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Abstract

In this paper we study m-discount optimality (m ≥ −1) and Blackwell optimality for
a general class of controlled (Markov) diffusion processes. To this end, a key step is
to express the expected discounted reward function as a Laurent series, and then search
certain control policies that lexicographically maximize the mth coefficient of this series
for m = −1, 0, 1, . . . . This approach naturally leads to m-discount optimality and it gives
Blackwell optimality in the limit as m → ∞.
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1. Introduction

The most common optimality criteria for infinite-horizon optimal control problems are the
expected discounted reward criterion and the long-run expected average reward criterion, also
known as the ergodic reward or gain. These two criteria have opposite aims: the former
considers early periods of the infinite time horizon (since it essentially vanishes for large time
intervals—see (2.7)), whereas the latter concerns only the asymptotic behavior; it simply ignores
what happens in finite time intervals. To avoid these two extremal situations, we must consider
refinements of the average reward criterion such as overtaking optimality, bias optimality, and
the so-called sensitive discount criteria, which include m-discount optimality for an integer
m ≥ −1 and Blackwell optimality for m = +∞. They are called ‘refinements’ because they
concern control policies that optimize the average reward and, in addition, they have some other
convenient features. In this work we are interested in some of these refinements. Namely, we
will give conditions that guarantee m-discount optimality for every integer m ≥ −1 and also
for Blackwell optimality when the controlled system is a Markov diffusion process of the form

dx(t) = b(x(t), u(t)) dt + σ(x(t)) dB(t) for all t ≥ 0 and x(0) = x,

where B(·) is a d-dimensional Brownian motion, and the coefficients b(x, u) and σ(x) satisfy
suitable assumptions. (See Section 2 for details.)

Blackwell optimality was introduced by Blackwell [3], whose work deals in fact with a
more restrictive concept, known in the literature as strong Blackwell optimality, for discrete-
time Markov decision processes (MDPs) with finite state space and finite-action spaces. (See
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also [29]). In this work we use a weaker concept, called simply Blackwell optimality (see
Definition 2.3).

Blackwell optimality for discrete-time MDPs with denumerable state space was studied
in [5]. Hordijk and Yushevich [16] presented a fairly complete description of known results on
Blackwell optimality for discrete-time MDPs. Special cases of strong m-discount optimality
(m = −1, 0) for discrete-time models has been studied in [15] and [32] (see also [14]).
On the other hand, for continuous-time models, Puterman [27] considered one-dimensional
diffusion processes with values in a compact interval, whereas Prieto-Rumeau and Hernández-
Lerma [25] and Prieto-Rumeau [23] considered continuous-time controlled Markov chains
with a denumerable state space. Finally, Jasso-Fuentes and Hernández-Lerma [19] studied
special cases of strong m-discount optimality for the cases m = −1, 0 for controlled diffusion
processes. Our approach in this paper is mainly based on [19] and [23].

The remainder of this paper is organized as follows. In Section 2 we introduce the control
system and our main assumptions. In addition, we define the optimality criteria we are
concerned with, and we summarize some known results on the Hamilton–Jacobi–Bellman
(HJB) equation [2], [4], [8], [10], [17], [18], which is essentially our point of departure to
analyze m-discount optimality and Blackwell optimality. In Section 3 we express the expected
α-discounted v-reward (see (3.6)) for some function v as a Laurent series (see (3.11)). In Sec-
tion 4 we define the so-called −1th, 0th, . . . , mth Poisson equations and the −1th, 0th, . . . , mth
average reward HJB equations. In addition, we ensure the existence of solutions to these
equations and the existence of policies that maximize the −1th, 0th, . . . , mth average reward
HJB equations (4.4)–(4.6). Section 5 concerns the existence of m-discount policies for any
integer m ≥ −1, which leads to the proof of the existence of Blackwell optimal policies. In
Section 6 we present an example that illustrates our results. Finally, we conclude in Section 7
with some remarks.

Throughout the following sections, for vectors and matrices, we use the usual norms

|x|2 :=
∑

i

x2
i and |A|2 := tr(AA�) =

∑
i,j

A2
ij ,

where A� and tr(·) denote the transpose of A = (Aij ) and the trace of a square matrix,
respectively.

2. Model definition and basic optimality criteria

The control system we are concerned with is the controlled diffusion process

dx(t) = b(x(t), u(t)) dt + σ(x(t)) dB(t) x(0) = x, t ≥ 0, (2.1)

where b(·, ·) : R
n × U → R

n and σ(·) : R
n → R

n×d are given functions, and B(·) is a
d-dimensional Brownian motion. The set U ⊂ R

m is called the control (or action) set, and u(·)
is a U -valued stochastic process representing the controller’s action at each time t ≥ 0.

Let F be the set of all measurable functions f : R
n → U , and let M ⊃ F be the family of all

U -valued measurable functions on [0, ∞) × R
n. A function f ∈ M is called a Markov policy,

whereas f ∈ F is called a stationary Markov policy or simply a stationary policy. Under a
policy f ∈ M or f ∈ F, the function u(·) in (2.1) becomes u(t) := f (t, x(t)) or, respectively,
u(t) := f (x(t)).

The following assumption ensures that, for each Markov policy f ∈ M, (2.1) admits an
almost surely unique strong solution x(·) := {x(t) | t ≥ 0}, which is a Markov–Feller process.
For details, see, for instance, [2, Theorem 2.2.7], [9, Theorem 2.1], or [10, Theorem 3.1].
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Assumption 2.1. (a) The control set U is compact.

(b) b is continuous on R
n × U , and there exists a positive constant K such that, for each x and

y in R
n,

sup
u∈U

|b(x, u) − b(y, u)| ≤ K|x − y|.

(c) There exist positive constants K and γ such that, for each x and y in R
n,

|σ(x) − σ(y)| ≤ K|x − y|,
and the matrix a := σσ� satisfies

x�a(y)x ≥ γ |x|2 for all x, y ∈ R
n (uniform ellipticity).

Let C2(Rn) be the space of real-valued continuous functions on R
n with continuous first

and second partial derivatives. For u ∈ U and h ∈ C2(Rn), let

Luh(x) := hx(x)b(x, u) + 1
2 tr(hxx(x)a(x)),

where a(·) is as in Assumption 2.1(c), and hx and hxx represent the gradient vector and the
Hessian matrix of h, respectively.

