cone over T and hence induce a continuous Lie
algebra homomorphism Λ : g = lim−→L(Gi) → L(G), determined by Λ ◦ φi = L(λi). To see that Λ is
surjective, let a geometric tangent vector v ∈ L(G) = T1G be given, say v = [γ] where γ : U → G
is a smooth map on an open zero-neighbourhood U ⊆ K, such that γ(0) = 1. By Proposition 3.4,
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after shrinking U we may assume that γ(U) ⊆ λi(Gi) for some n ∈ N, and that γ = λi ◦ η for
some smooth map η : U → Gi. Then Λ(φi([η])) = L(λi)([η]) = [λi ◦ η] = [γ] = v, as desired.
Because g =

⋃
i∈I imφi and Λ ◦ φi = L(λi), injectivity of Λ follows from the injectivity of the maps

L(λi) = T1(λi) established in Theorem 3.1. By the preceding, Λ is an isomorphism of Lie algebras; as
both g and L(G) ∼= K

s are equipped with the finite topology, Λ also is an isomorphism of topological
vector spaces. Hence L(G) ∼= g = lim−→L(Gi) naturally. The desired direct limit properties carry over
from g to L(G).

(b) and (c) Assume that H is a C∞
K

-Lie group modelled on a topological K-vector space and
(fi)i∈I a family of C∞

K
-homomorphisms fi : Gi → H such that (H, (fi)i∈I) is a cone over S.

Given j ∈ I, for any i � j we then have fj = fi ◦ λi,j and thus ker λi,j ⊆ ker fj, entailing that⋃
i�j ker λi,j ⊆ ker fj. In the situation of (b), this means that Nj ⊆ ker fj. In the situation of (c),

we assume that H is modelled on a complex locally convex space. Then ker fj is a complex Lie
subgroup of Gj (Lemma 4.4), which contains

⋃
i�j ker λi,j; hence also Nj ⊆ ker fj in (c). In any

case, we deduce that fj = f j ◦ qj for a homomorphism f j : Gj → H, which is C∞
K

because qj
admits smooth local sections. Then ((f i)i∈I ,H) is a cone over S and hence induces a unique C∞

K
-

homomorphism f : G → H such that f ◦ λi = f i, since (G, (λi)i∈I) = lim−→S in the category of
C∞
K

-Lie groups. Then f ◦λi = f ◦λi ◦ qi = f i ◦ qi = fi for each i ∈ I, and clearly f is determined by
this property. Thus (G, (λi)i∈I) = lim−→S in the category of C∞

K
-Lie groups. In the situation of (b),

the universal property of direct limit in the other categories of interest can be proved by trivial
adaptations of the argument just given.

(d) To establish the first assertion, we may assume that I = N, and after replacing S by a system
equivalent to S we may assume that G1 ⊆ G2 ⊆ · · · , each λn,m being the respective inclusion map.
Then L(G) =

⋃
n∈N L(Gn). If γ : R → L(G) is a smooth curve, then for each k ∈ Z, there exists

nk ∈ N such that the relatively compact set γ(]k − 1, k + 2[) is contained in L(Gnk). The finite-
dimensional Lie group Gnk being c∞

R
-regular, we find a smooth curve ηk : ]k − 1, k + 2[ → Gnk

such that ηk(k) = 1 and δr(ηk) = γk. We define η(t) := ηk(t)ηk−1(k) · · · η1(2)η0(1) for t ∈ [k, k + 1]
with k � 0, and η(t) := ηk(t)ηk(k + 1)−1 · · · η−2(−1)−1η−1(0)−1 for t ∈ [k, k + 1] with k < 0. Then
η : R → G is a smooth curve such that η(0) = 1 and δr(η) = γ. Thus, every γ ∈ C∞(R, L(G)) has
a right product integral EvolrG(γ) := η ∈ C∞(R, G). We define

evolrG : C∞(R, L(G)) → G, evolrG(γ) := EvolrG(γ)(1).

To see that evolrG is c∞
R

, let σ : R → C∞(R, L(G)) be a smooth curve. Given t0 ∈ R, let U ⊆ R be
a relatively compact neighbourhood of t0. We show that evolrG ◦ σ : R → G is smooth on U . The
evaluation map C∞(R, L(G))×R → L(G), (γ, t) �→ γ(t) being continuous (cf. [Eng89, Theorem 3.4.3
and Proposition 2.6.11]), σ(U)([−1, 2]) is a compact subset of L(G) and hence contained in L(Gn)
for some n ∈ N, by Lemma 1.7(d). We now consider

τ : U → C∞(]−1, 2[, L(Gn)), τ(t) := σ(t)|L(Gn)
]−1,2[ .

Then τ is smooth, because the restriction map C∞(R, L(G)) → C∞(]−1, 2[, L(G)) is continuous
linear, and C∞(]−1, 2[, L(Gn)) is a closed vector subspace of C∞(]−1, 2[, L(G)). The group Gn being
regular, evolrGn : C∞(]−1, 2[, L(Gn)) → Gn is smooth. Since evolrG ◦ σ|U = evolrGn ◦ τ apparently,
we deduce that evolrG ◦σ|U is smooth. Thus, evolrG is c∞

R
. The desired direct limit properties can be

proved as in (a) and (b), based on Proposition 3.6.
(e) As a consequence of Proposition 3.6, the C∞

C
-Lie group G is also a c∞

C
-Lie group. It is

c∞
C

-regular because its underlying c∞
R

-Lie group is c∞
R

-regular by (d). The desired direct limit
property can be proved as in (a) and (b).

(f) Using the cω
R
-analogue of Proposition 3.7 (see Proposition 3.8), we see as in the proof

of (a) that the C∞
R

-compatible cω
R
-manifold structure on G from Proposition 3.8 turns G into
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a cω
R
-Lie group. By (d), the latter is c∞

R
-regular. To see that it is cω

R
-regular, let γ : R → L(G) be a

cω
R
-curve and η := EvolrG(γ) be its right product integral. Using Proposition 3.4 and its cω

R
-analogue

(Proposition 3.8), for each k ∈ N we find n ∈ N such that γ([−k, k]) ⊆ L(Gn), η([−k, k]) ⊆ Gn, and
such that σ := γ|L(Gn)

]−k,k[ is cω
R

and τ := η|Gn]−k,k[ smooth. The finite-dimensional Lie group Gn being
cω
R
-regular, the product integral τ of the cω

R
-curve σ has to be cω

R
. Hence, η|]−k,k[ is cω

R
for each k ∈ N

and thus η is cω
R
. Hence, G is cω

R
-regular. The direct limit property can be established as in (b).

We needed to assume local convexity in Theorem 4.3(c) because the proof of the following simple
lemma depends on local convexity.

Lemma 4.4. Let φ : G → H be a C∞
C

-homomorphism from a finite-dimensional complex Lie
group to a complex Lie group modelled on a locally convex complex topological vector space. Then
K := ker φ is a complex Lie subgroup of G. The same conclusion holds if H is a cω

C
-Lie group and

φ a cω
C
-homomorphism.

Proof. Being a closed subgroup of G, K is a real Lie subgroup, with Lie algebra

k = {X ∈ L(G) : expG(RX) ⊆ K} = {X ∈ L(G) : φ(expG(RX)) = {1}}.
Given X ∈ k, the map f : C → H, f(z) := φ(expG(zX)) is complex analytic and f |R = 1, whence
f = 1 by the Identity Theorem. Hence CX ⊆ k, whence k is a complex Lie subalgebra of L(G).
Therefore K is a complex Lie subgroup [Bou89, ch. III, § 4.2, Corollary 2].

