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Abstract
In this paper, we consider some dividend problems in the perturbed compound Poisson model under a constant
barrier dividend strategy. We approximate the expected present value of dividend payments before ruin and the
expected discounted penalty function based on the COS method, and construct some nonparametric estimators by
using a random sample on claim number and individual claim sizes. Under a large sample size setting, we perform
an error analysis of the estimators. We also provide some simulation results to verify the effectiveness of this
estimation method when the sample size is finite.

1. Introduction

In this paper, the surplus process of an insurance company is described by the perturbed compound
Poisson model

𝑈∞
𝑡 = 𝑢 + 𝑐𝑡 − 𝑆𝑡 + 𝜎𝐵𝑡 , 𝑡 ≥ 0, (1.1)

where 𝑢 ≥ 0 is the initial surplus, and 𝑐 > 0 is the constant premium rate per time. The aggregate
claims process 𝑆𝑡 =

∑𝑁𝑡

𝑛=1 𝑋𝑛 is a compound Poisson process, where {𝑁𝑡 }𝑡≥0 is a Poisson claim number
process with constant arrival rate 𝜆 > 0, and the individual claim sizes {𝑋𝑛}𝑛≥1 form a sequence
of positive valued i.i.d. random variables with common probability density function 𝑓𝑋 and mean
𝜇𝑋 =

∫ ∞
0 𝑥 𝑓𝑋 (𝑥) 𝑑𝑥. Finally, {𝐵𝑡 }𝑡≥0, independent of {𝑆𝑡 }𝑡≥0, is a standard Brownian motion starting

from zero, and 𝜎 > 0 is a volatility parameter.
The above perturbed compound Poisson model was first proposed by Gerber [11], and it has been

studied by many authors; see, for example, Gerber and Landry [12], Wang [26], Tsai [23,24], Tsai
and Willmot [25], Chiu and Yin [7] and references therein. In this paper, we consider the model (1.1)
modified by a constant barrier dividend strategy. Given a finite barrier of level 𝑏 > 0, we assume that
whenever the surplus process reaches level 𝑏, dividends are paid off continuously such that the surplus
stays at level 𝑏 until it becomes less than 𝑏. Let𝑈𝑏

𝑡 denote the modified surplus process under the above
barrier dividend strategy, and let 𝜏𝑏 = inf{𝑡 ≥ 0 : 𝑈𝑏

𝑡 ≤ 0} be the time of ruin. The present value of
total dividends paid before the ruin time 𝜏𝑏 is given by

𝐷𝑏 =
∫ 𝜏𝑏

0
𝑒−𝛿𝑡 𝑑𝐷 (𝑡), 0 ≤ 𝑢 ≤ 𝑏,

where 𝛿 > 0 is the force of interest for valuation, and 𝐷 (𝑡) is the aggregate dividends paid by time 𝑡.
Given the initial surplus level 0 ≤ 𝑢 ≤ 𝑏, the expected present value of total dividend payments before
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ruin is defined by

𝑉 (𝑢; 𝑏) = 𝐸 [𝐷𝑏 |𝑈𝑏
0 = 𝑢], 0 ≤ 𝑢 ≤ 𝑏. (1.2)

Furthermore, we are interested in the expected discounted penalty function associated with model 𝑈𝑏 ,
which is defined by

𝜙(𝑢; 𝑏) = 𝐸 [𝑒−𝛿𝜏𝑏𝑤(|𝑈𝑏
𝜏𝑏
|) |𝑈𝑏

0 = 𝑢], 0 ≤ 𝑢 ≤ 𝑏, (1.3)

where 𝑤(·) is a nonnegative penalty function of the deficit at ruin. Note that ruin can be caused either by
a claim or oscillation due to the Brownian motion, then we have the following decomposition of 𝜙(𝑢; 𝑏),

𝜙(𝑢; 𝑏) = 𝑤(0)𝜙𝑑 (𝑢; 𝑏) + 𝜙𝑐 (𝑢; 𝑏),

where

𝜙𝑑 (𝑢; 𝑏) = 𝐸 [𝑒−𝛿𝜏𝑏 𝐼 (𝑈𝑏
𝜏𝑏

= 0) |𝑈𝑏
0 = 𝑢], 0 ≤ 𝑢 ≤ 𝑏,

𝜙𝑐 (𝑢; 𝑏) = 𝐸 [𝑒−𝛿𝜏𝑏𝑤(|𝑈𝑏
𝜏𝑏
|)𝐼 (𝑈𝑏

𝜏𝑏
< 0) |𝑈𝑏

0 = 𝑢], 0 ≤ 𝑢 ≤ 𝑏,

are respectively the Laplace transform of the ruin time when ruin is caused by oscillation, and the
expected discounted penalty function when ruin is due to a claim.

Dividend problem was first proposed by de Finetti [10] in a binomial model, and since then it has
been studied in a number of papers. For example, see Lin et al. [17], Dickson and Waters [8], Li and
Garrido [16], Albrecher et al. [2] and Li [15] to name a few. We know that a common assumption in these
papers is that the probability characteristics of the model 𝑈𝑏 are known, so that analytic approach such
as differential equation, Laplace transform, renewal theory can be used to study the functions 𝑉 (𝑢; 𝑏),
𝜙𝑑 (𝑢; 𝑏) and 𝜙𝑐 (𝑢; 𝑏). However, usually the quantities such as the Poisson intensity 𝜆, the diffusion
parameter 𝜎 and the claim size density 𝑓𝑋 are all unknown. Hence, it is very interesting to consider
the statistical estimation of the dividend problems given that the random samples on claim number,
individual claim sizes and the surplus levels are available. When the probability characteristics of the
surplus process are unknown, some estimation problems have been considered under the model without
dividend payments. For example, Zhang and Yang [31,32] proposed some nonparametric estimators
of the ruin probability by some Fourier-based methods. The same estimation problem has also been
considered by Cai et al. [3] and Cai and You [4] by numerical Laplace inversion transform, respectively.
The expected discounted penalty functions are estimated by Shimizu [19,20] and Shimizu and Zhang
[21] under different risk models.

Recently, Xie and Zhang [27] study the statistical estimation of dividend problems in the classical
compound Poisson model. In their paper, the Fourier-cosine (COS) method was first used to estimate
the expected present value of dividend payments before ruin, then the expected discounted penalty
function was estimated by using the dividends-penalty identity. We remark that the COS method was
first proposed by Fang and Oosterlee [9] to price European options, and since then, it has been widely
used in the field of financial mathematics. In insurance risk theory, Chan et al. [5,6] applied the COS
method to approximate the ruin probability and the expected discounted penalty function, respectively;
Zhang used the COS method to approximate the density function of the time to ruin; Yang et al. [28]
applied a two-dimensional COS method to estimate the discounted density function of the deficit at ruin;
Lee et al. [14] studied the finite time ruin probabilities by the COS method. On the estimation of the
expected discounted penalty function with dividend payments, we also would like to point out the work
Strini and Thonhauser [22]. In their paper, ruin problems in a renewal risk model with a general surplus
dependent premium rate are studied. Note that both barrier and band type strategies can be expressed
by some special settings of their premium rate function. Different from Xie and Zhang [27], they first
study the expected discounted penalty function by numerical solution of a partial-integro-differential
equation, and then consider the statistical estimation through the estimated model parameters.
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In this paper, we shall follow the approach in Xie and Zhang [27] to estimate the functions
𝑉 (𝑢; 𝑏), 𝜙𝑑 (𝑢; 𝑏) and 𝜙𝑐 (𝑢; 𝑏) under the model𝑈𝑏 . Note that different from Xie and Zhang [27], in this
paper, we add an independent Brownian motion to describe the uncertainty of the surplus flow of the
insurance company. This additional noise puts an obstacle for constructing the estimators of the interest-
ing functions from the random samples on the individual claim sizes and claim number. As is shown in
Section 4, the information on dividend payments has to be used to construct the estimators. When study-
ing the consistency properties of our estimators, we need to study the uniform convergence properties
of some functions related to the Laplace exponent of the process 𝑈∞

𝑡 , and this is more difficult to deal
with than the compound Poisson model in Xie and Zhang [27]. The remainder of this paper is organized
as follows. In Section 2, we present some preliminaries on 𝑉 (𝑢; 𝑏), 𝜙𝑐 (𝑢; 𝑏) and 𝜙𝑑 (𝑢; 𝑏). In Section 3,
we show how to approximate𝑉 (𝑢; 𝑏), 𝜙𝑐 (𝑢; 𝑏) and 𝜙𝑑 (𝑢; 𝑏) by the COS method. In Section 4, we show
how to estimate those functions. The consistency properties for the estimators are studied in Section 5.
Finally, in Section 6, we present some numerical results to illustrate the performance of our method.

2. Some preliminaries

In this section, we recall some known results on the expected present value of dividend payments before
ruin and the expected discounted penalty functions. Throughout this paper, for any function 𝑓 defined
on the positive real line, we denote its Fourier transform and Laplace transform by

F 𝑓 (𝑠) =
∫ ∞

0
𝑒𝑖𝑠𝑥 𝑓 (𝑥) 𝑑𝑥, L 𝑓 (𝑠) =

∫ ∞

0
𝑒−𝑠𝑥 𝑓 (𝑥) 𝑑𝑥,

where 𝑠 is such that the above integrals are well defined.
Note that 𝑈∞

𝑡 is a spectrally negative Lévy process, and its Laplace exponent is defined by

𝜓𝑈 (𝑠) = 1
𝑡

ln 𝐸 [𝑒𝑠𝑈∞
𝑡 ] = 𝜎2

2
𝑠2 + 𝑐𝑠 − 𝜆(1 − L 𝑓𝑋 (𝑠)). (2.1)

For each 𝑞 ≥ 0, let

𝜌𝑞 = sup{𝑠 ≥ 0 : 𝜓𝑈 (𝑠) = 𝑞}

be the right inverse of 𝜓𝑈 . For the special case 𝑞 = 𝛿, we shall put 𝜌 = 𝜌𝛿 for simplicity.
For each 𝑞, 𝑥 ≥ 0, let 𝑊𝑞 (𝑥) denote the 𝑞-scale function associated with the process 𝑈∞

𝑡 , which is a
strictly increasing and continuous function with Laplace transform given by∫ ∞

0
𝑒−𝑠𝑥𝑊𝑞 (𝑥) 𝑑𝑥 =

1
𝜓𝑈 (𝑠) − 𝑞

, for 𝑠 > 𝜌𝑞 . (2.2)

We can extend 𝑊𝑞 to the whole real line by setting 𝑊𝑞 (𝑥) = 0 for 𝑥 < 0. The 𝑞-scale function and its
various extensions have many applications in the fields related to the spectrally negative Lévy processes.
For a thorough introduction to the 𝑞-scale function and some of its applications, we refer the interested
readers to the survey Kuznetsov et al. [13].