For each f ∈ F and x ∈ R
n, let

Lf h(x) := Lf (x)h(x). (2.2)

For a stationary policy f ∈ F, the operator Lf in (2.2) coincides with the infinitesimal generator
associated to the diffusion x(·) in (2.1).

To emphasize the dependence on f ∈ F, we sometimes write x(·) as xf (·). Also, we shall
denote by Pf

x (t, ·) the corresponding transition probability, i.e.

Pf
x (t, B) = P(xf (t) ∈ B | xf (0) = x)

for every Borel set B ⊂ R
n. The associated conditional expectation is written as Ef

x (·).
2.1. Ergodicity

The following assumption is a standard Lyapunov stability condition for continuous-time
(controlled and uncontrolled) Markov processes—see, for instance, [2], [7], [8], [10], [11],
[22], [24], [26], and [30].

Assumption 2.2. There exist a function w ≥ 1 in C2(Rn) and constants d ≥ c > 0 such
that

(a) lim|x|→∞ w(x) = +∞;

(b) Luw(x) ≤ −cw(x) + d for all u ∈ U and x ∈ R
n.

Assumption 2.2 gives that, for each f ∈ F, the Markov process xf (·) is Harris positive
recurrent with a unique invariant probability measure µf for which

µf (w) :=
∫

Rn

w(y)µf (dy) < ∞. (2.3)

(See [2], [8], [11], [12], and [22] for details). Assumption 2.2 also ensures the boundedness of
Ef

x (w(x(t))) in the following sense. (See [18, Lemma 2.10] or [19, Lemma 2.3].)
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Lemma 2.1. Assumption 2.2(b) implies that

Ef
x (w(x(t))) ≤ e−ctw(x) + d

c
(1 − e−ct ) (2.4)

for every f ∈ F, x ∈ R
n, and t ≥ 0.

We now introduce the concept of the w-weighted norm, where w is the function in Assump-
tion 2.2.

Definition 2.1. Let Bw(Rn) denote the Banach space of real-valued measurable functions v on
R

n with finite w-norm, which is defined as

‖v‖w := sup
x∈Rn

|v(x)|
w(x)

.

Assumption 2.3, below, concerns the w-exponential ergodicity of xf (·). Sufficient condi-
tions for Assumption 2.3 are given, for instance, in [17, Theorem 1.3.6] or [18, Theorem 2.7].

Assumption 2.3. For each f ∈ F, the process x(·) ≡ xf (·) is w-exponentially ergodic; that
is, there exist positive constants C and δ such that

sup
f ∈F

|Ef
x (v(x(t))) − µf (v)| ≤ Ce−δt‖v‖ww(x) (2.5)

for all x ∈ R
n, v ∈ Bw(Rn), and t ≥ 0, where µf (v) := ∫

Rn v(y)µf (dy).

2.2. Optimization problems

Let r : R
n × U → R be a measurable function, called the reward rate, which satisfies the

following conditions.

Assumption 2.4. (a) r(x, u) is continuous on R
n × U and locally Lipschitz in x, uniformly in

u ∈ U , i.e. for each R > 0, there exists a constant K(R) such that

sup
u∈U

|r(x, u) − r(y, u)| ≤ K(R)|x − y| for all |x|, |y| ≤ R.

(b) r(·, u) is in Bw(Rn) uniformly in u; that is, there exists an M > 0 such that, for all x ∈ R
n,

sup
u∈U

|r(x, u)| ≤ Mw(x).

For each Markov policy f ∈ M, t ≥ 0, and x ∈ R
n, we write

r(t, x, f ) := r(x, f (t, x)), (2.6)

which reduces to r(x, f ) := r(x, f (x)) if f ∈ F is stationary.

Definition 2.2. (Discounted reward criterion.) Given the ‘discount factor’ α > 0, let

Vα(x, f ) := Ef
x

(∫ ∞

0
e−αt r(t, x(t), f ) dt

)
(2.7)

be the expected α-discounted reward, when using the policy f ∈ M, given the initial state
x ∈ R

n. The corresponding optimal value function is

V ∗
α (x) = sup

f ∈M

Vα(x, f ).
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A stationary policy f ∗
α is said to be α-discount optimal if

V ∗
α (x) = Vα(x, f ∗

α ) for all x ∈ R
n.

Assumptions 2.1, 2.2, and 2.4 ensure the existence of α-discount optimal policies in the
class F of stationary policies. (See, for instance, [2], [9], and [17].)

The discounted reward criterion is closely related to Blackwell optimality, which is the main
subject in this paper. In fact, as shown in the following pages, Blackwell optimality is related
to a whole sequence of optimality criteria.

Definition 2.3. (Blackwell optimality.) A policy f ∗ in F is called Blackwell optimal if, for
each policy f ∈ F and each state x ∈ R

n, there exists a discount factor α∗ = α∗(x, f ) > 0
such that

Vα(x, f ∗) ≥ Vα(x, f ) for all 0 < α < α∗.

The proof of the existence of Blackwell optimal policies is much more involved than for
α-discount optimality, for fixed α > 0, but the basic approach can be traced back to Blackwell’s
analysis [3] for a finite-state, finite-action Markov decision process. This approach hinges on
the Laurent series (introduced in Section 3), which in turn is based on α-discount optimality
(Definition 2.2) and average reward optimality (see Definition 2.4, below). Then the coefficients
of the Laurent series are used to define a sequence of ‘nested’ control problems (see Section 4)
that in the limit give Blackwell optimality (see Section 5).

In the reminder of this section we summarize the definition of and some facts about average
optimality.

Definition 2.4. (Average reward criterion.) For each f ∈ M, x ∈ R
n, and T ≥ 0, let

JT (x, f ) := Ef
x

(∫ T

0
r(t, x(t), f ) dt

)
.

The long-run average reward—also known as the gain—of f , given the initial state x, is

J (x, f ) := lim inf
T →∞

1

T
JT (x, f ). (2.8)

The function
J ∗(x) := sup

f ∈M

J (x, f ) for x ∈ R
n (2.9)

is referred to as the optimal gain or optimal average reward. If there is a policy f ∗ ∈ M for
which J (x, f ∗) = J ∗(x) for all x ∈ R

n, then f ∗ is called average optimal.