Remark 4.5. (a) In the situation of Remark 4.2, the direct system ((C×)n∈N, (σ)n�m) has the direct
limit R in the category of real Lie groups, whereas its direct limit in the category of complex Lie
groups is the trivial group. Hence, the conclusions of Theorem 4.3(a) become false in general if we
replace the injective quotient system S by a non-injective system S. Also note that lim−→L(C×) =
C �= {0} = L({1}) = L(lim−→C

×) here.

(b) If each λi,j is injective, then the direct systems S and S are equivalent, whence Theorem 4.3(a)
remains valid when S is replaced with S and all bars are omitted.

Proposition 4.6. Assume that ((Gi)i∈I , (λi,j)i�j) is a countable direct system of finite-dimensional
Lie groups over K ∈ {R,C} and injective C∞

K
-homomorphisms, with direct limit (G, (λi)i∈I). Then

the following holds.

(a) expG = lim−→ expGi : L(G) = lim−→L(Gi) → lim−→Gi = G is the exponential map of G, where
(L(G), (L(λi))i∈I) = lim−→((L(Gi)), (L(λi,j))). The map expG is cω

K
.

(b) The Trotter Product Formula expG(x+ y) = limn→∞(expG((1/n)x) expG((1/n)y))n holds and
the Commutator Formula expG([x, y]) = limn→∞(expG((1/n)x) expG((1/n)y) expG(−(1/n)x)
expG(−(1/n)y))n

2
, for all x, y ∈ L(G).

(c) Let (H, (µi)) = lim−→T for a direct system T = ((Hi), (µi,j)) of finite-dimensional K-Lie groups
and injective C∞

K
-homomorphisms, and assume that fi : Gi → Hi are C∞

K
-homomorphisms.

Then L(lim−→ fi) = lim−→L(fi). Furthermore, every continuous homomorphism G→ H is cω
R
.

Proof. (a) By Theorem 4.3(a), L(G) = lim−→L(Gi) as a cω
K
-manifold. The family (expGi)i∈I of cω

K
-maps

being compatible with the direct systems by naturality of exp, there is a unique cω
K
-map expG :=

lim−→ expGi such that expG ◦L(λi) = λi ◦ expGi for each i. Given y ∈ L(G), there are j ∈ I and
x ∈ L(Gj) such that y = L(λj)(x). Then ξ : R → G, ξ(t) := expG(tx) = λj(expGj(ty)) is a
smooth homomorphism such that ξ′(0) = L(λj)(exp′

Gj
(0).y) = L(λj)(y) = x. Hence, G admits an

exponential map (in the sense of [KM97, Definition 36.8]), and it is given by expG from above and
hence cω

K
.

(b) Using (a), the assertions directly follow from the finite-dimensional case.
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(c) By Theorem 4.3(a), α := lim−→L(fi) is a continuous K-Lie algebra homomorphism. Abbreviate
f := lim−→ fi. From expH ◦α = (lim−→ expGi) ◦ (lim−→L(fi)) = lim−→(expHi ◦L(fi)) = lim−→(fi ◦ expGi) =
f ◦ expG we deduce that α = T0(expH ◦α) = T0(f ◦ expG) = L(f).

Now suppose that h : G → H is a continuous homomorphism. We may assume that I = N and
G1 ⊆ G2 ⊆ · · · , H1 ⊆ H2 ⊆ · · · . After replacing G by its identity component G0, we may assume
that each Gn is connected. Using Proposition 3.4, we find m(n) ∈ N such that h(Gn) ⊆ Hm(n), and
such that hn := h|Hm(n)

Gn
is continuous and hence Cω

R
. We may assume that m(1) < m(2) < · · · ; after

passing to a cofinal subsequence of the Hn, without loss of generality m(n) = n for each n. Thus,
h = lim−→hn is cω

R
, by Theorem 4.3(f).

Remark 4.7. (a) The exponential map of a direct limit group need not be well behaved, as the
example G = C

∞
�α R = lim−→(Cn

� R) with α : R → Aut(C∞), α(t)((zk)k∈N) := (eiktzk)k∈N shows.
Here expG fails to be injective on any zero-neighbourhood, and the exponential image im(expG) is
not an identity neighbourhood in G [Glo03a, Example 5.5].

(b) As a consequence of (a), the exponential map expH of the complex analytic Lie group
H := C

∞
�β C = lim−→(Cn

� C) with β(z)((zk)k∈N) := (eikzzk)k∈N is also not injective on any
zero-neighbourhood. This settles an open problem by Milnor [Mil82, p. 31] in the negative, who
asked whether every complex analytic Lie group is ‘of Campbell–Hausdorff type’.

5. Integration of locally finite Lie algebras

A Lie algebra is locally finite if every finite subset generates a finite-dimensional subalgebra.

Theorem 5.1. Let g be a countable-dimensional locally finite Lie algebra over K ∈ {R,C}. Then
there exists a cω

K
-regular, cω

K
-Lie group G, which also is a regular C∞

K
-Lie group in Milnor’s sense,

such that L(G) ∼= g, equipped with the finite topology.

Proof. As g is locally finite and dimK(g) � ℵ0, there is an ascending sequence g1 ⊆ g2 ⊆ · · · of
finite-dimensional subalgebras of g, with union g. For each n ∈ N, let Gn be a simply connected
K-Lie group with Lie algebra L(Gn) ∼= gn; fix an isomorphism κn : L(Gn) → gn. If m � n, then
the Lie algebra homomorphism κm,n := κ−1

m ◦ κn : L(Gn) → L(Gm) (corresponding to the inclusion
map gn ↪→ gm) induces a Cω

K
-homomorphism φm,n : Gn → Gm such that L(φm,n) = κm,n. Since

L(φk,m◦φm,n) = L(φk,m)◦L(φm,n) = κk,m◦κm,n = κk,n = L(φk,n), we have φk,m◦φm,n = φk,n for all
k � m � n, whence ((Gn)n∈N, (φm,n)m�n) is a direct system of Cω

K
-Lie groups. Now take G := lim−→Gn

in the category of cω
K
-Lie groups. We shall presently show that, for each n, the normal subgroup

Kn :=
⋃
m�n ker φm,n of Gn is discrete. Hence, by Theorem 4.3, G is a cω

K
-regular cω

K
-Lie group,

G = lim−→Gn/Kn, and L(G) = lim−→L(Gn/Kn) = lim−→L(Gn) ∼= lim−→ gn = g. For Milnor regularity, see
Theorem 8.1.

Each Kn is discrete. We show that the closure Nn := Kn ⊆ Gn is discrete. The homomorphism
φm,n has discrete kernel for all m,n ∈ N with m � n, because L(φm,n) = κm,n is injective. Now
kerφm,n being a discrete normal subgroup of the connected group Gn, it is central. This entails
that Nn ⊆ Z(Gn), for each n, whence (Nn)0 ⊆ Z(Gn)0 is a vector group being a connected closed
subgroup of a vector group (Lemma 5.2). It is obvious from the definitions that φm,n(Kn) ⊆ Km for
all m � n, whence φm,n(Nn) ⊆ Nm and φm,n((Nn)0) ⊆ (Nm)0. Being a continuous homomorphism
between vector groups, ψm,n := φm,n|(Nm)0

(Nn)0
is real linear. Hence, being a real linear map with discrete

kernel, ψm,n is injective. Thus, (Nn)0 =
⋃
m�n kerψm,n = {1}, whence Nn is discrete.

Here, we used the following fact.
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Lemma 5.2. Let G be a simply connected, finite-dimensional real Lie group. Then Z(G)0 is a vector
group, i.e. Z(G)0 ∼= R

m for some m ∈ N0.