In our applications, it is useful to introduce the following auxiliary function,

ℎ(𝑥) :=
𝛿

𝜓 ′
𝑈 (𝜌) 𝑒

𝜌𝑥 − 𝛿𝑊𝛿 (𝑥), 𝑥 ∈ R. (2.3)

It follows from Zhang and Cui [30] that ℎ(𝑥) is the probability density function of the random variable
𝑈∞

0 −𝑈∞
e𝛿

, where e𝛿 , independent of 𝑈∞, denotes an exponential random variable with rate 𝛿 > 0.
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For the expected present value of total dividend payments before ruin, it follows from Albrecher and
Gerber [1] that

𝑉 (𝑢; 𝑏) = 𝑊𝛿 (𝑢)
𝑊

′
𝛿 (𝑏)

, 0 ≤ 𝑢 ≤ 𝑏. (2.4)

Then, by formula (2.9), in Xie and Zhang [27], we obtain

𝑉 (𝑢; 𝑏) = 𝛿/𝜓 ′
𝑈 (𝜌) − 𝑒−𝜌𝑢ℎ+(𝑢)

𝛿𝜌𝑒𝜌(𝑏−𝑢) /𝜓 ′
𝑈 (𝜌) − 𝑒−𝜌𝑢𝑔+(𝑏)

, 0 ≤ 𝑢 ≤ 𝑏, (2.5)

where

ℎ+(𝑥) =
{
ℎ(𝑥), 𝑥 ≥ 0,
0, 𝑥 < 0, 𝑔+(𝑥) =

{
ℎ′+ (𝑥), 𝑥 ≥ 0,
0, 𝑥 < 0.

Let 𝜏∞ = inf{𝑡 ≥ 0 : 𝑈∞
𝑡 ≤ 0} denote the ruin time of the model 𝑈∞, and accordingly define

𝜙𝑑 (𝑢;∞) = 𝐸 [𝑒−𝛿𝜏∞ 𝐼 (𝑈∞
𝜏∞ = 0, 𝜏∞ < ∞)|𝑈∞

0 = 𝑢], 𝑢 ≥ 0,
𝜙𝑐 (𝑢;∞) = 𝐸 [𝑒−𝛿𝜏∞𝑤(|𝑈∞

𝜏∞ |)𝐼 (𝑈∞
𝜏∞ < 0, 𝜏∞ < ∞)|𝑈∞

0 = 𝑢], 𝑢 ≥ 0,

to be the Laplace transform of ruin time when ruin is caused by the Brownian motion, and the expected
discounted penalty function when ruin is due to a claim. For the expected discounted penalty functions
𝜙𝑑 (𝑢; 𝑏) and 𝜙𝑐 (𝑢; 𝑏), they can be expressed via the dividends-penalty identities as follows,

𝜙𝑑 (𝑢; 𝑏) = 𝜙𝑑 (𝑢;∞) −𝑉 (𝑢; 𝑏)𝜙′
𝑑 (𝑏;∞), 0 ≤ 𝑢 ≤ 𝑏, (2.6)

𝜙𝑐 (𝑢; 𝑏) = 𝜙𝑐 (𝑢;∞) −𝑉 (𝑢; 𝑏)𝜙′
𝑐 (𝑏;∞), 0 ≤ 𝑢 ≤ 𝑏. (2.7)

For example, see Lin et al. [17].

3. The COS approximation

In this section, we shall use the COS method to approximate 𝑉 (𝑢; 𝑏), 𝜙𝑑 (𝑢; 𝑏) and 𝜙𝑐 (𝑢; 𝑏). Recall that
for an integrable function 𝑓 with a finite support [𝑎1, 𝑎2], it has the following cosine series expansion,

𝑓 (𝑥) =
∞∑′

𝑘=0
𝐴 𝑓 ,𝑘 cos

(
𝑘𝜋

𝑥 − 𝑎1

𝑎2 − 𝑎1

)
, (3.1)

where
∑′ denotes a summation with its first term weighted by a half, and the cosine coefficients are

given by

𝐴 𝑓 ,𝑘 =
2

𝑎2 − 𝑎1
Re

{∫ 𝑎2

𝑎1

𝑓 (𝑥) exp
(
𝑖𝑘𝜋

𝑥 − 𝑎1

𝑎2 − 𝑎1

)
𝑑𝑥

}
, 𝑘 = 0, 1, 2, . . . , (3.2)

where Re(·) means taking real part and 𝑖 =
√
−1 is the imaginary unit.

If 𝑓 is an integrable function supported on the positive real line [0,∞), we can expand 𝑓 on a closed
interval [0, 𝑎], and the COS method suggests that, for large enough 𝑎, the COS coefficients can be
approximated as follows,

𝐴 𝑓 ,𝑘 ≈ 𝐵 𝑓 ,𝑘 :=
2
𝑎

Re
{
F 𝑓

(
𝑘𝜋

𝑎

)}
, 𝑘 = 0, 1, 2, . . . . (3.3)
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Hence, we have

𝑓 (𝑥) ≈ 𝑓 (𝑥) :=
𝐾∑′

𝑘=0
𝐵 𝑓 ,𝑘 cos

(
𝑘𝜋

𝑥 − 𝑎1

𝑎2 − 𝑎1

)
, 𝑎1 ≤ 𝑥 ≤ 𝑎2, (3.4)

where 𝐾 is a large integer applied to truncate the infinite series.
The following lemma is proved in Xie and Zhang [27], which gives the approximation error for the

COS method.

Lemma 1. For real-valued integrable function 𝑓 supported on [0,∞), suppose that | 𝑓 ′(0+)| < ∞,
| 𝑓 ′(𝑎) | < ∞, and

∫ ∞
0 | 𝑓 ′′(𝑦) | 𝑑𝑦 < ∞. Then, for some positive constants 𝑐1 and 𝑐2, we have

sup
𝑥∈[0,𝑎]

| 𝑓 (𝑥) − 𝑓 (𝑥) | ≤ 𝑐1𝑎𝐾
−1 + 𝑐2𝐾𝑎−1

∫ ∞

𝑎

| 𝑓 (𝑦) | 𝑑𝑦. (3.5)

Remark 1. Lemma 1 shows that the uniform approximation error of the COS method in the interval
[0, 𝑎] depends on the parameters 𝑎 and 𝐾 . Note that the parameter 𝑎 is in fact an integration domain
truncation parameter in the COS method, which is used in the approximation of the COS coefficients
by the Fourier transform F 𝑓 . The parameter 𝐾 is used to truncate the COS series expansion formula.
Usually, large 𝐾 will result in good approximation. The upper bound in (3.5) consists of two terms. The
first error term 𝑎𝐾−1 means that larger 𝐾 can yields better approximation, but large 𝑎 may slow down
the convergence rate. Usually, we should choose an appropriate truncation parameter 𝑎 to effectively
capture the support of the objective function 𝑓 . In the literature, it is usually selected according to some
cumulant-based methods (see [9]). The second error term 𝐾𝑎−1

∫ ∞
𝑎

| 𝑓 (𝑦) | 𝑑𝑦 means that larger 𝑎 can
yield better approximation, since larger 𝑎 usually can result in more accurate approximation of the COS
coefficients. However, this error term is increasing w.r.t. 𝐾 , since larger 𝐾 means more COS coefficients
have to be approximated. Usually, the term 𝑎−1

∫ ∞
𝑎

| 𝑓 (𝑦) | 𝑑𝑦 can decay very fast w.r.t. 𝑎, especially
when the tail of the function 𝑓 converges to zero at the exponential rate. Overall, the first error can
dominate the second error. Hence, for a fixed parameter 𝑎, the approximation error in (3.5) can achieve
order 𝑂 (𝐾−1).

Remark 2. Usually, the decay rate of the COS coefficients depends heavily on the smoothness of the
objective function 𝑓 . If 𝑓 is infinitely times differentiable, the series {𝐴 𝑓 ,𝑘 } will show exponential
convergence; otherwise, it will yield algebraic convergence. See, for example, Fang and Oosterlee [9].
In our paper, note that the function 𝑓 that we approximate usually has support [0,∞), then using
integration by parts we can find that

𝐴 𝑓 ,𝑘 =
2𝑎
𝑘2𝜋2

{
𝑓 ′(𝑎) cos(𝑘𝜋) − 𝑓 ′(0+) −

∫ 𝑎

0
𝑓 ′′(𝑥) cos

(
𝑘𝜋

𝑥

𝑎

)
𝑑𝑥

}
,

which yields that 𝐴 𝑓 ,𝑘 = 𝑂 (𝑘−2) for fixed 𝑎. Furthermore, if 𝑓 is 2𝑛 times differentiable and 𝑓 (2𝑛) is
integrable, and 𝑓 ( 𝑗) (0+) = 0 for 𝑗 = 1, 3, . . . , 2𝑛 − 1, then repeatedly using integration by parts we can
prove that

𝐴 𝑓 ,𝑘 = 𝑂

(
𝑎−1

𝑛∑
𝑗=1

( 𝑎
𝑘

)2 𝑗
𝑓 (2 𝑗−1) (𝑎) + 𝑎2𝑛−1

𝑘2𝑛

)
.