Assumptions 2.1, 2.2, 2.3, and 2.4 ensure the existence of average optimal stationary policies.
Indeed, under these assumptions, there exists a pair (g, h) consisting of a constant g ∈ R and
a function h ∈ C2(Rn) ∩ Bw(Rn) satisfying the average reward HJB equation

g = max
u∈U

[r(x, u) + Luh(x)] for all x ∈ R
n. (2.10)

Moreover, there exists a policy f ∈ F that attains the maximum in (2.10), i.e.

g = r(x, f ) + Lf h(x) for all x ∈ R
n. (2.11)
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A policy f ∈ F that satisfies (2.11) is referred to as a canonical policy. Denote by Fca and Fao
the sets of canonical and average optimal policies, respectively. It can be shown that, under our
standing assumptions, the set of canonical policies coincides with the set of average optimal
policies, so Fca = Fao. (See [2], [4], [10], [20], and [21].)

Using (2.5), it is easy to verify that, for every f ∈ F, the gain (2.8) becomes

J (x, f ) = lim
T →∞

1

T
JT (x, f ) = r̄(f ) for all x ∈ R

n, (2.12)

where r̄(f ) := ∫
r(y, f )µf (dy). Furthermore, (2.3) and (2.4) yield µf (w) ≤ d/c, and,

therefore, by the Assumption 2.4(b) we have

|r̄(f )| ≤
∫

Rn

|r(y, f )|µf (dy) ≤ M
d

c
< ∞. (2.13)

Finally, as in [2], [4], [10], [20], and [21], it can be seen that the constant

r∗ := sup
f ∈F

r̄(f ) < ∞ (2.14)

coincides with the optimal gain in (2.9), i.e.

r∗ = J ∗(x) for all x ∈ R
n;

hence,
J ∗(x) = sup

f ∈M

J (x, f ) = sup
f ∈F

J (x, f ) = r∗ for all x ∈ R
n.

3. The Laurent series

The main objective of this section is to show that, for each f ∈ F, the α-discounted reward
(2.7) can be expressed as a Laurent series. This result for controlled Markov processes comes,
of course, from the Laurent series expansion for the resolvent of Markov semigroups—see, for
instance, [28] or [31, p. 212]. First, we will recall some facts from bias optimality.

For each f ∈ F, we define the bias of f as the function

hf (x) :=
∫ ∞

0
(Ef

x (r(x(t), f )) − r̄(f )) dt for x ∈ R
n. (3.1)

By (2.5) and Assumption 2.4(b), this function is finite valued; in fact, it belongs to Bw(Rn).

Definition 3.1. (Bias optimality.) The function ĥ ∈ Bw(Rn) defined as

ĥ(x) := sup
f ∈Fao

hf (x) for x ∈ R
n (3.2)

is called the optimal bias function. Moreover, a stationary average optimal policy f̂ is said to
be bias optimal if it attains the maximum in (3.2), i.e.

h
f̂
(x) = ĥ(x).

We denote by Fbias the set of optimal bias policies.
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The following result shows that Fbias is nonempty, and it also gives some characterizations
of bias optimal policies. For a proof, see Theorems 5.4, 5.5, and 6.2 of [18].

Proposition 3.1. Under Assumptions 2.1, 2.2, 2.3, and 2.4, the following holds.

(a) Fbias is nonempty.

(b) The pair (r∗, ĥ) consisting of the constant r∗ in (2.14) and the optimal bias function ĥ

in (3.2) form the unique solution satisfying the bias optimality equations

g = max
u∈U

[r(x, u) + Luh(x)], (3.3)

h(x) = max
u∈U0(x)

Luκ(x), (3.4)

for all x ∈ R
n, where U0(x) := {u ∈ U | g = r(x, u)+Luh(x)} and κ is some function

in C2(Rn) ∩ Bw(Rn).

(c) f is bias optimal if and only if, for every x ∈ R
n, f (x) attains the maximum in (3.3) and

(3.4).

In this section we will consider the optimality criteria (2.7) and (2.8) with reward rates
different from the function r(x, u). These reward rates will be restricted to the class of functions
defined as follows.

Definition 3.2. Let w be the function in Assumption 2.2. We denote by Bw(Rn ×U) the space
of real-valued measurable functions v on R

n × U such that

sup
u∈U

|v(x, u)| ≤ Mvw(x) for all x ∈ R
n, (3.5)

where Mv is a positive constant depending of v.

Note that the space Bw(Rn) is contained in Bw(Rn ×U), because any function v ∈ Bw(Rn)

can be written as v(x) ≡ v(x, u) for u ∈ U .
As in (2.6), for v ∈ Bw(Rn×U), f ∈ M, and x ∈ R

n, we define v(t, x, f ) := v(x, f (t, x)).
The following definitions generalize the optimality criteria (2.7) and (2.8).

Given f ∈ M, x ∈ R
n, v ∈ Bw(Rn × U), and α > 0, we define

Vα(x, f, v) := Ef
x

(∫ ∞

0
e−αtv(t, x(t), f ) dt

)
, (3.6)

the expected α-discounted v-reward when using the policy f ∈ M, given the initial state
x ∈ R

n. Similarly, the v-gain of f given the initial state x is defined as

J (x, f, v) := lim inf
T →∞

1

T
Ef

x

(∫ T

0
v(t, x(t), f ) dt

)
. (3.7)

Note that if v(x, u) = r(x, u) then (3.6) and (3.7) reduce to (2.7) and (2.8), respectively.
Given f ∈ F ⊂ M, let

v̄(f ) =
∫

Rn

v(y, f )µf (dy). (3.8)
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Under Assumptions 2.1, 2.2, and 2.3, we can see, as in (2.12), that the v-gain in (3.7) is the
constant (3.8); that is,

J (x, f, v) = lim
T →∞

1

T
Ef

x

(∫ T

0
v(x(t), f ) dt

)
= v̄(f ).

In addition, as in (2.13), v̄(f ) is uniformly bounded; in fact,

sup
f ∈F

|v̄(f )| ≤ Mv

d

c
.