Proof. By Lévi’s Theorem, L(G) = r � s internally, where r is the radical of L(G) and s a Lévi
complement (see [Ser92, Part I, ch. VI, Theorem 4.1] or [Bou89, ch. I, § 6.8, Theorem 5]). Let R and
S be the analytic subgroups of G corresponding to r and s, respectively. Then R and S are simply
connected, R is a closed normal subgroup of G, S a closed subgroup, and G = R � S internally
[HN91, Korollar III.3.16]. Now consider the identity component Z(G)0 of the centre Z(G) of G. Let
π : G → S be the projection onto S, with kernel R. Then π(Z(G)0) ⊆ Z(S)0 = {1}, entailing that
Z(G)0 ⊆ R. Thus Z(G)0 is an analytic subgroup of the simply connected solvable Lie group R,
whence Z(G)0 is simply connected [HN91, Satz III.3.31]. Being a simply connected abelian Lie
group, Z(G)0 is a vector group.

6. Extension of sections in principal bundles

We prove a preparatory result concerning sections in principal bundles, which will be used later to
discuss closed subgroups and homogeneous spaces of direct limit groups.

Lemma 6.1. Given K ∈ {R,C}, let π1 : E1 → M1 be a C∞
K

-map between finite-dimensional
C∞
K

-manifolds and π2 : E2 → M2 be a finite-dimensional G-principal bundle of class C∞
K

whose
structure group G is a finite-dimensional C∞

K
-Lie group. Let m1 := dimK(M1) and m2 := dimK(M2).

Assume that λ : M1 → M2 is an injective C∞
K

-immersion and Λ : E1 → E2 a C∞
K

-map such that
π2 ◦ Λ = λ ◦ π1. Assume that φ1 : ∆m1

r (K) → U1 ⊆ M1 is a chart for M1, where r > 0, and
σ1 : U1 → E1 a C∞

K
-section of π1. Then, for every s ∈ ]0, r[, there is a chart φ2 : ∆m2

s → U2

⊆ M2 and a C∞
K

-section σ2 : U2 → E2 of π2 such that φ2(x, 0) = λ(φ1(x)) for all x ∈ ∆m1
s and

σ2 ◦ λ|W = Λ ◦ σ1|W , where W := φ1(∆m1
s ). If K = R and all of E1, M1, π1, the principal bundle

π2, λ, Λ, φ1 and σ1 are real analytic, then also φ2 and σ2 can be chosen as real analytic maps.

Proof. Since λ ◦ φ1 is an injective immersion, there is a chart φ2 : ∆m2
s → U2 ⊆ M2 such that

φ2(x, 0) = λ(φ1(x)) for all x ∈ ∆m1
s (Lemma 2.3).

The C∞
K

-case. If K = R, then E2|U2 is trivial as a G-principal bundle of class C∞
R

, since U2
∼= ∆m2

s

is paracompact and contractible (this is a well-known fact, which can be proved exactly as [Hir76,
Corollary 4.2.5]). If K = C, then E2|U2 is trivial as a G-principal bundle of class C∞

C
, since U2

∼=
∆m2
s (C) is a contractible Stein manifold [Gra58a, Satz 6].

Real analytic case. Since U2
∼= ∆m2

s is σ-compact and contractible, E2|U2 is trivial as a topological
G-principal bundle and therefore also as a real analytic G-principal bundle, by injectivity of ϑ in
[Tog67, Teorema 5].

By the preceding, in either case, we find a C∞
K

(respectively Cω
R
) trivialization θ : E2|U2 → U2×G.

Let θ2 : E2|U2 → G be the second coordinate function of θ. Define σ2 := ζ ◦ φ−1
2 : U2 → E2, where

ζ : ∆m2
s → E2 is defined via

ζ(x, y) := θ−1(φ2(x, y), θ2((Λ ◦ σ1 ◦ φ1)(x))) for x ∈ ∆m1
s , y ∈ ∆m2−m1

s .

Then σ2 : U2 → E2 is a C∞
K

-section (respectively Cω
R
-section) with the required properties.

7. Fundamentals of Lie theory for direct limit groups

In this section, we develop the basics of Lie theory for direct limit groups. Throughout the following,
G1 ⊆ G2 ⊆ · · · is an ascending sequence of finite-dimensional Lie groups over K ∈ {R,C}, such
that the inclusion maps λn,m : Gm → Gn are Cω

K
-homomorphisms, and G :=

⋃
n∈NGn, equipped
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with the cω
K
-Lie group structure such that G = lim−→Gn in the category of cω

K
-Lie groups (and C∞

K
-Lie

groups).

7.1 A map f : M → N between cω
K
-manifolds is called cω

K
-final if a map g : N → Z into a

cω
K
-manifold is cω

K
if and only if g ◦ f is cω

K
. The map f is cω

K
-initial if a map g : Z → M from a

cω
K
-manifold Z to M is cω

K
if and only if f ◦ g is cω

K
. Obvious adaptations are used to define c∞

K
-final,

Cr
K
-final, c∞

K
-initial, and Cr

K
-initial maps, where r ∈ N0 ∪ {∞}. A subset M ⊆ N of a cω

K
-manifold

M is called a (split) submanifold if there exists a (complemented) closed vector subspace F of
the modelling space E of N such that, for every x ∈ M , there exists a chart φ : U → V ⊆ N
of N around x such that φ(U ∩ F ) = M ∩ V . Then M , with the induced topology, can be made a
cω
K
-manifold modelled on F , in an apparent way.

Proposition 7.2 (Subgroups are Lie groups). Every subgroup H ⊆ G admits a cω
K
-Lie group

structure with Lie algebra L(H) = {v ∈ L(G) : expG(Kv) ⊆ H} =: h which makes the inclusion
map λ : H → G a C∞

K
-homomorphism and both a cω

K
-initial and a c∞

K
-initial map, and such that

L(λ) : L(H) → L(G) is an embedding of topological K-vector spaces. Furthermore, H = lim−→Hn in
the category of cω

K
-Lie groups, where Hn := H ∩Gn is equipped with the finite-dimensional K-Lie

group structure induced by Gn.

Proof. We equipHn with the finite-dimensional Cω
K
-Lie group structure induced byGn, which makes

the inclusion map λn : Hn → Gn an immersion and a Cω
K
-initial and C∞

K
-initial map inside the cat-

egory of finite-dimensional Cω
K
- and C∞

K
-manifolds, respectively (see [Bou89, ch. III, § 4.5, Defini-

tion 3 and Proposition 9]. Then the inclusion maps µn,m : Hm → Hn are Cω
K
-immersions for n � m;

we give H =
⋃
n∈NHn the cω

K
-Lie group structure such that (H, (µn)n∈N) = lim−→((Hn)n∈N, (µn,m))

in the category of cω
K
-Lie groups, where µn : Hn → H is the inclusion map (see Theorem 4.3).

Then λ = lim−→λn : H → G is cω
K
. We have L(H) =

⋃
n∈N L(Hn) (with obvious identifications)

and L(G) =
⋃
n∈N L(Gn) by Theorem 4.3(a), and each of L(λn) : L(Hn) → L(Gn) as well as

L(λ) : L(H) → L(G) is the respective inclusion map. Thus, L(λ) is injective. Being an injective
linear map between locally convex spaces equipped with their finest locally convex topologies, L(λ)
is a topological embedding (cf. [HM98, Proposition 7.25(ii)]). Clearly L(H) ⊆ h. If v ∈ h, then
v ∈ L(Gn) for some n and thus expGn(Kv) ⊆ Gn ∩ H = Hn, whence v ∈ L(Hn) ⊆ L(H). Thus
L(H) = h. Now assume that M is a c∞

K
-manifold and f : M → H a map such that λ ◦ f : M → G

is c∞
K

. Then, for every smooth map γ : K ⊇ U → M on an open zero-neighbourhood U ⊆ K,
the composition f ◦ γ maps some zero-neighbourhood V ⊆ U into some Gn and (f ◦ γ)|GnV is C∞

K
,

by Proposition 3.4. Since f(γ(V )) ⊆ Gn ∩ H = Hn and Hn is C∞
K

-initial for maps from finite-
dimensional C∞

K
-manifolds, we deduce that (f ◦ γ)|HnV is C∞

K
, whence (f ◦ γ)|V is c∞

K
. This entails

that f is c∞
K

. Thus, λ : H → G is c∞
K

-initial. Similarly, λ is cω
K
-initial.