Hence, if the derivatives 𝑓 (1) , 𝑓 (3) , . . . , 𝑓 (2𝑛−1) all have exponential decay rate, we can first choose large
𝑎 to ignore the term 𝑎−1 ∑𝑛

𝑗=1(𝑎/𝑘)2 𝑗 𝑓 (2 𝑗−1) (𝑎), then for such 𝑎, 𝐴 𝑓 ,𝑘 = 𝑂 (𝑘−2𝑛), which can further
lead to faster convergence for the COS approximation.
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Remark 3. Although faster convergence can be achieved under the additional conditions in Remark
2, these conditions are usually not satisfied by the functions in this paper. For example, the objective
functions to be approximated in this paper may take the form of exponential functions or their finite
mixture, and we can only obtain algebraic convergence. However, in this case, spectral filters can be
applied to accelerate the convergence rate according to Ruĳter et al. [18]. Recall that filtering is carried
out in Fourier space and the idea is to pre-multiply the expansion coefficients by a decreasing function. It
should be noted that filtering does not add any significant computational costs, and usually can improve
the algebraic convergence. In Section 6, we shall illustrate more details on filtering.

In order to use the COS method to approximate 𝑉 (𝑢; 𝑏), we should first approximate ℎ+ and 𝑔+. It
follows from Xie and Zhang [27] that

Lℎ+(𝑠) = 𝛿

𝜓 ′
𝑈 (𝜌) ·

1
𝑠 − 𝜌

− 𝛿

𝜓𝑈 (𝑠) − 𝛿
, 𝑠 ≠ 𝜌, (3.6)

and

F ℎ+(𝑠) = Lℎ+(−𝑖𝑠) = 𝛿

𝜓 ′
𝑈 (𝜌) ·

1
−𝑖𝑠 − 𝜌

− 𝛿

𝜓𝑈 (−𝑖𝑠) − 𝛿
, 𝑠 ∈ R. (3.7)

Since 𝑊𝛿 (0) = 0 as 𝜎 > 0, we have from (2.3) that ℎ+(0) = 𝛿/𝜓 ′
𝑈 (𝜌), and this yields

L𝑔+(𝑠) = 𝑠Lℎ+(𝑠) − ℎ+(0) = 𝛿

𝜓 ′
𝑈 (𝜌) ·

𝜌

𝑠 − 𝜌
− 𝛿𝑠

𝜓𝑈 (𝑠) − 𝛿
, 𝑠 ≠ 𝜌, (3.8)

and

F 𝑔+(𝑠) = L𝑔+(−𝑖𝑠) = 𝛿

𝜓 ′
𝑈 (𝜌) ·

𝜌

−𝑖𝑠 − 𝜌
+ 𝑖𝛿𝑠

𝜓𝑈 (−𝑖𝑠) − 𝛿
, 𝑠 ∈ R. (3.9)

Now using the closed-form Fourier transforms F ℎ+(𝑠) and F 𝑔+(𝑠), the functions ℎ+ and 𝑔+ can be
approximated by the COS method as follows,

ℎ+(𝑥) ≈ ℎ̃+(𝑥) :=
𝐾∑′

𝑘=0
𝐵ℎ+ ,𝑘 cos

(
𝑘𝜋

𝑥

𝑎

)
, 0 ≤ 𝑥 ≤ 𝑎, (3.10)

and

𝑔+(𝑥) ≈ �̃�+(𝑥) :=
𝐾∑′

𝑘=0
𝐵𝑔+ ,𝑘 cos

(
𝑘𝜋

𝑥

𝑎

)
, 0 ≤ 𝑥 ≤ 𝑎, (3.11)

where the COS coefficients are given by

𝐵ℎ+ ,𝑘 :=
2
𝑎

Re
{
F ℎ+

(
𝑘𝜋

𝑎

)}
, 𝐵𝑔+ ,𝑘 :=

2
𝑎

Re
{
F 𝑔+

(
𝑘𝜋

𝑎

)}
, 𝑘 = 0, 1, . . . . (3.12)

As for the expected present value of dividend payments before ruin, using formula (2.5) we can
approximate it as follows,

𝑉 (𝑢; 𝑏) ≈ �̃� (𝑢; 𝑏) :=
𝛿/𝜓 ′

𝑈 (𝜌) − 𝑒−𝜌𝑢 ℎ̃+(𝑢)
𝛿𝜌𝑒𝜌(𝑏−𝑢) /𝜓 ′

𝑈 (𝜌) − 𝑒−𝜌𝑢 �̃�+(𝑏)
, 0 ≤ 𝑢 ≤ 𝑏, (3.13)

where we take 𝑎 > 𝑏.
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Remark 4. Suppose that |ℎ′(0+)| < ∞, |ℎ′′(0+)| < ∞, |ℎ′(𝑎) | < ∞, |ℎ′′(𝑎) | < ∞ and∫ ∞

0
|ℎ′′(𝑦) | 𝑑𝑦 < ∞,

∫ ∞

0
|ℎ′′′(𝑦) | 𝑑𝑦 < ∞.

Furthermore, let 𝐶 be a positive generic constant that may vary at different steps. Then by Lemma 1 we
can obtain

|�̃� (𝑢; 𝑏) −𝑉 (𝑢; 𝑏) | ≤ 𝐶 · Eℎ (𝑎, 𝐾), (3.14)

where

Eℎ (𝑎, 𝐾) = 𝑎𝐾−1 + 𝐾𝑎−1
∫ ∞

𝑎

ℎ(𝑦) 𝑑𝑦 + 𝐾𝑎−1
∫ ∞

𝑎

|ℎ′(𝑦) | 𝑑𝑦. (3.15)

Next, we consider how to use the COS method to approximate the expected discounted penalty
functions 𝜙𝑑 (𝑢; 𝑏) and 𝜙𝑐 (𝑢; 𝑏). To this end, we use the dividends-penalty identities given in (2.6) and
(2.7). It is easily seen that we should use the COS method to approximate 𝜙𝑑 (𝑢;∞), 𝜙𝑐 (𝑢;∞) and their
first-order derivatives.

For 𝜙𝑑 (𝑢;∞), by Zhang [29], we know that its Laplace transform and Fourier transform are given by

L𝜙𝑑 (𝑠;∞) = (𝜎2/2)(𝑠 − 𝜌)
𝜓𝑈 (𝑠) − 𝛿

, F 𝜙𝑑 (𝑠;∞) = (𝜎2/2)(−𝑖𝑠 − 𝜌)
𝜓𝑈 (−𝑖𝑠) − 𝛿

. (3.16)

Then, the Laplace transform of the derivative 𝜙′
𝑑 (𝑢;∞) is given by

L𝜙′
𝑑 (𝑠;∞) = 𝑠L𝜙𝑑 (𝑠;∞) − 𝜙𝑑 (0;∞) = 𝛿 − (𝑐 + 𝜎2/2𝜌)𝑠 + 𝜆[1 − L 𝑓𝑋 (𝑠)]

𝜓𝑈 (𝑠) − 𝛿
, (3.17)

from which we obtain

F 𝜙′
𝑑 (𝑠;∞) = L𝜙′

𝑑 (−𝑖𝑠;∞) = 𝛿 + (𝑐 + (𝜎2/2)𝜌)𝑖𝑠 + 𝜆[1 − F 𝑓𝑋 (𝑠)]
𝜓𝑈 (−𝑖𝑠) − 𝛿

. (3.18)

For 𝜙𝑐 (𝑢;∞), its Laplace transform and Fourier transform are given by

L𝜙𝑐 (𝑠;∞) = 𝜆[L𝜔(𝜌) − L𝜔(𝑠)]
𝜓𝑈 (𝑠) − 𝛿

, F 𝜙𝑐 (𝑠;∞) = 𝜆[L𝜔(𝜌) − F𝜔(𝑠)]
𝜓𝑈 (−𝑖𝑠) − 𝛿

, (3.19)

where 𝜔(𝑢) =
∫ ∞
𝑢

𝑤(𝑥 − 𝑢) 𝑓𝑋 (𝑥) 𝑑𝑥, 𝑢 ≥ 0. Furthermore, since 𝜙𝑐 (0;∞) = 0, we have

L𝜙′
𝑐 (𝑠;∞) = 𝑠L𝜙𝑐 (𝑠;∞) = 𝜆𝑠[L𝜔(𝜌) − L𝜔(𝑠)]

𝜓𝑈 (𝑠) − 𝛿
(3.20)

and

F 𝜙′
𝑐 (𝑠;∞) = L𝜙′

𝑐 (−𝑖𝑠;∞) = −𝜆𝑖𝑠[L𝜔(𝜌) − F𝜔(𝑠)]
𝜓𝑈 (−𝑖𝑠) − 𝛿

. (3.21)

Now, using the COS method, we have

𝜙𝑑 (𝑢;∞) ≈ 𝜙𝑑 (𝑢;∞) :=
𝐾∑′

𝑘=0
𝐵𝜙𝑑 ,𝑘 cos

(
𝑘𝜋

𝑢

𝑎

)
, 0 ≤ 𝑢 ≤ 𝑎, (3.22)

𝜙𝑐 (𝑢;∞) ≈ 𝜙𝑐 (𝑢;∞) :=
𝐾∑′

𝑘=0
𝐵𝜙𝑐 ,𝑘 cos

(
𝑘𝜋

𝑢

𝑎

)
, 0 ≤ 𝑢 ≤ 𝑎, (3.23)
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𝜙′
𝑑 (𝑢;∞) ≈ 𝜙′

𝑑 (𝑢;∞) :=
𝐾∑′

𝑘=0
𝐵𝜙′

𝑑 ,𝑘
cos

(
𝑘𝜋

𝑢

𝑎

)
, 0 ≤ 𝑢 ≤ 𝑎, (3.24)

𝜙′
𝑐 (𝑢;∞) ≈ 𝜙′

𝑐 (𝑢;∞) :=
𝐾∑′

𝑘=0
𝐵𝜙′

𝑐 ,𝑘 cos
(
𝑘𝜋

𝑢

𝑎

)
, 0 ≤ 𝑢 ≤ 𝑎, (3.25)

where, for 𝑘 = 0, 1, . . ., the COS coefficients are given by

𝐵𝜙𝑑 ,𝑘 :=
2
𝑎

Re
{
F 𝜙𝑑

(
𝑘𝜋

𝑎
;∞

)}
, 𝐵𝜙𝑐 ,𝑘 :=

2
𝑎

Re
{
F 𝜙𝑐

(
𝑘𝜋

𝑎
;∞

)}
, (3.26)