Now, for each f ∈ F, consider the bias operator Gf on Bw(Rn × U) defined, for every
v ∈ Bw(Rn × U), by

Gf v(x) :=
∫ ∞

0
[Ef

x (v(x(t), f )) − v̄(f )] dt. (3.9)

Observe that (3.9) reduces to (3.1) when v coincides with the reward rate r in Assumption 2.4.
Also, note that, from (2.5) and (3.5),

|Gf v(x)| ≤ δ−1CMvw(x),

that is, Gf v is in Bw(Rn), and its w-norm is uniformly bounded in f ∈ F because

sup
f ∈F

‖Gf v‖w ≤ δ−1CMv.

Hence, Gf maps Bw(Rn × U) into Bw(Rn). Finally, observe that

µf (Gf v) = 0 for all f ∈ F and v ∈ Bw(Rn × U). (3.10)

The next theorem ensures that the α-discounted v-reward (3.6) can be written as the Laurent
series (3.11).

Theorem 3.1. Let δ > 0 be the constant in Assumption 2.3. Let f ∈ F and v ∈ Bw(Rn × U)

be arbitrary. Then, for α ∈ (0, δ), the α-discounted v-reward (3.6) can be expressed as

Vα(x, f, v) = 1

α
v̄(f ) +

∞∑
k=0

(−α)kGk+1
f v(x) for all x ∈ R

n, (3.11)

where Gk+1
f is the (k + 1)-composition of Gf with itself. Moreover, the series (3.11) converges

in the w-norm.

Proof. Fix an arbitrary f ∈ F. Clearly, we can rewrite (3.6) as

Vα(x, f, v) = 1

α
v̄(f ) +

∫ ∞

0
e−αt [Ef

x (v(x(t), f )) − v̄(f )] dt. (3.12)

To simplify the notation, define

Z
f
t v(x) := Ef

x (v(x(t), f )) − v̄(f ).
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Observe that the integral in (3.12) is finite because, by (2.5),

|Zf
t v(x)| ≤ CMve−δtw(x). (3.13)

Furthermore, by the semigroup property of transition probabilities [6], [13], it is easy to verify
that the family {Zf

t }t≥0 satisfies

Z
f
t+s = Z

f
t Z

f
s for all s, t ≥ 0 and f ∈ F. (3.14)

Expanding the factor e−αt in (3.12) as a Taylor series and using the dominated convergence
theorem (recall (3.13)), we obtain

∫ ∞

0
e−αtZ

f
t v(x) dt =

∞∑
k=0

(−α)k
∫ ∞

0

tk

k!Z
f
t v(x) dt.

Let

Y
f
k v(x) :=

∫ ∞

0

tk

k!Z
f
t v(x) dt.

To obtain (3.11), we will use induction on k to prove that Y
f
k v(x) = Gk+1

f v(x).
By (3.9), Y

f
0 = Gf . Now suppose that Y

f
k−1 = Gk

f for some k ≥ 1. Hence, we have

Y
f
k v(x) =

∫ ∞

0

(∫ t

0

sk−1

(k − 1)! ds

)
Z

f
t v(x) dt

=
∫ ∞

0

sk−1

(k − 1)!
(∫ ∞

s

Z
f
t v(x) dt

)
ds (Fubini’s theorem)

=
∫ ∞

0

sk−1

(k − 1)!
(∫ ∞

0
Z

f
s Z

f
t v(x) dt

)
ds, (3.15)

where the last equality is due to (3.14).
Observe that∫ ∞

0
(Z

f
s Z

f
t v)(x) dt =

∫ ∞

0

∫
Rn

Z
f
t v(y)[Pf

x (s, dy) − µf (dy)] dt

=
∫

Rn

∫ ∞

0
Z

f
t v(y) dt[Pf

x (s, dy) − µf (dy)]

=
∫

Rn

Gf v(y)[Pf
x (s, dy) − µf (dy)] (by (3.9))

= Ef
x ((Gf v)(x(s))) − µf (Gf v)

= Z
f
s Gf v(x).

Therefore, (3.15) becomes

Y
f
k v =

∫ ∞

0

sk−1

(k − 1)! (Z
f
s Gf v) ds = Y

f
k−1Gf v = Gk+1

f v,

where the last equality follows from the induction hypothesis.
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Now we will prove that the series in (3.11) converges in the w-norm. To do this, note
that (3.13) implies that the terms of the series in (3.11) are bounded, because

|(−α)kGk+1
f v(x)| = |(−α)kY

f
k v(x)| ≤ CMv

δ

(
α

δ

)k

w(x). (3.16)

Hence, since α is in (0, δ), we obtain

∥∥∥∥
m+p∑

k=m+1

(−α)kGk+1
f v(x)

∥∥∥∥
w

≤ CMv

δ

m+p∑
k=m+1

(
α

δ

)k

→ 0 as m → ∞.

This implies that the series in (3.11) is a Cauchy series in the Banach space Bw(Rn), and so it
converges in Bw(Rn).

The following proposition establishes that the residual terms in the Laurent series are bounded
in the w-norm.

Proposition 3.2. Let θ ∈ R be such that 0 < θ < δ, where δ is the constant in Assumption 2.3.
For each v ∈ Bw(Rn × U), f ∈ F, and k = 0, 1, . . . , define the k-residual of the Laurent
series (3.11) as

Rk(f, v, α) :=
∞∑

j=k

(−α)jG
j+1
f v.

Then, for all |α| ≤ θ and k = 0, 1, . . . ,

sup
f ∈F

‖Rk(f, v, α)‖w ≤ MvC

δk(δ − θ)
|α|k. (3.17)

Proof. This is a straightforward consequence of inequality (3.16).

For each v ∈ Bw(Rn × U), f ∈ F, and k = 0, 1, . . . , define hk
f v ∈ Bw(Rn) as

hk
f v(x) := (−1)kGk+1

f v(x) for all x ∈ R
n.