Note that every cω
C
-map between open subsets of C

∞ is cω
R
. (In view of Lemma 1.9(b) and the

cω
C
-analogue of Proposition 3.4 (Proposition 3.8), this follows from the fact that holomorphic maps

between open subsets of finite-dimensional vector spaces are real analytic.) Hence, every direct limit
G = lim−→Gn of complex finite-dimensional Lie groups has an underlying cω

R
-Lie group GR.

Lemma 7.3. If K = C in the situation of Proposition 7.2, define h as before and s := {v ∈ L(G) :
expG(Rv) ⊆ H}. Let Sn be Hn, equipped with the Cω

R
-Lie group structure induced by the Cω

R
-Lie

group (Gn)R underlying Gn, and define S := lim−→Sn. Thus S = H as a set and an abstract group,
and id : HR → S is cω

R
. Then h = s (as a set or real Lie algebra) if and only if (Hn)R = Sn (as a

real Lie group) for each n ∈ N, if and only if HR = S (as a cω
R
-Lie group).

Proof. If h = s, then for every n ∈ N we have L(Sn) + iL(Sn) ⊆ L(Hm) for some m � n.
Let v ∈ L(Sn). Then expGn(Cv) = expGm(Cv) ⊆ Hm ∩ Gn = Hn, entailing that v ∈ L(Hn).
Thus L(Sn) ⊆ L(Hn) and hence L(Sn) = L(Hn), whence Sn = (Hn)R.
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If Sn = (Hn)R for each n ∈ N, then (lim−→Hn)R = lim−→(Hn)R = lim−→Sn, by Theorem 4.3.
Now suppose that HR = S. We have h ⊆ s by definition. If v ∈ s, then expG(Rv) ⊆ H and

ξ : R → S, ξ(t) = expG(tv) = expS(tv) is a cω
R
-homomorphism. Since S = HR = lim−→(Hn)R (see

Theorem 4.3), Proposition 3.4 entails that im(ξ) ⊆ (Hn)R for some n ∈ N and that ξ|(Hn)R is Cω
R
.

Hence, ξ = expHn(•w) for some w ∈ L(Hn), where w = v clearly and thus expG(Cv) = expHn(Cv) ⊆
Hn ⊆ H, whence v ∈ h. Therefore s = h.

7.4 We now specialize to the case where H is a closed subgroup of G; if K = C, we assume
that s := {v ∈ L(G) : expG(Rv) ⊆ H} is a complex Lie subalgebra of L(G). Then the finite-
dimensional Cω

K
-Lie group structure induced by Gn on its closed subgroup Hn := Gn ∩ H makes

Hn a closed Cω
K
-submanifold of Gn (this is obvious in the real case, and follows for K = C using

Lemma 7.3). For each n ∈ N, we give Gn/Hn the finite-dimensional Cω
K
-manifold structure making

the canonical quotient map qn : Gn → Gn/Hn a submersion. Let qn,m : Gm/Hm → Gn/Hn be the
uniquely determined Cω

K
-maps such that qn,m◦qm = qn◦λn,m. Then T := ((Gn/Hn)n∈N, (qn,m)n�m)

is a direct system of paracompact, finite-dimensional Cω
K
-manifolds and injective Cω

K
-immersions,

whence (M, (ψn)n∈N) := lim−→T exists in the category of cω
K
-manifolds (Proposition 3.8). We have

(M, (ψn)n∈N) = lim−→T also in the categories of C∞
K

-manifolds, and the category of sets. Consider
the quotient map q : G → G/H and the inclusion maps λn : Gn → G. For each n ∈ N, the
map q ◦ λn factors to an injective map µn : Gn/Hn → G/H, determined by µn ◦ qn = q ◦ λn.
Then (G/H, (µn)n∈N) is a cone over T , and hence induces a map µ : M → G/H. It is easy to
see that µ is a bijection; we give G/H the cω

K
-manifold structure making µ a cω

K
-diffeomorphism;

thus G/H ∼= lim−→Gn/Hn. Then also (G/H, (µn)n∈N) = lim−→T in the category of cω
K
-manifolds. Since

q = lim−→ qn, the map q is cω
K
.

Proposition 7.5 (Closed subgroups, quotient groups, homogeneous spaces). Let H be a closed
subgroup of G; if K = C, assume that {v ∈ L(G) : expG(Rv) ⊆ H} is a complex Lie subalgebra
of G. Equip G/H with the cω

K
-manifold structure described in § 7.4; thus G/H ∼= lim−→Gn/Hn as a

cω
K
-manifold. Then the following hold.

(a) q : G→ G/H admits local cω
K
-sections, i.e. q : G→ G/H is an H-principal bundle of class cω

K
.

Therefore, q is cω
K
-final, c∞

K
-final and Cr

K
-final, for each r ∈ N0 ∪ {∞}.

(b) H is a closed, split cω
K
-submanifold of G. The cω

K
-submanifold structure on H and the

cω
K
-manifold structure underlying the cω

K
-Lie group structure induced by G on H (as described

in Proposition 7.2) coincide. This manifold structure makes the inclusion map H → G a
cω
K
-initial, c∞

K
-initial, and Cr

K
-initial map, for each r ∈ N0 ∪ {∞}. If L(H) = {0}, then H is

discrete in the topology induced by G.

(c) If H is furthermore a normal subgroup of G, then the cω
K
-manifold structure on G/H makes the

quotient group G/H a cω
K
-regular cω

K
-Lie group such that G/H = lim−→Gn/Hn in the category

of cω
K
-Lie groups.

Proof. (a) Let x ∈ G/H; then there exists k ∈ N and y ∈ Gk such that x = q(y). Define z := qk(y).
Define rn := 1 + 2−n for n ∈ N, and dn := dimK(Gn/Hn). There exists a Cω

K
-section τ : V → Gk

of qk on some open neighbourhood V of z in Gk/Hk, and a chart φk : ∆dk
rk

→ Uk ⊆ Gk/Hk such
that Uk ⊆ V ; we define σk := τ |Uk . Inductively, Lemma 6.1 provides charts φn : ∆dn

rn → Un ⊆
Gn/Hn and Cω

K
-sections σn : Un → Gn such that qn,m ◦ φm|∆dm

rn
= φn|∆dm

rn
for all n � m � k

and σn(qn,m(w)) = σm(w) for all w ∈ φm(∆dm
rn ). Define Wn := φn(∆dn

1 ) for n ∈ N, n � k. Then
W :=

⋃
n�k µn(Wn) is an open subset of G/H, and (W, (µn|WWn

)n�k) = lim−→W as a cω
K
-manifold,

where W := ((Wn)n�k, (qn,m|Wn
Wm

)). Now σ := lim−→(σ|Wn) : W = lim−→Wn → lim−→Gn = G is a cω
K
-map,
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and it is a section for q because q ◦ σ = lim−→(qn ◦ σn|Wn) = lim−→ jn = j, where jn : Wn → Gn/Hn and
j : W → G/H are the inclusion maps. The remainder is obvious.