𝐵𝜙′
𝑑 ,𝑘

:=
2
𝑎

Re
{
F 𝜙′

𝑑

(
𝑘𝜋

𝑎
;∞

)}
, 𝐵𝜙′

𝑐 ,𝑘 :=
2
𝑎

Re
{
F 𝜙′

𝑐

(
𝑘𝜋

𝑎
;∞

)}
. (3.27)

Finally, by the dividends-penalty identities (2.6) and (2.7), we obtain

𝜙𝑑 (𝑢; 𝑏) = 𝜙𝑑 (𝑢;∞) − �̃� (𝑢; 𝑏)𝜙′
𝑑 (𝑏;∞), 0 ≤ 𝑢 ≤ 𝑏, (3.28)

and

𝜙𝑐 (𝑢; 𝑏) = 𝜙𝑐 (𝑢;∞) − �̃� (𝑢; 𝑏)𝜙′
𝑐 (𝑏;∞), 0 ≤ 𝑢 ≤ 𝑏. (3.29)

Remark 5. Again, the approximating error can be obtained by Lemma 1. Suppose all the conditions in
Remark 4 hold true. Furthermore, suppose that |𝜙′

𝑑 (0+;∞)| < ∞, |𝜙′′
𝑑 (0+;∞)| < ∞, |𝜙′

𝑑 (𝑎;∞)| < ∞,
|𝜙′′

𝑑 (𝑎;∞)| < ∞ and ∫ ∞

0
|𝜙′′

𝑑 (𝑢;∞)| 𝑑𝑢 < ∞,

∫ ∞

0
|𝜙′′′

𝑑 (𝑢;∞)| 𝑑𝑢 < ∞,

then we can obtain from Lemma 1 and Remark 4 that

|𝜙𝑑 (𝑢; 𝑏) − 𝜙𝑑 (𝑢; 𝑏) | ≤ 𝐶 · (E𝜙𝑑
(𝑎, 𝐾) + Eℎ (𝑎, 𝐾)), (3.30)

where Eℎ (𝑎, 𝐾) is defined in (3.15), and

E𝜙𝑑
(𝑎, 𝐾) = 𝑎𝐾−1 + 𝐾𝑎−1

∫ ∞

𝑎

𝜙𝑑 (𝑢;∞) 𝑑𝑢 + 𝐾𝑎−1
∫ ∞

𝑎

|𝜙′
𝑑 (𝑢;∞)| 𝑑𝑢. (3.31)

Similarly, suppose that |𝜙′
𝑐 (0+;∞)| < ∞, |𝜙′′

𝑐 (0+;∞)| < ∞, |𝜙′
𝑐 (𝑎;∞)| < ∞, |𝜙′′

𝑐 (𝑎;∞)| < ∞ and∫ ∞

0
|𝜙′′

𝑐 (𝑢;∞)|𝑑𝑢 < ∞,

∫ ∞

0
|𝜙′′′

𝑐 (𝑢;∞)| 𝑑𝑢 < ∞.

Then, we can obtain

|𝜙𝑐 (𝑢; 𝑏) − 𝜙𝑐 (𝑢; 𝑏) | ≤ 𝐶 · (E𝜙𝑐
(𝑎, 𝐾) + Eℎ (𝑎, 𝐾)), (3.32)

where

E𝜙𝑐
(𝑎, 𝐾) = 𝑎𝐾−1 + 𝐾𝑎−1

∫ ∞

𝑎

𝜙𝑐 (𝑢;∞) 𝑑𝑢 + 𝐾𝑎−1
∫ ∞

𝑎

|𝜙′
𝑐 (𝑢;∞)| 𝑑𝑢. (3.33)
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4. The estimation method

In this section, we show how to estimate 𝑉 (𝑢; 𝑏), 𝜙𝑑 (𝑢; 𝑏) and 𝜙𝑐 (𝑢; 𝑏) from a random sample on the
surplus process. We assume that the premium rate 𝑐 is known, but the Poisson intensity 𝜆, the claim
size density function 𝑓𝑋 and the diffusion parameter 𝜎 are all unknown.

Suppose that the surplus process can be observed in the long time interval [0, 𝑇], and the following
random sample on the claim number and individual claim sizes during [0, 𝑇] is available,

{𝑛𝑇 , 𝑋1, . . . , 𝑋𝑛𝑇 },

where 𝑛𝑇 denotes the number of claims received up to time 𝑇 and it is assumed to be strictly positive
w.l.o.g. In addition, suppose that the surplus process 𝑈𝑏

𝑡 , the aggregate claims process 𝑆𝑡 and the
aggregate dividends process 𝐷 (𝑡) can be observed at a sequence of discrete time points so that the
following sample is available

{(𝑈𝑏
𝑘Δ, 𝑆𝑘Δ, 𝐷 (𝑘Δ)) : 𝑘 = 0, 1, 2, . . . , 𝑛},

where Δ > 0 is a fixed sampling step satisfying 𝑛Δ = 𝑇 .
First, we use formula (3.13) to propose an estimator for the expected present value of dividend

payments before ruin. It is easily seen that we need to estimate the following quantities,

𝜌, 𝜓 ′
𝑈 , ℎ̃+, �̃�+.

Since 𝜌 is the positive root of equation 𝜓𝑈 (𝑠) = 𝛿, we should estimate the Laplace exponent 𝜓𝑈 (𝑠)
by formula (2.1). We estimate the Poisson intensity by �̂� = 𝑛𝑇 /𝑇 , and estimate the Laplace transform
L 𝑓𝑋 (𝑠) by L̂ 𝑓 𝑋 (𝑠) = (1/𝑛𝑇 )

∑𝑛𝑇
𝑗=1 𝑒

−𝑠𝑋 𝑗 . It remains to estimate the diffusion parameter 𝜎. Since
𝑈𝑏
𝑡 = 𝑈∞

𝑡 − 𝐷 (𝑡), then we have

𝜎𝐵𝑡 = 𝑈∞
𝑡 − 𝑢 − 𝑐𝑡 + 𝑆𝑡 = 𝑈𝑏

𝑡 + 𝐷 (𝑡) + 𝑆𝑡 − 𝑢 − 𝑐𝑡.

For 𝑘 = 1, . . . , 𝑛, set

𝑍𝑘 = [𝑈𝑏
𝑘Δ −𝑈𝑏

(𝑘−1)Δ] + [𝐷 (𝑘Δ) − 𝐷 ((𝑘 − 1)Δ)] + [𝑆𝑘Δ − 𝑆 (𝑘−1)Δ] − 𝑐Δ,

which are available since the premium rate 𝑐 is known. Now, we estimate 𝜎2 by

�̂�2 =
1
𝑛Δ

𝑛∑
𝑘=1

𝑍2
𝑘 .

It is easily seen that �̂�, L̂ 𝑓 𝑋 (𝑠) and �̂�2 are all unbiased estimators. Now using these estimators, we can
estimate the Laplace exponent 𝜓𝑈 (𝑠) and its derivative 𝜓 ′

𝑈 (𝑠) as follows,

�̂�𝑈 (𝑠) = �̂�2

2
𝑠2 + 𝑐𝑠 − �̂�(1 − L̂ 𝑓 𝑋 (𝑠)),

�̂� ′
𝑈 (𝑠) = �̂�2𝑠 + 𝑐 − 1

𝑇

𝑛𝑇∑
𝑗=1

𝑋 𝑗𝑒
−𝑠𝑋 𝑗 .

Since 𝜌 is the positive root of equation 𝜓𝑈 (𝑠) = 𝛿, we define its estimator, denoted by �̂�, to be the
positive root of the following estimating equation

�̂�𝑈 (𝑠) = 𝛿. (4.1)

Then, we can estimate 𝜓 ′
𝑈 (𝜌) by �̂� ′

𝑈 ( �̂�).
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In order to estimate ℎ̃+ and �̃�+, we should first estimate the Fourier transforms F ℎ+(𝑠) and F 𝑔+(𝑠).
It follows from (3.7) and (3.9) that they can be estimated by the following estimators

F̂ ℎ+(𝑠) = 𝛿

�̂� ′
𝑈 ( �̂�) ·

1
−𝑖𝑠 − �̂�

− 𝛿

�̂�𝑈 (−𝑖𝑠) − 𝛿
, 𝑠 ∈ R, (4.2)

F̂ 𝑔+(𝑠) =
𝛿

�̂� ′
𝑈 ( �̂�) ·

�̂�

−𝑖𝑠 − �̂�
+ 𝑖𝛿𝑠

�̂�𝑈 (−𝑖𝑠) − 𝛿
, 𝑠 ∈ R. (4.3)

Then, using formulas (3.10) and (3.11), we propose the following estimators for ℎ̃+ and �̃�+,

∗ ℎ̂+(𝑥) :=
𝐾∑′

𝑘=0
�̂�ℎ+ ,𝑘 cos

(
𝑘𝜋

𝑥

𝑎

)
, 0 ≤ 𝑥 ≤ 𝑎, (4.4)

and

�̂�+(𝑥) :=
𝐾∑′

𝑘=0
�̂�𝑔+ ,𝑘 cos

(
𝑘𝜋

𝑥

𝑎

)
, 0 ≤ 𝑥 ≤ 𝑎, (4.5)

where the COS coefficients are given by

�̂�ℎ+ ,𝑘 :=
2
𝑎

Re
{
F̂ ℎ+

(
𝑘𝜋

𝑎

)}
, �̂�𝑔+ ,𝑘 :=

2
𝑎

Re
{
F̂ 𝑔+

(
𝑘𝜋

𝑎

)}
, 𝑘 = 0, 1, . . . . (4.6)

Now, using formula (3.13), we obtain the following estimator of 𝑉 (𝑢; 𝑏),

�̂� (𝑢; 𝑏) :=
𝛿/�̂� ′

𝑈 ( �̂�) − 𝑒−�̂�𝑢 ℎ̂+(𝑢)
𝛿�̂�𝑒�̂�(𝑏−𝑢) /�̂� ′

𝑈 ( �̂�) − 𝑒−�̂�𝑢 �̂�+(𝑏)
, 0 ≤ 𝑢 ≤ 𝑏 < 𝑎. (4.7)