For v = r , with r as in Assumption 2.4, we simply write hk
f := hk

f r . On the other hand, by
(3.1), h0

f = hf is in fact the bias of f , and h1
f = Gf (−h0

f ) is the bias of f when the reward
rate is −h0

f = −hf . Also, note that the function v̄(f ) is the gain r̄(f ) in (2.12). In general, it
can be seen by induction that

hk
f = Gf (−hk−1

f ), (3.18)

and so, hk
f is the bias when the reward rate is −hk−1

f . Therefore, the Laurent series (3.11), with
r in lieu of v ∈ Bw(Rn × U), becomes

Vα(x, f ) = 1

α
r̄(f ) +

∞∑
k=0

αkhk
f (x) (3.19)

for all f ∈ F, x ∈ R
n, and α as in Theorem 3.1. Finally, applying (3.10) to (3.18), we obtain

µf (hk
f ) = 0 for all k = 0, 1, 2, . . . . (3.20)
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4. The Poisson and the average reward HJB equations

In this section we associate the coefficients of the Laurent series (3.19) with the solutions
of the average reward HJB equations, (4.4)–(4.6), below. To this end, given f ∈ F, let Lf be
the operator defined in (2.2). For each m ≥ 0, consider the following system of equations: for
x ∈ R

n,

g = r(x, f ) + Lf h0(x), (4.1)

h0(x) = Lf h1(x), (4.2)

...

hm(x) = Lf hm+1(x), (4.3)

where g is a constant and h0, h1, . . . , hm+1 are functions in C2(Rn). Equations (4.1)–(4.3) are
referred to as the −1th, 0th, and mth Poisson equations for f , respectively.

The following theorem establishes a relation between the coefficients of the Laurent series
(3.19) and the solution to the Poisson equations (4.1)–(4.3).

Theorem 4.1. Fix m ≥ −1. The constant g ∈ R and the functions h0, h1, . . . , hm+1 ∈
C2(Rn) ∩ Bw(Rn) are solutions to the Poisson equations (4.1)–(4.3) if and only if g = r̄(f ),
hk = hk

f for 0 ≤ k ≤ m, and hm+1 = hm+1
f + z for z ∈ R.

Proof. First we shall prove that r̄(f ), h0
f , . . . , hm+1

f satisfy the Poisson equations (4.1)–
(4.3), and also that they are in C2(Rn) ∩ Bw(Rn). The proof will be by induction on m. For
m = −1, by [18, Proposition 4.1], h0

f is in C2(Rn) ∩ Bw(Rn) and the pair (r̄(f ), h0
f ) satisfies

the −1th Poisson equation, (4.1).
Now assume that the stated result holds for some m ≥ −1. We will show that hm+1

f and
hm+2

f verify the (m + 1)th Poisson equation, and that hm+2
f is in C2(Rn) ∩ Bw(Rn).

Consider the reward rate−hm+1
f . By (3.20), the expected average reward isµf (−hm+1

f ) = 0,
and by (3.18), the bias of f when the reward rate is −hm+1

f becomes hm+2
f . Thus, by [18,

Proposition 4.1] we conclude that hm+2
f is in C2(Rn)∩Bw(Rn), and its corresponding Poisson

equation is precisely the (m + 1)th equation; that is,

hm+1
f (x) = Lf hm+2

f (x) for all x ∈ R
n.

Hence, hm+1
f and hm+2

f + z for any z ∈ R satisfy the (m + 1)th Poisson equation.
Conversely, suppose that g ∈ R and h1, h2, . . . , hm+1 ∈ C2(Rn) are solutions to (4.1)–(4.3).

For m = −1, [18, Proposition 4.1] ensures that (r̄(f ), h0
f ) is the unique solution to the −1th

Poisson equation, (4.1); hence, g = r̄(f ) and h0 = h0
f .

Now suppose that the solutions to the mth Poisson equation are hm
f and hm+1

f + z for z ∈ R.
By the induction hypothesis, hm+1 = hm+1

f + z′ for z′ ∈ R. Since µf is an invariant probability
measure, we have ∫

Rn

Lf h(y)µf (dy) = 0 for all h ∈ C2(Rn);
see, for instance, [2, Lemma 4.2.5]. Therefore, applying µf to the (m + 1)th equation, we
deduce that µf (hm+1) = 0. We also find, by (3.20), that µf (hm+1

f ) = 0 and so z′ = 0, that
is, hm+1 = hm+1

f . Finally, interpreting the (m + 1)th Poisson equation as the −1th Poisson
equation with reward rate −hm+1

f , we obtain, as in the m = −1 case, hm+2 = hm+2
f + z for

z ∈ R.
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In addition to the Poisson equations (4.1)–(4.3), we now consider the following system
of equations for g ∈ R and h0, h1, . . . , hm+1 ∈ C2(Rn), which will be referred to as the
−1th, 0th, . . . , mth average reward HJB equations, respectively: for x ∈ R

n,

g = max
u∈U

[r(x, u) + Luh0(x)], (4.4)

h0(x) = max
u∈U0(x)

[Luh1(x)], (4.5)

...

hm(x) = max
u∈Um(x)

[Luhm+1(x)], (4.6)

where, lettingU−1(x) := U for allx ∈ R
n, the setUk(x) for 0 ≤ k ≤ m consists of the elements

(controls) u ∈ Uk−1(x) attaining the maximum in the (k − 1)th average reward HJB equation.
In particular, for m = 0, (4.4)–(4.5) coincide with the bias optimality equations (3.3)–(3.4).

Remark 4.1. (i) By Assumptions 2.1 and 2.4, the maps u �→ r(x, u) and u �→ Luhk(x) for
k = 0, . . . , m + 1 are continuous on U for each x ∈ R

n. Also, it is easily seen by induction
that the sets Um(x), m ≥ 0, form a nonincreasing sequence of nonempty compact sets for each
x ∈ R

n, and, furthermore, the set-valued mappings x �→ Um(x) are upper semicontinuous;
see [18, Lemma 5.2].

(ii) Since {Um(x)}m≥0 is a nonincreasing sequence of nonempty compact sets, the set

U∞(x) :=
⋂

m≥−1

Um(x)

is nonempty and compact.

The following definition concerns policies f ∈ F that attain the maximum in the average
reward HJB equations (4.4)–(4.6).

Definition 4.1. Given an integer m ≥ −1, let Fm be the set of all policies f ∈ F such that
f (x) ∈ Um+1(x) for each x ∈ R

n; that is, f is in Fm if it attains the maximum in the
−1th, 0th, . . . , mth average reward HJB equations.

By Remark 4.1 and Theorem 4.2, below, {Fm}m≥−1 is a nonincreasing sequence (Fm ⊇
Fm+1) of nonempty sets, and it converges to the set

F∞ :=
∞⋂

m=−1

Fm. (4.7)

By Remark 4.1, the set F∞ is also nonempty.
Theorem 4.2 gives the existence and uniqueness of solutions to the average reward HJB equa-

tions (4.4)–(4.6). In addition, it guarantees the existence of policies that attain the maximum
in these equations.