(b) For the cω
K
-Lie group structure induced by G on H, we have H = lim−→Hn by Proposition 7.2,

and this then also holds for the underlying cω
K

and c∞
K

-manifold structures (Theorem 4.3(d)–(f)).
Hence, by the proof of Theorem 3.1, there exists a chart of H around 1 of the form φ = lim−→φn :
P → Q ⊆ H, where, for each n, the map φn : Pn → Qn ⊆ Hn is a chart of Hn around 1,
defined on an open subset Pn ⊆ K

hn (where hn := dimK(Hn)), P :=
⋃
n∈N Pn ⊆ K

t (where
t := sup{hn : n ∈ N} ∈ N0∪{∞}), and Q :=

⋃
n∈NQn ⊆ H. By the proof of (a), there exist charts

ψn : ∆dn
1 → Wn onto open neighbourhoods Wn ⊆ Gn/Hn of qn(1) (where dn := dimK(Gn/Hn))

and Cω
K
-sections σn : Wn → Gn of qn, such that qn,m(Wm) ⊆ Wn, qn,m ◦ ψm = ψn|∆dm

1
, and

σn ◦ qn,m|Wm = σm for all m,n ∈ N such that n � m. Define Vn := im(σn)Qn ⊆ Gn and

θn : ∆dn+hn
1 → Vn, θn(x, y) := σn(ψn(x))φn(y) for x ∈ ∆dn

1 , y ∈ ∆hn
1 .

Since σn is a section of qn, the map θn is easily seen to be injective. Using the inverse func-
tion theorem, one verifies that Vn is open in Gn and that θn is a Cω

K
-diffeomorphism onto Vn.

Then V :=
⋃
n∈N Vn is open in G, and θ := lim−→ θn : lim−→∆dn+hn

1 → V is a cω
K
-diffeomorphism.

Let ζ : K
s+t = lim−→K

dn+hn → K
s × K

t be the natural isomorphism of topological vector spaces
(cf. Proposition 3.7), and Ω := ζ(

⋃
n ∆dn+hn

1 ) ⊆ K
s × K

t. Then κ := θ ◦ ζ−1|Ω : Ω → V is a
C∞
K

-diffeomorphism. By construction of θ, we have V ∩H = Q and κ−1(V ∩H) = Ω ∩ ({0} × K
t),

where {0} × K
t is a closed, complemented vector subspace of K

s × K
t. Hence, H is a split

cω
K
-submanifold of G. As the restriction of κ to a submanifold chart of H is the given chart φ

of H, the submanifold structure and the above manifold structure on H coincide. If L(H) = 0, then
the topology on the Lie group H is discrete and hence so is the topology on H as a submanifold
of G, the induced topology.

(c) By construction, (G/H, (µn)) = lim−→((Gn/Hn), (qn,m)) as a cω
K
-manifold. Since each qn,m also

is a homomorphism, Theorem 4.3 shows that there is a group structure on the cω
K
-manifold G/H

making it a Lie group, and such that each µn becomes a homomorphism. This requirement entails
that q : G → G/H is a homomorphism, whence the group structure on G/H is the one of the
quotient group. For the second assertion, see Theorem 4.3.

Proposition 7.5(a) entails that the surjection q is an open map. Hence, q is a topological quotient
map, and the manifold G/H carries the quotient topology.

Example 7.6. If Gn closed in Gn+1 for each n and Kn ⊆ Gn a maximal compact subgroup such that
K1 ⊆ K2 ⊆ · · · , then K :=

⋃
n∈NKn is a closed subgroup of G =

⋃
n∈NGn. In fact, Km ∩Gn = Kn

for m � n by maximality, whence K ∩Gn = Kn is closed in Gn.

Proposition 7.7. If f : G→ A is C∞
K

- (respectively c∞
K

-) homomorphism from G =
⋃
n∈NGn into

a C∞
K

-Lie group modelled on a locally convex space (respectively a c∞
K

-Lie group), then H := ker(f)
satisfies the hypotheses of Proposition 7.5, and L(H) = kerL(f).

Proof. In the complex case, H ∩Gn = ker(f |Gn) is a complex Lie subgroup of Gn by Lemma 4.4,
whence the specific hypothesis of Proposition 7.5 is satisfied, by Lemma 7.3. If w ∈ kerL(f),
then ξ : R → H, ξ(t) := f(expG(tw)) is a C∞

R
- (respectively c∞

R
-) homomorphism such that

ξ′(0) = L(f)(w) = 0 and thus ξ = 1 (see [Mil83, Lemma 7.1], [KM97, Lemma 36.7]). Hence,
expG(Kw) ⊆ H and therefore w ∈ L(H) = {v ∈ L(G) : expG(Kv) ⊆ H}. The inclusion L(H) ⊆
kerL(f) is trivial.

Proposition 7.8 (Canonical factorization). Let f : G → A be a c∞
K

-homomorphism between
direct limit groups, where G is connected, G =

⋃
n∈NGn, and A =

⋃
n∈NAn. Equip G/ ker(f) with
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the cω
K
-Lie group structure from Proposition 7.5(c), and im(f) with the cω

K
-Lie group structure

induced by A (as in Proposition 7.2). Let f : G/ ker(f) → im(f) be the bijective homomorphism
induced by f . Then f is a cω

K
-diffeomorphism.

Proof. In view of Proposition 3.5, we may assume that each Gn and An is connected. Note that f
is cω

K
because the inclusion map im(f) → A is cω

K
-initial and the quotient map G → G/ ker(f) is

cω
K
-final. Replacing G with G/ ker(f) and A with im(f), we may therefore assume that f is bijective,

and have to show that f−1 is cω
K
. Then L(f) is injective, by Proposition 7.7.

L(f) is surjective. To see this, let x ∈ L(A) =
⋃
n∈N L(An); define s := Kx and S := expA(s).

If x �∈ im(L(f)), then hn ∩ s = {0} for each n ∈ N, where hn := L(f)(L(Gn)). Given n, there exists
m ∈ N such that L(Am) ⊇ hn∪ s. Let Hn and Sn be the analytic subgroups of Am with Lie algebras
hn and s, respectively. Then S = Sn as a set, and the group Hn∩S = Hn∩Sn is countable, because
hn ∩ s = {0}. Thus S =

⋃
n∈N(S ∩ Hn) is countable. However, S is uncountable, a contradiction.

Therefore, x ∈ im(L(f)).

f−1 is cω
K
. As A = lim−→An, it suffices to show that f−1|An is cω

K
, for each n ∈ N. Fix n.

There exists m ∈ N such that L(f)(L(Gm)) ⊇ L(An). Let B be the analytic subgroup of Gm
with Lie algebra L(f)−1(L(An)). Then f |AnB is a bijective Cω

K
-homomorphism between connected

finite-dimensional K-Lie groups and hence an isomorphism of Cω
K
-Lie groups. Thus, f−1|BAn is Cω

K
,

whence so is f−1|An .

Proposition 7.9 (Universal covering group). IfGn is connected for each n ∈ N, let πn : G̃n → Gn be
the universal covering group, and λ̃n,m : G̃m → G̃n be the C∞

K
-homomorphism which lifts λn,m ◦πm.

Then ((G̃n)n∈N, (λ̃n,m)) is a direct system in the category of C∞
K

-Lie groups; let (G̃, (Λn)n∈N) be its

direct limit. Then G̃ is simply connected, and the C∞
K

-homomorphism π := lim−→πn : G̃ → G is a
universal covering map.