Next, we consider how to estimate the expected discounted penalty function 𝜙𝑑 (𝑢; 𝑏). To this end,
we shall use the dividends-penalty identity (2.6). Note that the Fourier transform of 𝜙𝑑 (𝑢;∞) and its
derivative can be estimated by

F̂ 𝜙𝑑 (𝑠;∞) = (�̂�2/2)(−𝑖𝑠 − �̂�)
�̂�𝑈 (−𝑖𝑠) − 𝛿

, F̂ 𝜙
′
𝑑 (𝑠;∞) = 𝛿 + (𝑐 + (�̂�2/2) �̂�)𝑖𝑠 + �̂�[1 − F̂ 𝑓 𝑋 (𝑠)]

�̂�𝑈 (−𝑖𝑠) − 𝛿
. (4.8)

So we can estimate 𝜙𝑑 (𝑢;∞) and 𝜙′
𝑑 (𝑢;∞) as follows,

𝜙𝑑 (𝑢;∞) :=
𝐾∑′

𝑘=0
�̂�𝜙𝑑 ,𝑘 cos

(
𝑘𝜋

𝑢

𝑎

)
, 𝜙′

𝑑 (𝑢;∞) :=
𝐾∑′

𝑘=0
�̂�𝜙′

𝑑 ,𝑘
cos

(
𝑘𝜋

𝑢

𝑎

)
, 0 ≤ 𝑢 ≤ 𝑎, (4.9)

where, for 𝑘 = 0, 1, . . . ,

�̂�𝜙𝑑 ,𝑘 :=
2
𝑎

Re
{
F̂ 𝜙𝑑

(
𝑘𝜋

𝑎
;∞

)}
, �̂�𝜙′

𝑑 ,𝑘
:=

2
𝑎

Re
{
F̂ 𝜙

′
𝑑

(
𝑘𝜋

𝑎
;∞

)}
. (4.10)

By the dividends-penalty identity (2.6), we propose the following estimator for 𝜙𝑑 (𝑢; 𝑏),

𝜙𝑑 (𝑢; 𝑏) = 𝜙𝑑 (𝑢;∞) − �̂� (𝑢; 𝑏)𝜙′
𝑑 (𝑏;∞), 0 ≤ 𝑢 ≤ 𝑏. (4.11)
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Finally, we estimate the expected discounted penalty function 𝜙𝑐 (𝑢; 𝑏). It is easily seen that

L𝜔(𝑠) =
∫ ∞

0

∫ 𝑥

0
𝑒−𝑠𝑢𝑤(𝑥 − 𝑢) 𝑑𝑢 𝑓𝑋 (𝑥) 𝑑𝑥, F𝜔(𝑠) =

∫ ∞

0

∫ 𝑥

0
𝑒𝑖𝑠𝑢𝑤(𝑥 − 𝑢) 𝑑𝑢 𝑓𝑋 (𝑥) 𝑑𝑥,

from which we obtain the following estimators for L𝜔(𝜌) and F𝜔(𝑠),

L̂𝜔( �̂�) = 1
𝑛𝑇

𝑛𝑇∑
𝑗=1

∫ 𝑋 𝑗

0
𝑒−�̂�𝑢𝑤(𝑋 𝑗 − 𝑢) 𝑑𝑢, F̂𝜔(𝑠) = 1

𝑛𝑇

𝑛𝑇∑
𝑗=1

∫ 𝑋 𝑗

0
𝑒𝑖𝑠𝑢𝑤(𝑋 𝑗 − 𝑢) 𝑑𝑢. (4.12)

Now the Fourier transforms F 𝜙𝑐 (𝑠;∞) and F 𝜙′
𝑐 (𝑠;∞) can be estimated by

F̂ 𝜙𝑐 (𝑠;∞) = �̂�[L̂𝜔( �̂�) − F̂𝜔(𝑠)]
�̂�𝑈 (−𝑖𝑠) − 𝛿

, F̂ 𝜙
′
𝑐 (𝑠;∞) = −�̂�𝑖𝑠[L̂𝜔( �̂�) − F̂𝜔(𝑠)]

�̂�𝑈 (−𝑖𝑠) − 𝛿
. (4.13)

Then 𝜙𝑐 (𝑢;∞) and 𝜙′
𝑐 (𝑢;∞) are estimated as follows,

𝜙𝑐 (𝑢;∞) :=
𝐾∑′

𝑘=0
�̂�𝜙𝑐 ,𝑘 cos

(
𝑘𝜋

𝑢

𝑎

)
, 𝜙′

𝑐 (𝑢;∞) :=
𝐾∑′

𝑘=0
�̂�𝜙′

𝑐 ,𝑘 cos
(
𝑘𝜋

𝑢

𝑎

)
, 0 ≤ 𝑢 ≤ 𝑎, (4.14)

where, for 𝑘 = 0, 1, . . . ,

�̂�𝜙𝑐 ,𝑘 :=
2
𝑎

Re
{
F̂ 𝜙𝑐

(
𝑘𝜋

𝑎
;∞

)}
, �̂�𝜙′

𝑐 ,𝑘 :=
2
𝑎

Re
{
F̂ 𝜙

′
𝑐

(
𝑘𝜋

𝑎
;∞

)}
. (4.15)

By the dividends-penalty identity (2.7), we propose the following estimator for 𝜙𝑐 (𝑢; 𝑏),

𝜙𝑐 (𝑢; 𝑏) = 𝜙𝑐 (𝑢;∞) − �̂� (𝑢; 𝑏)𝜙′
𝑐 (𝑏;∞), 0 ≤ 𝑢 ≤ 𝑏 < 𝑎. (4.16)

5. Consistency properties

In this section, we derive the consistency properties of our estimators when the observation interval
[0, 𝑇] is very large. First, it is easily seen that

�̂� − 𝜆 = 𝑂 𝑝 (𝑇−1/2), �̂�2 − 𝜎2 = 𝑂 𝑝 (𝑇−1/2).

Here, the notation 𝑂 𝑝 (1) denotes a sequence that is bounded in probability; or more generally in our
paper, for a given sequence of {𝑅𝑇 ,𝐾 ,𝑎}, 𝑂 𝑝 (𝑅𝑇 ,𝐾 ,𝑎) denotes a sequence that is bounded in probability
at rate 𝑅𝑇 ,𝐾 ,𝑎. The following result on the estimator �̂� is also well known. See, for example, Zhang [29].

Lemma 2. Suppose that 𝑐 > 𝜆𝐸𝑋 and 𝐸𝑋2 < ∞, then for each 𝛿 > 0, we have �̂� − 𝜌 = 𝑂 𝑝 (𝑇−1/2).

Suppose the conditions in Lemma 2 hold true. For the estimator �̂� ′
𝑈 ( �̂�), note that

�̂� ′
𝑈 ( �̂�) − 𝜓 ′

𝑈 (𝜌) = (�̂�2 �̂� − 𝜎2𝜌) −
(

1
𝑇

𝑛𝑇∑
𝑗=1

𝑋 𝑗𝑒
−�̂�𝑋 𝑗 − 𝜆𝐸 [𝑋𝑒−𝜌𝑋 ]

)
. (5.1)

Lemma 2 and �̂�2 −𝜎2 = 𝑂 𝑝 (𝑇−1/2) imply that (�̂�2 �̂� −𝜎2𝜌) = 𝑂 𝑝 (𝑇−1/2). By Proposition 4 in Xie and
Zhang [27], we obtain

1
𝑇

𝑛𝑇∑
𝑗=1

𝑋 𝑗𝑒
−�̂�𝑋 𝑗 − 𝜆𝐸 [𝑋𝑒−𝜌𝑋 ] = 𝑂 𝑝 (𝑇−1/2).
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Hence, it follows from (5.1) that

�̂� ′
𝑈 ( �̂�) − 𝜓 ′

𝑈 (𝜌) = 𝑂 𝑝 (𝑇−1/2). (5.2)

Recall that 𝜌 is the root of equation 𝜓𝑈 (𝑠) = 𝛿, then we have

𝜓𝑈 (−𝑖𝑠) − 𝛿 = 𝜓𝑈 (−𝑖𝑠) − 𝜓𝑈 (𝜌)

= (−𝑖𝑠 − 𝜌)
(
𝜎2

2
(−𝑖𝑠 + 𝜌) + 𝑐 − 𝜆

L 𝑓𝑋 (−𝑖𝑠) − L 𝑓𝑋 (𝜌)
−𝑖𝑠 − 𝜌

)
= (−𝑖𝑠 − 𝜌)𝑙 (𝑠), (5.3)

where 𝑙 (𝑠) = (𝜎2/2)(−𝑖𝑠 + 𝜌) + 𝑐 + 𝜆
∫ ∞

0 𝑒𝑖𝑠𝑥
∫ 𝑥

0 𝑒−(𝜌+𝑖𝑠)𝑦 𝑑𝑦 𝑓𝑋 (𝑥) 𝑑𝑥. Note that

|𝑙 (𝑠) | ≥
����𝜎2

2
(−𝑖𝑠 + 𝜌) + 𝑐

���� −
����𝜆 ∫ ∞

0
𝑒𝑖𝑠𝑥

∫ 𝑥

0
𝑒−(𝜌+𝑖𝑠)𝑦 𝑑𝑦 𝑓𝑋 (𝑥) 𝑑𝑥

����
≥

����𝜎2

2
(−𝑖𝑠 + 𝜌) + 𝑐

���� − 𝜆𝐸𝑋 (5.4)

≥ 𝜎2

2
𝜌 + 𝑐 − 𝜆𝐸𝑋 > 𝑐 − 𝜆𝐸𝑋 > 0. (5.5)