Theorem 4.2. The average reward HJB equations (4.4)–(4.6) admit a unique solution g ∈ R,
h0, . . . , hm+1 ∈ C2(Rn) ∩ Bw(Rn), where g, h0, . . . , hm are unique and hm+1 is unique up to
an additive constant. Moreover, Fm is nonempty.

Proof. First, we will prove the existence of solutions. For m = 0, the claim follows from
Proposition 3.1(b). Suppose now that the result holds for some m ≥ 0, and consider a new
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control model, which will be referred to as the ‘m-bias problem’, and which has the following
components:

• the dynamical system (2.1);

• the action set Um(x) for each state x ∈ R
n; and

• the reward rate −hm.

It is evident that this model satisfies Assumptions 2.1, 2.2, 2.3, and 2.4. Hence, Proposi-
tion 3.1(b) gives the existence of the functions hm+1 and hm+2 in the class C2(Rn) ∩ Bw(Rn)

that satisfy the mth and the (m + 1)th average reward HJB equations, and such that hm+1 is
unique and hm+2 is unique up to additive constants. This proves the first statement of the
theorem.

To prove that Fm is nonempty, we again proceed by induction on m. For m = 0, we use
Proposition 3.1(a) to guarantee the existence of a bias optimal policy f ∈ F. Then, from
Proposition 3.1(c) we deduce that f maximizes the bias optimality equations, which coincide
with the −1th and 0th average reward HJB equations. This implies that f is in F0. Now
suppose that f ∈ Fm for some m ≥ −1; that is, f (x) is in Um+1(x) for all x ∈ R

n. Consider
again the m-bias problem defined above and observe that the set of average optimal policies
associated to this problem coincides with the set Fm. Then, since the m-bias problem satisfies
the hypotheses of Proposition 3.1, we use this proposition to ensure the existence of a bias
optimal policy f ∈ Fm associated to the m-bias problem. Hence, using the characterization of
f in Proposition 3.1(c), we deduce that f ∈ Fm maximizes the mth and (m + 1)th optimality
equations; that is, f is in Fm+1. This completes the proof.

Note that if f is in Fm then, by Theorem 4.1, the solution to the average reward HJB equations
consists of g = r̄(f ), h0 = h0

f , . . . , hm = hm
f , and hm+1 = hm+1

f + z for some constant z.
As a consequence of the Remark 4.1(ii) and Theorem 4.2, we obtain the following result.

Corollary 4.1. There exists a policyf ∈ F that maximizes themth average optimality equations
for every m = −1, 0, . . . . In other words, f is in F∞.

5. Blackwell optimality

We are finally arriving at the main problem we are concerned with, namely, the charac-
terization and existence of Blackwell optimal policies. Indeed, we will ensure the existence
of m-discount optimal policies (m ≥ −1), based on a lexicographic maximization of the mth
coefficient of the Laurent series (3.19). This fact is then used to prove the existence of Blackwell
optimal policies. The concept of m-discount optimality is defined as follows.

Definition 5.1. (m-discount optimality.) Let m ≥ −1 be an integer. A stationary policy f ∗ ∈ F

is called m-discount optimal if

lim inf
α↓0

α−m[Vα(x, f ∗) − Vα(x, f )] ≥ 0 for all f ∈ F and x ∈ R
n.

Clearly, if f ∗ ∈ F is m-discount optimal (for m ≥ 0) then f ∗ is (m − 1)-discount optimal.
Hence, if F

d
m ⊂ F denotes the set of m-discount optimal stationary policies then the sequence

{Fd
m}m≥−1 is nonincreasing.
To prove the existence of Blackwell optimal policies, we first recall the definition of a

lexicographic order.
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Definition 5.2. Given a pair of vectors x and y in R
d , we say that x is lexicographically greater

than or equal to y, denoted by x � y, if the first nonzero component of x − y is positive.
Furthermore, we write x � y if x � y and x �= y.

The following proposition relates the sets Fm in Definition 4.1 with the coefficients of the
Laurent series (3.19).

Proposition 5.1. For every integer m ≥ 0, a stationary policy f ∈ F belongs to Fm if and only
if it lexicographically maximizes the terms r̄(f ), h0

f , . . . , hm
f of the Laurent series (3.19) in the

class F.

Proof. We will use induction on m.
Consider the m = 0 case. Suppose that f belongs to F0, that is, f maximizes the −1th and

the 0th average HJB equations (4.4)–(4.5); or, equivalently, f maximizes the bias optimality
equations (3.3)–(3.4). This implies, from Proposition 3.1(c), that f is bias optimal. Now let
f ′ ∈ F. If f ′ is not average optimal, i.e. f ′ /∈ Fao, then r̄(f ) > r̄(f ′). Hence,

(r̄(f ), hf ) � (r̄(f ′), hf ′). (5.1)

Otherwise, if f ′ ∈ Fao then r̄(f ) = r̄(f ′) and hf ≥ hf ′ , because f is bias optimal, and, hence,
(5.1) holds.

To prove the converse, suppose that f lexicographically maximizes the terms r̄(f ) and hf .
Then, r̄(f ) > r̄(f ′) or r̄(f ) = r̄(f ′) and hf ≥ hf ′ for all f ′ ∈ F. This implies that f is bias
optimal. Hence, by Proposition 3.1(c), f satisfies the bias optimality equations (3.3)–(3.4); in
other words, it satisfies the −1th and the 0th average HJB equations (4.4)–(4.5). This proves
that f is in F0.