Proof. We cannot use Remark 3.9 because the λ̃n,m need not be injective. We therefore proceed
as follows. As any connected C∞

K
-Lie group, G has a universal covering group p : P → G; thus

G is a simply connected C∞
K

-Lie group and p a C∞
K

-homomorphism with discrete kernel. Being a
regular topological space and locally diffeomorphic to L(G), P is smoothly Hausdorff and hence
also is a c∞

K
-Lie group. By [KM97, Theorem 38.6], P is a c∞

K
-regular Lie group. Let λn : Gn → G

be the inclusion map. Since P is c∞
K

-regular, L(λn) : L(G̃n) = L(Gn) → L(G) = L(P ) integrates to
a c∞
K

-homomorphism αn : G̃n → P (Lemma 1.2, [KM97, Theorem 40.3]). Being a cone, (P, (αn))
induces a c∞

K
-homomorphism α : G̃ → P , determined by α ◦ Λn = αn. Recall from Theorem 4.3

that G̃ = lim−→ G̃n/Dn, where Dn := ker(Λn) and where the limit map µn : G̃n/Dn → G̃ is obtained
by factoring Λn over G̃n → G̃n/Dn. Because π ◦ Λn = λn ◦ πn, the subgroup Dn ⊆ ker(πn) is
discrete. Hence, L(G̃) = lim−→L(G̃n/Dn) = lim−→L(G̃n) = lim−→L(Gn) = L(G). It is easily verified
that L(α) = idL(G) with respect to these identifications. Now G̃ being c∞

K
-regular and P simply

connected, id : L(P ) = L(G) → L(G) = L(G̃) induces a c∞
K

-homomorphism β : P → G̃, determined
by L(β) = idL(G). Since L(α ◦ β) = idL(G) = L(idP ), we have α ◦ β = idP by [Mil83, Lemma 7.1].
Likewise, β ◦ α = id

G̃
. Thus, G̃ ∼= P is the universal covering group.

Proposition 7.10 (Integration of Lie algebra homomorphisms). Assume that G =
⋃
n∈NGn is

simply connected. Then the following hold.

(a) Every K-Lie algebra homomorphism α : L(G) → L(H) into the Lie algebra of a c∞
K

-regular
c∞
K

-Lie group H integrates to a c∞
K

-homomorphism β : G → H such that L(β) = α. If K = R

and H is a cω
R
-regular cω

R
-Lie group here, then β is cω

R
.
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(b) Every K-Lie algebra homomorphism α : L(G) → L(H) into the Lie algebra of a K-analytic
BCH-Lie group (see [Glo02a]) integrates to a C∞

K
- (and cω

K
-) homomorphism β : G→ H.

Proof. (a) See [KM97, Theorem 40.3] and Lemma 1.2.
(b) Let ((G̃n), (λ̃n,m)), (G̃, (Λn)), πn : G̃n → Gn, and π : G̃ → G be as in Proposition 7.9.

Because G is simply connected, the covering homomorphism π is an isomorphism. Hence G̃ = G
and Λn = λn ◦ πn without loss of generality, where λn : Gn → G is the inclusion map. Now
H and G̃n being BCH, the homomorphism αn := α ◦ L(Λn) integrates to a Cω

K
-homomorphism

βn : G̃n → H (see [Glo02a, Proposition 2.8]). Then (H, (βn)) is a cone and hence induces a
C∞
K

- (and cω
K
-) homomorphism β : G→ H such that β ◦ Λn = βn. Clearly L(β) = α.

Proposition 7.11 (Integration of Lie subalgebras). Given a K-Lie subalgebra h of L(G), equip the
subgroup H := 〈expG(h)〉 with the cω

K
-Lie group structure described in Proposition 7.2. Then H

is connected, and L(H) = h. Furthermore, H = lim−→Hn where Hn := 〈expGn(hn)〉 is the analytic
subgroup of Gn with Lie algebra hn := h ∩ L(Gn).

Proof. Consider the inclusion map f : S → G, where S := lim−→Hn =
⋃
n∈NHn. Then S = H

as an abstract group. We have L(S) =
⋃
n∈N L(Hn) = h, and f is cω

K
because each f |Hn is so.

By Proposition 7.8, f is a cω
K
-diffeomorphism onto im(f) = H, equipped with the cω

K
-Lie group

structure induced by G. Thus, S = H as cω
K
-Lie groups.

Before we can discuss universal complexifications of direct limit groups, we need to re-examine
universal complexifications of finite-dimensional Lie groups.

Lemma 7.12. Let G be a finite-dimensional real Lie group, and γG : G → GC be its univer-
sal complexification in the category of finite-dimensional complex Lie groups. Let α : G → H
be a c∞

R
-homomorphism from G to a cω

C
-regular cω

C
-Lie group H. Then there exists a unique

cω
C
-homomorphism β : GC → H such that β ◦ γG = α.

Proof. We assume first that G is connected. Let p : G̃ → G be the universal covering group of G
and S be a simply connected complex Lie group with Lie algebra L(G)C. Let λ : L(G) → L(G)C
be the inclusion map and κ : G̃ → S be the unique c∞

R
-homomorphism such that L(κ) = λ.

Set Π := ker(p) ∼= π1(G) and let N ⊆ S be the smallest closed complex Lie subgroup such that
κ(Π) ⊆ N . Let q : S → S/N =: GC be the canonical quotient map. Then there exists a c∞

R
-

homomorphism γG : G→ GC such that γG ◦ p = q ◦ κ.
Let α : G → H be a c∞

R
-homomorphism into a cω

C
-regular cω

C
-Lie group H. Lemma 1.2 provides

a cω
C
-homomorphism η : S → H such that L(η) is the C-linear extension of L(α). Then η ◦κ = α◦p,

because L(η ◦ κ) = L(α) = L(α ◦ p). Thus κ(Π) ⊆ ker(η), where ker(η) is a closed, complex
Lie subgroup of S by Lemma 4.4. Thus N ⊆ ker(η), and thus η factors to a cω

C
-homomorphism

β : GC = S/N → H such that β ◦ q = η. From β ◦ γG ◦ p = β ◦ q ◦ κ = η ◦ κ = α ◦ p we deduce that
β ◦γG = α, and clearly β is uniquely determined by this property. By the preceding, γG : G→ GC is
a universal complexification of the c∞

R
-Lie group G in the category of cω

C
-regular cω

C
-Lie groups; since

GC is finite-dimensional, γG : G→ GC also is the universal complexification of G in the category of
finite-dimensional complex Lie groups.

If G is not necessarily connected, then its identity component G0 has a universal complexifi-
cation in the category A of cω

C
-regular cω

C
-Lie groups, which is finite-dimensional. As in [Glo02a,

Proposition 5.2], we see that the c∞
R

-Lie group G has a universal complexification γG : G → GC
in A, and (GC)0 is a universal complexification for G0 and therefore finite-dimensional. Hence, GC
is finite-dimensional, and hence it coincides with the universal complexification of G in the category
of finite-dimensional complex Lie groups.
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Proposition 7.13 (Universal complexifications). Let S := ((Gn)n∈N, (λn,m)n�m) be a direct system
of finite-dimensional real Lie groups and Cω

R
-homomorphisms, (G, (λn)) := lim−→S in the category of

cω
R
-Lie groups and (GC, (κn)n∈N) := lim−→(((Gn)C)n∈N, ((λn,m)C)) in the category of cω

C
-Lie groups,

where γn : Gn → (Gn)C is a universal complexification for Gn in the category of finite-dimensional
complex Lie groups, and (λn,m)C : (Gm)C → (Gn)C the uniquely determined complex analytic
homomorphism such that (λn,m)C ◦ γm = γn ◦λn,m. Let γG := lim−→ γn : G→ GC. Then the following
hold:

(a) γG : G→ GC is a universal complexification of the c∞
R

-Lie group G in the category of cω
C
-regular

cω
C
-Lie groups in the sense that for every c∞

R
-homomorphism α : G→ H into a cω

C
-regular cω

C
-Lie

group H, there is a unique cω
C
-homomorphism β : GC → H such that β ◦ γG = α.

(b) γG|(GC)0G0
is a universal complexification of G0, and G/G0 → GC/(GC)0, xG0 �→ γG(x)(GC)0 is

a bijection.

(c) If G is simply connected, then GC is simply connected, and γG has discrete kernel.

(d) If γG has discrete kernel, then L(GC) = L(G)C, im γG is closed in GC, and γG|im γG is a local
cω
R
-diffeomorphism onto im γG, equipped with the cω

R
-Lie group structure induced by (GC)R.