Similarly, since �̂� is the root of equation �̂�𝑈 (𝑠) = 𝛿, we have

�̂�𝑈 (−𝑖𝑠) − 𝛿 = (−𝑖𝑠 − �̂�)
(
�̂�2

2
(−𝑖𝑠 + �̂�) + 𝑐 − �̂�

L̂ 𝑓 𝑋 (−𝑖𝑠) − L̂ 𝑓 𝑋 ( �̂�)
−𝑖𝑠 − �̂�

)
= (−𝑖𝑠 − �̂�)𝑙 (𝑠), (5.6)

where 𝑙 (𝑠) = (�̂�2/2)(−𝑖𝑠 + �̂�) + 𝑐 + (1/𝑇)∑𝑛𝑇
𝑗=1 𝑒

𝑖𝑠𝑋 𝑗

∫ 𝑋 𝑗

0 𝑒−(�̂�+𝑖𝑠)𝑦 𝑑𝑦. Furthermore, note that

𝑙 (𝑠) ≥
���� �̂�2

2
(−𝑖𝑠 + �̂�) + 𝑐

���� −
����� 1𝑇

𝑛𝑇∑
𝑗=1

𝑒𝑖𝑠𝑋 𝑗

∫ 𝑋 𝑗

0
𝑒−(�̂�+𝑖𝑠)𝑦 𝑑𝑦

�����
≥

���� �̂�2

2
(−𝑖𝑠 + �̂�) + 𝑐

���� − 1
𝑇

𝑛𝑇∑
𝑗=1

𝑋 𝑗 (5.7)

≥ �̂�2

2
�̂� + 𝑐 − 1

𝑇

𝑛𝑇∑
𝑗=1

𝑋 𝑗 > 𝑐 − 1
𝑇

𝑛𝑇∑
𝑗=1

𝑋 𝑗 , (5.8)

which together with (5.6) gives

|�̂�𝑈 (−𝑖𝑠) − 𝛿 | ≥ |𝑖𝑠 + �̂� | ·
(
𝑐 − 1

𝑇

𝑛𝑇∑
𝑗=1

𝑋 𝑗

)
. (5.9)

The following lemma shows the uniform convergence of 1/(�̂�𝑈 (−𝑖𝑠) − 𝛿) and 𝑠/(�̂�𝑈 (−𝑖𝑠) − 𝛿),
which plays an important role in studying the convergence of our estimators.
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Lemma 3. Suppose that 𝑐 > 𝜆𝐸𝑋 , 𝐸𝑋2 < ∞ and 𝑎 = 𝑜(𝐾). Then, we have

sup
𝑠∈S

���� 1
�̂�𝑈 (−𝑖𝑠) − 𝛿

− 1
𝜓𝑈 (−𝑖𝑠) − 𝛿

���� = 𝑂 𝑝

(√
log(𝐾/𝑎)

𝑇

)
(5.10)

and

sup
𝑠∈S

���� 𝑠

�̂�𝑈 (−𝑖𝑠) − 𝛿
− 𝑠

𝜓𝑈 (−𝑖𝑠) − 𝛿

���� = 𝑂 𝑝

(√
log(𝐾/𝑎)

𝑇

)
. (5.11)

Proof. First, we study the uniform convergence of 1/(�̂�𝑈 (−𝑖𝑠) − 𝛿). By (5.3) and (5.5), we have for
any real number 𝑠,

|𝜓𝑈 (−𝑖𝑠) − 𝛿 | ≥ |𝑖𝑠 + 𝜌 | · [𝑐 − 𝜆𝐸𝑋], (5.12)

and by (5.6) and (5.8) we have for any real number 𝑠,

|�̂�𝑈 (−𝑖𝑠) − 𝛿 | ≥ |𝑖𝑠 + �̂� | ·
(
𝑐 − 1

𝑇

𝑛𝑇∑
𝑗=1

𝑋 𝑗

)
. (5.13)

Recall the condition 𝑐 > 𝜆𝐸𝑋 . In the remainder of this proof, suppose that 𝑐− (1/𝑇)∑𝑛𝑇
𝑗=1 𝑋 𝑗 > 0, since

(1/𝑇)∑𝑛𝑇
𝑗=1 𝑋 𝑗 converges to 𝜆𝐸𝑋 a.s.

Now using (5.12) and (5.13) and the following result

𝜓𝑈 (−𝑖𝑠) − �̂�𝑈 (−𝑖𝑠) =
(
𝜎2

2
− �̂�2

2

)
(−𝑖𝑠)2 − (𝜆 − �̂�) + 𝜆L 𝑓𝑋 (−𝑖𝑠) − �̂�L̂ 𝑓 𝑋 (−𝑖𝑠)

=
1
2
(�̂�2 − 𝜎2)𝑠2 + (�̂� − 𝜆) −

(
1
𝑇

𝑛𝑇∑
𝑗=1

𝑒𝑖𝑠𝑋 𝑗 − 𝜆𝐸𝑒𝑖𝑠𝑋

)
, (5.14)

we can obtain

sup
𝑠∈S

���� 1
�̂�𝑈 (−𝑖𝑠) − 𝛿

− 1
𝜓𝑈 (−𝑖𝑠) − 𝛿

����
= sup

𝑠∈S

|𝜓𝑈 (−𝑖𝑠) − �̂�𝑈 (−𝑖𝑠) |
|𝜓𝑈 (−𝑖𝑠) − 𝛿 | · |�̂�𝑈 (−𝑖𝑠) − 𝛿 |

≤ sup
𝑠∈S

| 12 (�̂�2 − 𝜎2)𝑠2 + (�̂� − 𝜆) − ((1/𝑇)∑𝑛𝑇
𝑗=1 𝑒

𝑖𝑠𝑋 𝑗 − 𝜆𝐸𝑒𝑖𝑠𝑋 ) |
|𝑖𝑠 + 𝜌 | · |𝑖𝑠 + �̂� | · (𝑐 − 𝜆𝐸𝑋) · (𝑐 − (1/𝑇)∑𝑛𝑇

𝑗=1 𝑋 𝑗 )

≤ sup
𝑠∈S

�� 1
2 (�̂�2 − 𝜎2)𝑠2

��
|𝑖𝑠 + 𝜌 | · |𝑖𝑠 + �̂� | · (𝑐 − 𝜆𝐸𝑋) · (𝑐 − (1/𝑇)∑𝑛𝑇

𝑗=1 𝑋 𝑗 )

+ sup
𝑠∈S

|(�̂� − 𝜆) − ((1/𝑇)∑𝑛𝑇
𝑗=1 𝑒

𝑖𝑠𝑋 𝑗 − 𝜆𝐸𝑒𝑖𝑠𝑋 ) |
|𝑖𝑠 + 𝜌 | · |𝑖𝑠 + �̂� | · (𝑐 − 𝜆𝐸𝑋) · (𝑐 − (1/𝑇)∑𝑛𝑇

𝑗=1 𝑋 𝑗 )

≤
1
2 |�̂�2 − 𝜎2 |

(𝑐 − 𝜆𝐸𝑋) · (𝑐 − (1/𝑇)∑𝑛𝑇
𝑗=1 𝑋 𝑗 )

+
sup𝑠∈S |(�̂� − 𝜆) − ((1/𝑇)∑𝑛𝑇

𝑗=1 𝑒
𝑖𝑠𝑋 𝑗 − 𝜆𝐸𝑒𝑖𝑠𝑋 ) |

𝜌�̂� · (𝑐 − 𝜆𝐸𝑋) · (𝑐 − (1/𝑇)∑𝑛𝑇
𝑗=1 𝑋 𝑗)

. (5.15)

The convergence rate �̂�2 − 𝜎2 = 𝑂 𝑝 (𝑇−1/2) implies that

1
2 |�̂�2 − 𝜎2 |

(𝑐 − 𝜆𝐸𝑋) · (𝑐 − (1/𝑇)∑𝑛𝑇
𝑗=1 𝑋 𝑗 )

= 𝑂 𝑝 (𝑇−1/2). (5.16)
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It follows from Lemma 3 in Xie and Zhang [27] that, for 𝑎 = 𝑜(𝐾),

sup
𝑠∈S

�����(�̂� − 𝜆) −
(

1
𝑇

𝑛𝑇∑
𝑗=1

𝑒𝑖𝑠𝑋 𝑗 − 𝜆𝐸𝑒𝑖𝑠𝑋

)����� = 𝑂 𝑝

(√
log(𝐾/𝑎)

𝑇

)
, (5.17)

leading to

sup𝑠∈S |(�̂� − 𝜆) − ((1/𝑇)∑𝑛𝑇
𝑗=1 𝑒

𝑖𝑠𝑋 𝑗 − 𝜆𝐸𝑒𝑖𝑠𝑋 ) |
𝜌�̂� · (𝑐 − 𝜆𝐸𝑋) · (𝑐 − (1/𝑇)∑𝑛𝑇

𝑗=1 𝑋 𝑗)
= 𝑂 𝑝

(√
log(𝐾/𝑎)

𝑇

)
,

which together with (5.15), (5.16) yields (5.10).
Next, we prove (5.11). By (5.3) and (5.6), we have

𝑠

�̂�𝑈 (−𝑖𝑠) − 𝛿
− 𝑠

𝜓𝑈 (−𝑖𝑠) − 𝛿
=

𝑠[𝜓𝑈 (−𝑖𝑠) − �̂�𝑈 (−𝑖𝑠)]
[𝜓𝑈 (−𝑖𝑠) − 𝛿] · [�̂�𝑈 (−𝑖𝑠) − 𝛿]

=
𝑠( 1

2 (�̂�2 − 𝜎2)𝑠2 + (�̂� − 𝜆) − ((1/𝑇)∑𝑛𝑇
𝑗=1 𝑒

𝑖𝑠𝑋 𝑗 − 𝜆𝐸𝑒𝑖𝑠𝑋 ))
(−𝑖𝑠 − 𝜌)(−𝑖𝑠 − �̂�)𝑙 (𝑠)𝑙 (𝑠)

, (5.18)

which gives

sup
𝑠∈S

���� 𝑠

�̂�𝑈 (−𝑖𝑠) − 𝛿
− 𝑠

𝜓𝑈 (−𝑖𝑠) − 𝛿

����
≤ sup

𝑠∈S

�����
1
2 (�̂�2 − 𝜎2)𝑠3

(−𝑖𝑠 − 𝜌)(−𝑖𝑠 − �̂�)𝑙 (𝑠)𝑙 (𝑠)

����� + sup
𝑠∈S

����� 𝑠((�̂� − 𝜆) − ((1/𝑇)∑𝑛𝑇
𝑗=1 𝑒

𝑖𝑠𝑋 𝑗 − 𝜆𝐸𝑒𝑖𝑠𝑋 ))
(−𝑖𝑠 − 𝜌)(−𝑖𝑠 − �̂�)𝑙 (𝑠)𝑙 (𝑠)