Now suppose that the result holds for some m ≥ 0. If f is in Fm+1 then the solutions to the
−1th, 0th, . . . , (m+1)th average reward HJB equations becomeg = r̄(f ), h0 = h0

f , . . . , hm =
hm

f , and hm+1 = hm+1
f ; therefore, f is the optimal bias for the m-bias problem. Let f ′ ∈ F. If

f ′ /∈ Fm then, by the induction hypothesis,

(r̄(f ), h0
f , . . . , hm+1

f ) � (r̄(f ′), h0
f ′ , . . . , hm+1

f ′ ). (5.2)

Otherwise, if f ′ ∈ Fm,

(r̄(f ), h0
f , . . . , hm

f ) = (r̄(f ′), h0
f ′ , . . . , hm

f ′)

and f ′ is average optimal for the m-bias problem. Also, hf ≥ hf ′ for the m-bias problem, and,
by (3.18),

hm+1
f = Gf (−hm

f ) ≥ Gf ′(−hm
f ) = hm+1

f ′ , (5.3)

so (5.2) follows.
Conversely, suppose that f lexicographically maximizes r̄(f ), h0

f , . . . , hm+1
f . By the

induction hypothesis, f is in Fm. Now let f ′ ∈ Fm. Then hm = hm
f = hm

f ′ , and (5.3) holds.
Therefore, f is bias optimal for the m-bias problem and it verifies its corresponding bias
optimality equations; that is, the mth and (m+1)th optimality equations. Hence, f is in Fm+1.

The following theorem relates policies f ∈ Fm with the concept of m-discount optimality in
Definition 5.1. In addition, it establishes the equivalence between Blackwell optimal policies
with policies in F∞.
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Theorem 5.1. (i) Given an integer m ≥ −1, a policy f ∈ F is m-discount optimal if and only
if f is in Fm; that is, F

d
m = Fm.

(ii) f ∈ F is Blackwell optimal if and only if f is in F∞.

Proof. (i) We will use induction on m. To begin, consider m = −1. From (3.17) and (3.19),
we have

lim
α↓0

α[Vα(x, f ∗) − Vα(x, f )] = r̄(f ∗) − r̄(f ) for all f ∗, f ∈ F. (5.4)

Now suppose that f ∗ is in F−1, or, equivalently, that f ∗ is in Fca(= Fao) (recall the comments
after (2.10)). Hence, f ∗ is −1-discount optimal, because r̄(f ∗) − r̄(f ) ≥ 0 for every f ∈ F.
Conversely, suppose that f ∗ is −1-discount optimal; that is,

lim inf
α↓0

α[Vα(x, f ∗) − Vα(x, f )] ≥ 0 for all f ∈ F.

From this expression and (5.4), we deduce that r̄(f ∗) ≥ r̄(f ) for every f ∈ F; hence, f ∗ is
average optimal.

Now suppose that (i) holds for some m ≥ 0, and let f ∈ Fm+1. We want to prove that
f ∈ F

d
m+1. To this end, note that, by (3.19),

1

αm+1 [Vα(x, f ∗) − Vα(x, f )]

= 1

α

[
1

αm+1 (r̄(f ∗) − r̄(f )) + 1

αm
(h0

f ∗(x) − h0
f (x)) + · · · + (hm

f ∗(x) − hm
f (x))

]

+ (hm+1
f ∗ (x) − hm+1

f (x)) + 1

αm+1

∞∑
k=m+2

αk(hk
f ∗(x) − hk

f (x)). (5.5)

Taking α ↓ 0 we deduce that, by the induction hypothesis, the first term in (5.5) is nonnegative,
and, by (3.17), the third term in (5.5) goes to 0. Moreover, since f ∗ is in Fm+1, it is optimal
for the (m + 1)-bias problem, which consists of

• the dynamical system (2.1);

• the action set Um+1(x) for each state x ∈ R
n; and

• the reward rate −hm+1
f .

Hence, hm+1
f ∗ ≥ hm+1

f . Therefore, f ∗ is in F
d
m+1, i.e. Fm+1 ⊂ F

d
m+1.

Conversely, assume that f ∗ is in F
d
m+1, but that it is not in Fm+1. Since F

d
m+1 ⊂ F

d
m, it

follows that, by the induction hypothesis, f ∗ is in Fm. Take an arbitrary f ∈ Fm+1 (which is
possible by Theorem 4.2). By Proposition 5.1, hm+1

f ∗ < hm+1
f . Then

1

αm+1 [Vα(x, f ∗) − Vα(x, f )]

= (hm+1
f ∗ (x) − hm+1

f (x)) + 1

m + 1

∞∑
m+2

αk(hk
f ∗(x) − hk

f (x)). (5.6)
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Letting α ↓ 0, we see that the last term in (5.6) converges to 0. Thus,

lim inf
α↓0

1

αm+1 [Vα(x, f ∗) − Vα(x, f )] < 0,

which contradicts the fact that f ∗ is in F
d
m+1. This completes the proof of part (i).

(ii) First, suppose that f ∗ is in F∞. Choose an arbitrary f ∈ F and x ∈ R
n. Then, by (3.19),

Vα(x, f ∗) − Vα(x, f ) = α−1[r̄(f ∗) − r̄(f )] +
∞∑

k=0

αk[hk
f ∗(x) − hk

f (x)]. (5.7)

By (4.7) and Proposition 5.1, the right-hand side of (5.7) is nonnegative for every α > 0, and
yields Blackwell optimality (see Definition 2.3).

Conversely, suppose that f ∗ is Blackwell optimal. Pick an arbitrary f ∈ F and x ∈ R
n,

and let α∗ = α∗(x, f ) > 0 be as in Definition 2.3. It follows immediately that f ∗ is in F
d
m for

m = 0 and m = −1 (see (5.4)); equivalently, by part (i), f ∗ is in Fm for m = 0 and −1. In
fact, it is evident that f ∗ is in F

d
m = Fm for all m ≥ −1, and, therefore, f ∗ is in F∞ = F

d∞,
where F

d∞ := ⋂∞
m=−1 F

d
m.

Corollary 5.1. Under Assumptions 2.1, 2.2, 2.3, and 2.4,

(i) for each m ≥ −1, the set Fm ⊂ F of m-discount optimal policies is nonempty;

(ii) there exists a Blackwell optimal policy in F.

Proof. This follows by combining Theorem 4.2 and Corollary 4.1 with Theorem 5.1.

6. An example

We now give an example to illustrate our results. Our example is motivated by the manu-
facturing system studied in [1], which is also used as an application in [9] and [10].

Consider the one-dimensional linear system

dx(t) = [γ x(t) + βu(t)] dt + σ dBt , x(0) = x0, t ≥ 0, (6.1)

where γ , β, and σ are given constants, with β > 0. The control u(t) takes values in the compact
set U := [0, a], a > 0.

Now let r : R �→ R be the reward rate, which is supposed to be concave and locally Lipschitz.
This choice of r , which depends on the state variable but not on the control, is motivated by
some applications to inventory systems (see, for instance, [1]).