Proof. (a) By Lemma 7.12, for each n ∈ N there exists a unique cω
C
-homomorphism βn : (Gn)C → H

such that βn◦γn = α◦λn. Clearly (H, (βn)) is a cone, whence there exists a unique cω
C
-homomorphism

β : GC = lim−→(Gn)C → H such that β ◦ κn = βn. Then β ◦ γG = α, and it is easily verified that β is
uniquely determined by this property.

(b) Compare [Glo02a, Proposition 5.2].
(c) Using Theorem 5.1, we find a simply connected, cω

C
-regular cω

C
-Lie group S with Lie algebra

L(S) = L(G)C. As G is simply connected, the inclusion map j : L(G) ↪→ L(G)C integrates to a
c∞
R

-homomorphism η : G → S such that L(η) = j. Then η : G → S is a universal complexification
for G in the category of cω

C
-regular cω

C
-Lie groups (cf. proof of Lemma 7.12 or [GN03, Lemma IV.4]).

Let K := ker(η) = ker(γG). Because L(η) = j is injective, we have L(K) = kerL(η) = {0} (Proposi-
tion 7.7). Hence, K is discrete when equipped with the real Lie group structure induced by G. The
topology on the latter coincides with the topology induced by G, as K is closed (Proposition 7.5(b)).
Hence ker(γG) = K is discrete.

(d) Since ker(γG) is discrete, L(γG) is injective (Proposition 7.7), enabling us to identify L(G)
with imL(γG) as a real locally convex space. Let (GC)op be GC, equipped with the opposite complex
structure; by the universal property of GC, there is a unique cω

C
-homomorphism σ : GC → (GC)op

such that σ ◦ γG = γG. We now consider σ as an antiholomorphic self-map of GC. Thus L(σ) is
C-antilinear. As in [GN03, Lemma IV.2], we see that σ is an involution. We have L(G) ⊆ L(GC)σ

for the fixed space of L(σ). Since L(GC) = L(G) + iL(G) by construction of GC, it easily follows
that L(GC) = L(G) ⊕ iL(G) = L(G)C and thus L(G) = L(GC)σ. We now give the closed subgroup
(GC)σ := Fix(σ) the cω

R
-Lie group structure induced by (GC)R. Then γG(G) ⊆ (GC)σ, and it is

easy to see that L((GC)σ) := {v ∈ L(GC) : expGC(Rv) ⊆ (GC)σ} = L(G). Thus C := ((GC)σ)0 =
〈expGC(L(G))〉 = γG(G0), and now Proposition 7.8 entails that γG|CG0

is a local cω
R
-diffeomorphism.

To complete the proof, note that (GC)0 ∩ γG(G) = γG(G0) = C by (b), whence γG(G) is a locally
closed subgroup of GC and hence closed.

8. Proof of regularity in Milnor’s sense

Theorem 8.1. Every direct limit group G = lim−→Gn over K ∈ {R,C} is a regular C∞
R

-Lie group

in Milnor’s sense. More precisely, for every k ∈ N ∪ {∞}, every Ck
R
-curve γ : [0, 1] → G admits a

right product integral η = EvolrG(γ) ∈ Ck+1([0, 1], G) such that η(0) = 1, and the corresponding
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H. Glöckner

right evolution map

evolrG : Ck([0, 1], L(G)) → G, evolrG(γ) := EvolrG(γ)(1)

is C∞
K

and cω
K
.

Proof. Fix k. The strategy of the proof is as follows. First, we show that product integrals exist
and that evolrG is continuous. Next, we show that evolrG is complex analytic if K = C. Finally, for
K = R, we deduce smoothness of evolrG from the smoothness of evolrGC .

Step 1. Since evolrG takes its values in the connected component of G, we may assume that G is
connected. Using that δr(p ◦ γ) = δrγ for curves in G̃ (cf. [KM97, 38.4(3)]), where p : G̃→ G is the
universal covering map, we may assume that G is simply connected. Furthermore, we may assume
that G =

⋃
n∈NGn, where G1 ⊆ G2 ⊆ · · · and each Gn is connected. Let jn : Gn → G be the

inclusion map. We abbreviate dn := dimK(Gn), s := sup{dn : n ∈ N} and let φ = lim−→φn : P → Q

be a chart of G around 1, where P =
⋃
n∈N∆dn

2 , Q :=
⋃
n∈NQn and φn : ∆dn

2 → Qn is a chart of Gn
around 1, such that φn(0) = 1. We identify L(Gn) = T1(Gn) with K

dn using the chart φn, and L(G)
with K

s using φ; then L(jn) : K
dn → K

s is the inclusion map, for each n ∈ N.

Step 2: evolrG exists. To see this, let γ ∈ Ck([0, 1], L(G)). Then there exists n ∈ N such that
im γ ⊆ L(Gn). Then γ|L(Gn) is Ck. It is a standard fact (based on the local existence and uniqueness
of solutions to differential equations) that there exists η ∈ Ck+1([0, 1], Gn) such that δrη = γ|L(Gn).
Then EvolrG(γ) := jn ◦ η is Ck+1 and δr(jn ◦ η) = L(jn) ◦ γ|L(Gn) = γ. Thus evolrG(γ) exists, and
evolrG ◦ Ck([0, 1], L(jn)) = jn ◦ evolrGn .

Step 3. The inclusion map Ck([0, 1], L(G)) → C1([0, 1], L(G)) being continuous linear for each k, it
suffices to prove that evolrG : C1([0, 1], L(G)) → G is C∞

K
and cω

K
. We may therefore assume that

k = 1 for the rest of the proof.

Step 4: evolrG is continuous at nice γ0. We show that evolrG is continuous at γ0 ∈ C1([0, 1], L(G)),
provided that im(γ0) ⊆ K

d1 = L(G1) and im(η0) ⊆ φ1(∆d1
1/2), where η0 := EvolrG(γ0). To this end,

let W be an open neighbourhood of evolrG(γ0) = η0(1) in G; abbreviate ζ0 := φ−1
1 ◦η0. Then φ−1(W )

is an open neighbourhood of ζ0(1), whence φ−1(W ) − ζ0(1) ⊇ ∆d1
ε1 ⊕

⊕
n�2 ∆dn−dn−1

εn for certain
εn > 0; we may assume that 1 � ε1 � ε2 � · · · . Define rn := 1 − 2−n for n ∈ N. Equip each K

dn

with the supremum norm. There is R > 0 such that ‖γ0‖∞ � R.
For n ∈ N, consider the map fn : K

dn×∆dn
2 → K

dn , fn(y, x) := d/ds|s=0φ
−1
n (φn(sy)φn(x)), which

expresses the map L(Gn) × Gn → TGn, (y, x) �→ T1(ρx).y (with right translation ρx : Gn → Gn)
in local coordinates (forgetting the fibre). Then ζ ′0(t) = fn(γ0(t), ζ0(t)) for all t ∈ [0, 1], because
δr(η0) = γ0. By the compactness of ∆dn

1 and ∆dn
R+n−1, there exists kn > 0 such that for the operator

norms of the partial differentials we have

‖d2fn(v, x, •)‖ � kn for all v ∈ ∆dn
R+n−1 and x ∈ ∆dn

1 ,

and such that for the operator norms of the continuous linear maps fn(•, x) we have ‖fn(•, x)‖ � kn
for all x ∈ ∆dn

1 . Choose αn > 0 so small that
αn
kn

(ekn − 1) � 2−n−1 εn. (3)

Define sn := min{αn/kn, 1}. Suppose that γ : [0, 1] → ∆dn
R+n−1 is a C1-curve for which there exists

a C1-curve η : [0, 1] → ∆dn
1−2−n solving the initial value problem η(0) = 0, η′(t) = fn(γ(t), η(t)).