�����
≤ 1

2
· sup
𝑠∈S

���� (�̂�2 − 𝜎2)𝑠
𝑙 (𝑠)𝑙 (𝑠)

���� + 1
𝜌
· sup
𝑠∈S

����� (�̂� − 𝜆) − ((1/𝑇)∑𝑛𝑇
𝑗=1 𝑒

𝑖𝑠𝑋 𝑗 − 𝜆𝐸𝑒𝑖𝑠𝑋 )
𝑙 (𝑠)𝑙 (𝑠)

����� . (5.19)

It follows from (5.4) that

sup
𝑠∈S

|𝑠/𝑙 (𝑠) | ≤ sup
𝑠∈S

���� 𝑠

| (𝜎2/2)(−𝑖𝑠 + 𝜌) + 𝑐 | − 𝜆𝐸𝑋

���� ≤ 𝐶,

which together with (5.8) and the convergence rate �̂�2 − 𝜎2 = 𝑂 𝑝 (𝑇−1/2) gives

sup
𝑠∈S

���� (�̂�2 − 𝜎2)𝑠
𝑙 (𝑠)𝑙 (𝑠)

���� ≤ 𝐶

𝑐 − (1/𝑇)∑𝑛𝑇
𝑗=1 𝑋 𝑗

|�̂�2 − 𝜎2 | = 𝑂 𝑝 (𝑇−1/2). (5.20)

By (5.5), (5.8) and (5.17), we obtain

sup
𝑠∈S

����� (�̂� − 𝜆) − ((1/𝑇)∑𝑛𝑇
𝑗=1 𝑒

𝑖𝑠𝑋 𝑗 − 𝜆𝐸𝑒𝑖𝑠𝑋 )
𝑙 (𝑠)𝑙 (𝑠)

�����
≤

sup𝑠∈S |(�̂� − 𝜆) − ((1/𝑇)∑𝑛𝑇
𝑗=1 𝑒

𝑖𝑠𝑋 𝑗 − 𝜆𝐸𝑒𝑖𝑠𝑋 ) |
(𝑐 − 𝜆𝐸𝑋) · (𝑐 − (1/𝑇)∑𝑛𝑇

𝑗=1 𝑋 𝑗 )
= 𝑂 𝑝

(√
log(𝐾/𝑎)

𝑇

)
. (5.21)

By combining (5.19)–(5.21), we obtain (5.11). �

In order to derive the estimation error of �̂� (𝑢; 𝑏), we should first consider the estimation errors of ℎ̂+
and �̂�+. We have the following results.
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Proposition 1. Suppose that 𝑐 > 𝜆𝐸𝑋 , 𝐸𝑋2 < ∞ and 𝑎 = 𝑜(𝐾). Then, we have

sup
0≤𝑥≤𝑎

| ℎ̂+(𝑥) − ℎ̃+(𝑥) | = 𝑂 𝑝

(
(𝐾/𝑎)

√
log(𝐾/𝑎)

𝑇

)
(5.22)

and

sup
0≤𝑥≤𝑎

|�̂�+(𝑥) − �̃�+(𝑥) | = 𝑂 𝑝

(
(𝐾/𝑎)

√
log(𝐾/𝑎)

𝑇

)
. (5.23)

Proof. We only prove (5.22), since (5.23) can be proved similarly by using (5.11). First, it is easily seen
that

sup
0≤𝑥≤𝑎

| ℎ̂+(𝑥) − ℎ̃+(𝑥) | ≤
𝐾∑
𝑘=0

|�̂�ℎ+ ,𝑘 − 𝐵ℎ+ ,𝑘 | ≤
2(𝐾 + 1)

𝑎
sup
𝑠∈S

|F̂ ℎ+(𝑠) − F ℎ+(𝑠) |, (5.24)

where S = {𝑘𝜋/𝑎 : 𝑘 = 0, 1, . . . , 𝐾}. For each 𝑠 ∈ S, we have

F̂ ℎ+(𝑠) − F ℎ+(𝑠) = 𝐼ℎ (𝑠) + 𝐼 𝐼ℎ (𝑠),

where

𝐼ℎ (𝑠) =
(

𝛿

�̂� ′
𝑈 ( �̂�) ·

1
−𝑖𝑠 − �̂�

− 𝛿

𝜓 ′
𝑈 (𝜌) ·

1
−𝑖𝑠 − 𝜌

)
, 𝐼 𝐼ℎ (𝑠) =

(
𝛿

𝜓𝑈 (−𝑖𝑠) − 𝛿
− 𝛿

�̂�𝑈 (−𝑖𝑠) − 𝛿

)
.

By Lemma 2 and (5.2), we can easily prove that

sup
𝑠∈S

|𝐼ℎ (𝑠) | = 𝑂 𝑝 (𝑇−1/2).

By Lemma 3, we have

sup
𝑠∈S

|𝐼 𝐼ℎ (𝑠) | = 𝛿 · sup
𝑠∈S

���� 1
�̂�𝑈 (−𝑖𝑠) − 𝛿

− 1
𝜓𝑈 (−𝑖𝑠) − 𝛿

���� = 𝑂 𝑝

(√
log(𝐾/𝑎)

𝑇

)
.

Hence, we have

sup
𝑠∈S

|F̂ ℎ+(𝑠) − F ℎ+(𝑠) | ≤ sup
𝑠∈S

|𝐼ℎ (𝑠) | + sup
𝑠∈S

|𝐼 𝐼ℎ (𝑠) | = 𝑂 𝑝

(√
log(𝐾/𝑎)

𝑇

)
.

which together with (5.24) completes the proof. �

By the convergence rate given in (5.2), Lemma 2 and Proposition 1, we can easily obtain the following
result.

Proposition 2. Suppose that 𝑐 > 𝜆𝐸𝑋 , 𝐸𝑋2 < ∞ and 𝑎 = 𝑜(𝐾). Then, we have

�̂� (𝑢; 𝑏) − �̃� (𝑢; 𝑏) = 𝑂 𝑝

(
(𝐾/𝑎)

√
log(𝐾/𝑎)

𝑇

)
. (5.25)

Next, we derive the convergence rate for the estimators of the expected discounted penalty functions.
It follows from formulas (4.11) and (4.16) that we should first study the consistency properties of
𝜙𝑑 (𝑢;∞) and 𝜙′

𝑑 (𝑢;∞).
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Proposition 3. Suppose that 𝑐 > 𝜆𝐸𝑋 , 𝐸𝑋2 < ∞ and 𝑎 = 𝑜(𝐾). Then, we have

sup
0≤𝑢≤𝑎

|𝜙𝑑 (𝑢;∞) − 𝜙𝑑 (𝑢;∞)| = 𝑂 𝑝

(
(𝐾/𝑎)

√
log(𝐾/𝑎)

𝑇

)
, (5.26)

sup
0≤𝑢≤𝑎

|𝜙′
𝑑 (𝑢;∞) − 𝜙′

𝑑 (𝑢;∞)| = 𝑂 𝑝

(
(𝐾/𝑎)

√
log(𝐾/𝑎)

𝑇

)
. (5.27)

Proof. First, we prove (5.26). By formulas (3.22) and (4.9), we can obtain

sup
0≤𝑢≤𝑎

|𝜙𝑑 (𝑢;∞) − 𝜙𝑑 (𝑢;∞)| ≤
𝐾∑
𝑘=0

|�̂�𝜙𝑑 ,𝑘 − 𝐵𝜙𝑑 ,𝑘 |

≤ 2(𝐾 + 1)
𝑎

· sup
𝑠∈S

|F̂ 𝜙𝑑 (𝑠;∞) − F 𝜙𝑑 (𝑠;∞)|. (5.28)

By (3.19) and (4.8), we obtain

sup
𝑠∈S

���F̂ 𝜙𝑑 (𝑠;∞) − F 𝜙𝑑 (𝑠;∞)
���

= sup
𝑠∈S

����( �̂�2/2)(−𝑖𝑠 − �̂�)
�̂�𝑈 (−𝑖𝑠) − 𝛿

− (𝜎2/2)(−𝑖𝑠 − 𝜌)
𝜓𝑈 (−𝑖𝑠) − 𝛿

����
≤ sup

𝑠∈S

���� (�̂�2/2)𝑠
�̂�𝑈 (−𝑖𝑠) − 𝛿

− (𝜎2/2)𝑠
𝜓𝑈 (−𝑖𝑠) − 𝛿

���� + sup
𝑠∈S

���� (�̂�2/2) �̂�
�̂�𝑈 (−𝑖𝑠) − 𝛿

− (𝜎2/2)𝜌
𝜓𝑈 (−𝑖𝑠) − 𝛿

���� . (5.29)

Furthermore, by Lemma 3, we have

sup
𝑠∈S

���� (�̂�2/2)𝑠
�̂�𝑈 (−𝑖𝑠) − 𝛿

− (𝜎2/2)𝑠
𝜓𝑈 (−𝑖𝑠) − 𝛿

����
≤ �̂�2

2
· sup
𝑠∈S

���� 𝑠

�̂�𝑈 (−𝑖𝑠) − 𝛿
− 𝑠

𝜓𝑈 (−𝑖𝑠) − 𝛿

���� + |�̂�2 − 𝜎2 |
2

· sup
𝑠∈S

���� 𝑠

𝜓𝑈 (−𝑖𝑠) − 𝛿

����
≤ �̂�2

2
· sup
𝑠∈S

���� 𝑠

�̂�𝑈 (−𝑖𝑠) − 𝛿
− 𝑠

𝜓𝑈 (−𝑖𝑠) − 𝛿

���� + |�̂�2 − 𝜎2 |
2

· sup
𝑠∈S

���� 𝑠

(−𝑖𝑠 − 𝜌)(𝑐 − 𝜆𝐸𝑋)

����
= 𝑂 𝑝 (1) · 𝑂 𝑝

(√
log(𝐾/𝑎)

𝑇

)
+𝑂 𝑝 (𝑇−1/2)