We will suppose the existence of a function w ≥ 1 that satisfies our Assumptions 2.2
and 2.4(b). (This function depends, of course, on r and the coefficients of (6.1). For instance,
assuming that γ < 0 in (6.1), if r(x) := −x2 then a quadratic function such as w(x) := x2 + 1
usually works for our present purposes.)

Our aim is to find m-discount and Blackwell optimal policies in the class of stationary
policies u(t) = f (x(t)). To this end, for each m ≥ −1, we will prove the existence of
policies fm ∈ F that maximize the −1th, 0th, . . . , mth average reward HJB equations (4.4)–
(4.6) associated to certain optimal control problems. Hence, according to Theorem 5.1, such
policies are m-discount optimal. This will be crucial to find Blackwell optimal policies.
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Consider the −1th average reward HJB equation associated to the problem of maximizing
the expected average reward

lim
T →∞

1

T
Ef

x

(∫ T

0
r(x(t)) dt

)

subject to (6.1). By (6.1) and (4.4),

−g + r(x) + γ xh′
0(x) + σ 2

2
h′′

0(x) + max
u∈[0,a]{βuh′

0(x)} = 0, (6.2)

where h′
0(x) and h′′

0(x) denote the first and the second derivatives of h0, with h0 in C2(Rn) ∩
Bw(Rn), and g is a constant. Since r(·) is concave, the same arguments as in [1, p. 117],
show that h0(·) is also concave. Hence, we have two trivial cases: if h0 is strictly increasing
(h′

0 > 0) or decreasing (h′
0 < 0), then the control policy fa(x) ≡ a or, respectively f0(x) ≡ 0

is the unique policy that attains the maximum in (6.2); in other words, F−1 is the singleton {fa}
or {f0}. This set coincides with the set of average optimal policies, according to Theorem 3.3
of [18] (see also [2], [4], and [10]).

Now suppose that h0 attains a maximum, say x0. Hence,

h′
0(x)

⎧⎪⎨
⎪⎩

> 0 if x < x0,

= 0 if x = x0,

< 0 if x > x0.

Thus, any control of the form

fb(x) =

⎧⎪⎨
⎪⎩

a if x < x0,

b if x = x0 and 0 ≤ b ≤ a,

0 if x > x0,

(6.3)

maximizes (6.2), and these controls constitute the set F−1 (the set of average optimal policies).
We are now interested in finding bias optimal policies. To this end, let us consider a new

control problem consisting of the following components.

• The dynamic system (6.1).

• The control set U0(x) := {u ∈ [0, a] | u attains the maximum in (6.2)}.
• The reward rate −h0.

It is easy to verify that this new problem satisfies all of our assumptions. Then, by Propo-
sition 3.1, there exists an h1 in C2(Rn) ∩ Bw(Rn) that satisfies the 0th average reward HJB
equation

−h0(x) + γ xh′
1(x) + σ 2

2
h′′

1(x) + max
u∈U0(x)

{βuh′
1(x)} = 0. (6.4)

Note that, by Proposition 3.1(c), f maximizes both equations (6.2) and (6.4) if and only if it is
bias optimal.
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If h0 is strictly increasing or decreasing, by definition of bias optimality and the uniqueness
of the average optimal policies, fa or f0 is bias optimal, respectively, depending on the sign
of h′

0. Hence, these policies maximize the −1th and the 0th average reward HJB equations.
Otherwise, suppose that h0 attains its maximum in x0. As we already noted above, h0 is concave,
and so −h0 is convex. Therefore, again using the arguments of [1, p. 117], h1 is convex. This
means that we have again two trivial cases: if h1 is strictly increasing or decreasing, we see
that fa or, respectively, f0 maximizes both equations (6.2) and (6.4); that is, F0 = {fa} or,
respectively, F0 = {f0}. Otherwise, if h1 attains a minimum, say x1, then

h′
1(x)

⎧⎪⎨
⎪⎩

< 0 if x < x1,

= 0 if x = x1,

> 0 if x > x1.

This gives the following.

(i) If x0 > x1 then fa maximizes both (6.2) and (6.4). Hence, F0 = {fa}.
(ii) If x0 = x1 then fb in (6.3) maximizes (6.2) and (6.4), which implies that F0 = {fb | 0 ≤

b ≤ a}.
(iii) If x0 < x1 then f0 maximizes (6.2) and (6.4), and so F0 = {f0}.

In general, suppose that m ≥ −1, and, for each i = 0, . . . , m, let xi be the point where hi+1
attains either the maximum or minimum. Then, by induction, it can be seen that, if m is even,
the set Fm is given as

Fm =

⎧⎪⎨
⎪⎩

{fa} if x0 = x1 = · · · = xm−1 > xm,

{f0} if x0 = x1 = · · · = xm−1 < xm,

{fb | 0 ≤ b ≤ a} if x0 = x1 = · · · = xm−1 = xm,

or, if m is odd, the set Fm is given as

Fm =

⎧⎪⎨
⎪⎩

{f0} if x0 = x1 = · · · = xm−1 > xm,

{fa} if x0 = x1 = · · · = xm−1 < xm,

{fb | 0 ≤ b ≤ a} if x0 = x1 = · · · = xm−1 = xm.

Hence, by Theorem 5.1, Fm coincides with the set of m-discount optimal policies. Finally, the
set F∞, which is composed of the Blackwell optimal policies, is

F∞ =
{

{fa, f0} if xi �= xi+1 for some i = −1, 0, . . . ,

{fb | 0 ≤ b ≤ a} if xi = xi+1 for all i = −1, 0, . . . .

7. Concluding remarks

In this paper we analyzed m-discount optimality for every integer m ≥ −1, which essentially
gives Blackwell optimality in the ‘limit’ as m → ∞. A key step to obtain these results was
to express the expected discounted reward (2.7) as the Laurent series (3.19). Similar results
have been obtained previously for discrete-time and continuous-time controlled Markov chains
(see [3], [5], [16], [25], and [29]). To the best of the authors’ knowledge, however, the only
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related work dealing with controlled diffusion processes is Puterman’s paper [27], where he
considered a one-dimensional diffusion process with values in a compact interval. We should
also mention the work by Taylor [28], who obtained a Laurent series for a general, uncontrolled,
continuous-time Markov process with values in a compact metric space.
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