Then ‖d2fn(γ(t), x, •)‖ � kn for all t ∈ [0, 1] and x ∈ ∆dn
1 . Let γ : [0, 1] → K

dn be a C1-curve such
that ‖γ − γ‖∞ < sn. Then im(γ) ⊆ ∆dn

R+n, and

‖fn(γ(t), x) − fn(γ(t), x)‖ = ‖fn(γ(t) − γ(t), x)‖ � ‖fn(•, x)‖ · ‖γ(t) − γ(t)‖ � knsn � αn
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for all x ∈ ∆dn
1 . Furthermore, η(t) + y ∈ ∆dn

1−2−n−1 ⊆ ∆dn
1 for all t ∈ [0, 1] and y ∈ K

dn such that
‖y‖ � (αn/kn)(ekn − 1) � 2−n−1εn � 2−n−1. Using [Die60, (10.5.6)], we therefore find a solution
ξ : [0, 1] → ∆dn

1 to the initial value problem ξ(0) = 0, ξ′(t) = fn(γ(t), ξ(t)), such that

‖ξ − η‖∞ � αn
kn

(ekn − 1) � 2−n−1εn. (4)

Hence, im(ξ) ⊆ ∆dn
1−2−n−1 in particular.

We now define Ω := ∆dn
s1 ⊕

⊕
n�2 ∆dn−dn−1

sn , considering K
s as the locally convex direct sum

K
d1 ⊕

⊕
n�2 K

dn−dn−1 . Then γ0 + C1([0, 1],Ω) is an open neighbourhood of γ0 in C1([0, 1], L(G)).
Let γ ∈ γ0 + C1([0, 1],Ω). Then γ − γ0 =

∑∞
n=1 γn, where γn is the coordinate function taking

its values in ∆d1
s1 , respectively in ∆dn−dn−1

sn . There exists � ∈ N such that γn = 0 for all n � �.
Considering γ0, γ0 + γ1, . . . ,

∑�
n=0 γn = γ in turn, from the existence of ζ0 we inductively deduce

by the preceding arguments that there exists a solution ζn : [0, 1] → ∆dn
1−2−n−1 to the initial value

problem ζ ′n(t) = fn(γ0(t) + · · ·+ γn(t), ζn(t)), ζn(0) = 0, for n = 1, . . . , �, such that ‖ζn− ζn−1‖∞ �
2−n−1εn (see (4)). Then η := φ◦ζ� is the right product integral for γ, and thus evolrG(γ) = η(1) ∈W
because

φ−1(η(1)) − φ−1(η0(1)) = ζ�(1) − ζ0(1) =
�∑

n=1

(ζn(1) − ζn−1(1)) ∈ ∆d1
ε1 ⊕

�⊕
n=2

∆dn−dn−1
εn ⊆ φ−1(W ).

Hence, evolrG is indeed continuous at γ0.

Step 5: evolrG is continuous. Let γ ∈ C1([0, 1], L(G)). After passing to a subsequence, we may assume
that im(γ) ⊆ K

d1 = L(G1). Let η := EvolrG(γ). We find a partition 0 = t0 < t1 < · · · < t� = 1
such that ηj([0, 1]) ⊆ φ1(∆d1

1/2) for each j ∈ {0, . . . , � − 1}, where ηj : [0, 1] → G is defined via
ηj(t) := η(tj + t(tj+1 − tj))η(tj)−1. Then ηj = EvolrG(γj), where γj : [0, 1] → L(G), γj(t) :=
(tj+1 − tj) · γ(tj + t(tj+1 − tj)) are maps which satisfy the hypotheses of Step 4. Thus, evolrG is
continuous at γj . Since γ �→ γj is continuous and evolrG(γ) = evolrG(γ�−1) · · · evolrG(γ1)evolrG(γ0), we
see that evolrG is continuous at γ. (We have even established continuity with respect to the topology
of uniform convergence!)

Step 6: evolrG is C∞
C

if K = C. It suffices to show that evolrG is C∞
C

on some open neighbourhood
of each γ0 ∈ C1([0, 1], L(G)) such that γ0([0, 1]) ⊆ L(G1) and such that η0 := EvolrG(γ0) has
image in φ1(∆d1

1/2), by arguments similar to those just employed. Let Ω be as in Step 4, and U :=
γ0 + C1([0, 1],Ω). As shown in Step 4, η := EvolrG(γ) has image in Q = im(φ), for each γ ∈ U ,
ζ := φ−1 ◦ η satisfies ζ(0) = 0, and ζ ′(t) = fn(γ(t), ζ(t)) for each n such that ζ([0, 1]) ⊆ C

dn .
Now suppose that γ ∈ U and θ ∈ C1([0, 1], L(G)). There exists n (which we fix now) such that
γ, θ have image in C

dn . Then σz := γ + zθ ∈ U for z in some zero-neighbourhood V ⊆ C, and
im(σz) ⊆ C

dn for each z ∈ V . Let τz := φ−1 ◦ EvolrG(σz). Then τz solves the initial value problem
τz(0) = 0, τ ′z(t) = fn(σz(t), τz(t)). Consider f : [0, 1] × ∆dn

1 × V → C
dn , f(t, x, z) := fn(σz(t), x).

Then f(t, x, z) = fn(γ(t), x)+zfn(θ(t), x), showing that the differentiability requirements of [Car71,
Theorem 3.6.1] are satisfied.4 Hence, u(t, z) := τz(t) is C1

R
in (t, z) on an open neighbourhood of

I × {0} in I × V , and the map h : [0, 1] → LR(C,Cdn), h(t) := d2u(t, 0, •) to the space of R-linear
maps C → C

dn is C1
R

and solves the initial value problem

h(0) = 0, h′(t) = b(t) ◦ h(t) + c(t), (5)

4To apply the theorem, note that f extends to an open set, because γ and θ extend to open intervals by Borel’s
theorem.
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where c(t)(z) = z ·fn(θ(t), τ0(t)) and b(t) = d2fn(σ0(t), τ0(t), •). Since b(t) ∈ LC(Cdn ,Cdn) for each t
and c(t) ∈ LC(C,Cdn), we can interpret (5) also as a linear differential equation for LC(C,Cdn)-
valued functions. This implies that h(t) ∈ LC(C,Cdn) for each t, i.e., h(t) = d2u(t, 0, •) is complex
linear. Hence d/dz|z=0φ

−1(evolrG(γ + zθ)) = d/dz|z=0τz(1) = ∂/∂z|z=0u(1, z) exists as a
complex derivative.

By the preceding, ψ := φ−1 ◦ evolrG|U : U → C
s admits complex directional derivatives at each

point. Hence, ψ is G-analytic in the sense of [BS71, Definition 5.5], by [BS71, Proposition 5.5] and
[BS71, Theorem 3.1]. Being G-analytic and continuous, ψ is complex analytic [BS71, Theorem 6.1(i)].

Step 7: evolrG is C∞
R

and cω
R

if K = R. Because G is assumed simply connected, we know that
H := γG(G) is a closed subgroup of GC, that γG has discrete kernel, and that γG is a local cω

R
-

diffeomorphism onto H, equipped with the real Lie group structure induced by (GC)R (see Propo-
sition 7.13(c) and (d)). Since H is C∞

R
-initial in GC and cω

R
-initial (Proposition 7.5(b)), we deduce

from the smoothness (and cω
R
-property) of γG ◦ evolrG = evolrGC ◦L(γG) that γG|H ◦ evolrG is C∞

R
and

cω
R
. As evolrG is continuous and γG|H a local C∞

R
- (and cω

R
-) diffeomorphism, this implies that evolrG

is C∞
R

and cω
R
.
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Glo02b H. Glöckner, Infinite-dimensional Lie groups without completeness restrictions, in Geometry and

Analysis on Finite- and Infinite-Dimensional Lie Groups, eds A. Strasburger et al., Banach Center
Publications, vol. 55 (Banach Center, Warsaw, 2002), 43–59.
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