= 𝑂 𝑝

(√
log(𝐾/𝑎)

𝑇

)
. (5.30)

Similarly, we have

sup
𝑠∈S

���� (�̂�2/2) �̂�
�̂�𝑈 (−𝑖𝑠) − 𝛿

− (𝜎2/2)𝜌
𝜓𝑈 (−𝑖𝑠) − 𝛿

����
≤ �̂�2 �̂�

2
· sup
𝑠∈S

���� 1
�̂�𝑈 (−𝑖𝑠) − 𝛿

− 1
𝜓𝑈 (−𝑖𝑠) − 𝛿

���� + |�̂�2 �̂� − 𝜎2𝜌 |
2

· sup
𝑠∈S

���� 1
(−𝑖𝑠 − 𝜌)(𝑐 − 𝜆𝐸𝑋)

����
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= 𝑂 𝑝 (1) · 𝑂 𝑝

(√
log(𝐾/𝑎)

𝑇

)
+𝑂 𝑝 (𝑇−1/2)

= 𝑂 𝑝

(√
log(𝐾/𝑎)

𝑇

)
. (5.31)

Hence, (5.29) gives

sup
𝑠∈S

|F̂ 𝜙𝑑 (𝑠;∞) − F 𝜙𝑑 (𝑠;∞)| = 𝑂 𝑝

(√
log(𝐾/𝑎)

𝑇

)
,

which together with (5.28) yields (5.26).
Next, we prove (5.27). Again, we can obtain

sup
0≤𝑢≤𝑎

|𝜙′
𝑑 (𝑢;∞) − 𝜙′

𝑑 (𝑢;∞)| ≤ 2(𝐾 + 1)
𝑎

· sup
𝑠∈S

|F̂ 𝜙
′
𝑑 (𝑠;∞) − F 𝜙′

𝑑 (𝑠;∞)|, (5.32)

where

F̂ 𝜙
′
𝑑 (𝑠;∞) − F 𝜙′

𝑑 (𝑠;∞) = 𝛿 + (𝑐 + �̂�2/2)𝑖𝑠 + �̂�[1 − F̂ 𝑓 𝑋 (𝑠)]
�̂�𝑈 (−𝑖𝑠) − 𝛿

− 𝛿 + (𝑐 + 𝜎2/2)𝑖𝑠 + 𝜆[1 − F 𝑓 𝑋 (𝑠)]
𝜓𝑈 (−𝑖𝑠) − 𝛿

.

Furthermore, we have

sup
𝑠∈S

���F̂ 𝜙
′
𝑑 (𝑠;∞) − F 𝜙′

𝑑 (𝑠;∞)
��� ≤ sup

𝑠∈S

�����𝛿 + �̂�[1 − F̂ 𝑓 𝑋 (𝑠)]
�̂�𝑈 (−𝑖𝑠) − 𝛿

− 𝛿 + 𝜆[1 − F 𝑓 𝑋 (𝑠)]
𝜓𝑈 (−𝑖𝑠) − 𝛿

�����
+ sup
𝑠∈S

���� (𝑐 + �̂�2/2)𝑖𝑠
�̂�𝑈 (−𝑖𝑠) − 𝛿

− (𝑐 + 𝜎2/2)𝑖𝑠
𝜓𝑈 (−𝑖𝑠) − 𝛿

���� .
By Lemma 3 and (5.17) and using the same arguments in (5.30) and (5.31), we can obtain

sup
𝑠∈S

�����𝛿 + �̂�[1 − F̂ 𝑓 𝑋 (𝑠)]
�̂�𝑈 (−𝑖𝑠) − 𝛿

− 𝛿 + 𝜆[1 − F 𝑓 𝑋 (𝑠)]
𝜓𝑈 (−𝑖𝑠) − 𝛿

����� = 𝑂 𝑝

(√
log(𝐾/𝑎)

𝑇

)

and

sup
𝑠∈S

���� (𝑐 + �̂�2/2)𝑖𝑠
�̂�𝑈 (−𝑖𝑠) − 𝛿

− (𝑐 + 𝜎2/2)𝑖𝑠
𝜓𝑈 (−𝑖𝑠) − 𝛿

���� = 𝑂 𝑝

(√
log(𝐾/𝑎)

𝑇

)
.

Hence, we obtain

sup
𝑠∈S

���F̂ 𝜙
′
𝑑 (𝑠;∞) − F 𝜙′

𝑑 (𝑠;∞)
��� = 𝑂 𝑝

(√
log(𝐾/𝑎)

𝑇

)
,

which together with (5.32) gives (5.27). �

Next, we derive the convergence rates for 𝜙𝑐 (𝑢;∞) and 𝜙′
𝑐 (𝑢;∞).

Proposition 4. Suppose that 𝑐 > 𝜆𝐸𝑋 , 𝐸𝑋4 < ∞, 𝑎 = 𝑜(𝐾), and

𝐸

(∫ 𝑋

0
𝑤(𝑋 − 𝑥) 𝑑𝑥

)
< ∞, 𝐸

(∫ 𝑋

0
𝑥𝑤(𝑋 − 𝑥) 𝑑𝑥

)2

< ∞.
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Then, we have

sup
0≤𝑢≤𝑎

|𝜙𝑐 (𝑢;∞) − 𝜙𝑐 (𝑢;∞)| = 𝑂 𝑝

(
(𝐾/𝑎)

√
log(𝐾/𝑎)

𝑇

)
, (5.33)

sup
0≤𝑢≤𝑎

|𝜙′
𝑐 (𝑢;∞) − 𝜙′

𝑐 (𝑢;∞)| = 𝑂 𝑝

(
(𝐾/𝑎)

√
log(𝐾/𝑎)

𝑇

)
. (5.34)

Proof. First, we prove (5.33). It is easily obtained that

sup
0≤𝑢≤𝑎

|𝜙𝑐 (𝑢;∞) − 𝜙𝑐 (𝑢;∞)| ≤ 2(𝐾 + 1)
𝑎

· sup
𝑠∈S

|F̂ 𝜙𝑐 (𝑠;∞) − F 𝜙𝑐 (𝑠;∞)|, (5.35)

where

sup
𝑠∈S

���F̂ 𝜙𝑐 (𝑠;∞) − F 𝜙𝑐 (𝑠;∞)
���

= sup
𝑠∈S

����� �̂�[L̂𝜔( �̂�) − F̂𝜔(𝑠)]
�̂�𝑈 (−𝑖𝑠) − 𝛿

− 𝜆[L𝜔(𝜌) − F𝜔(𝑠)]
𝜓𝑈 (−𝑖𝑠) − 𝛿

�����
≤ sup

𝑠∈S

����� �̂�L̂𝜔( �̂�)
�̂�𝑈 (−𝑖𝑠) − 𝛿

− 𝜆L𝜔(𝜌)
𝜓𝑈 (−𝑖𝑠) − 𝛿

����� + sup
𝑠∈S

����� �̂�F̂𝜔(𝑠)
�̂�𝑈 (−𝑖𝑠) − 𝛿

− 𝜆F𝜔(𝑠)
𝜓𝑈 (−𝑖𝑠) − 𝛿

����� .
Furthermore, by Xie and Zhang [27], we have

�̂�L̂𝜔( �̂�) − 𝜆L𝜔(𝜌) = 𝑂 𝑝 (𝑇−1/2), sup
𝑠∈S

|�̂�F̂𝜔(𝑠) − 𝜆F𝜔(𝑠) | = 𝑂 𝑝

(√
log(𝐾/𝑎)

𝑇

)
.

Then, by Lemma 3, we can obtain

sup
𝑠∈S

|F̂ 𝜙𝑐 (𝑠;∞) − F 𝜙𝑐 (𝑠;∞)| = 𝑂 𝑝

(√
log(𝐾/𝑎)

𝑇

)
,

which together with (5.35) gives (5.33). The proof of (5.34) is similar, and we omit the detailed
arguments. �

Now by combining the results in Propositions 2–4, we can obtain the convergence rates of 𝜙𝑑 (𝑢; 𝑏)
and 𝜙𝑐 (𝑢; 𝑏).

Proposition 5. Suppose that 𝑐 > 𝜆𝐸𝑋 , 𝐸𝑋2 < ∞ and 𝑎 = 𝑜(𝐾). Then, we have

𝜙𝑑 (𝑢; 𝑏) − 𝜙𝑑 (𝑢; 𝑏) = 𝑂 𝑝

(
(𝐾/𝑎)

√
log(𝐾/𝑎)

𝑇

)
. (5.36)

Proposition 6. Suppose that 𝑐 > 𝜆𝐸𝑋 , 𝐸𝑋4 < ∞, 𝑎 = 𝑜(𝐾), and

𝐸

(∫ 𝑋

0
𝑤(𝑋 − 𝑥) 𝑑𝑥

)
< ∞, 𝐸

(∫ 𝑋

0
𝑥𝑤(𝑋 − 𝑥) 𝑑𝑥

)2

< ∞.
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Then, we have

|𝜙𝑐 (𝑢; 𝑏) − 𝜙𝑐 (𝑢; 𝑏) | = 𝑂 𝑝

(
(𝐾/𝑎)

√
log(𝐾/𝑎)

𝑇

)
. (5.37)

Remark 6. Propositions 5 and 6 show that the convergence rate depend the parameters 𝑎, 𝐾 and 𝑇 .
Here, the parameters 𝑎 and 𝐾 appear in the COS approximation step, while the parameter 𝑇 stands for
sample size in the statical estimation step. Usually, the parameter 𝑎 need not to be large enough, and we
can use some cumulant-based methods for selection (see Section 6).

For the series truncation parameter 𝐾 , although a larger value can lead to better COS approximation,
it also implies that more COS coefficients have to be estimated in the statistical estimation step. Hence,
the statistical estimation error is increasing w.r.t. 𝐾 . We remark that the condition 𝑎 = 𝑜(𝐾) is just used
for theoretical derivation (see also [27]), which means that the parameter 𝑎 should be dominated by the
series truncation parameter 𝐾 . This condition is satisfied in our paper, since when using the cumulant-
based method to choose 𝑎, we usually have 𝑎 ≤ 50, but when choosing the truncation parameter 𝐾 , we
usually take 𝐾 = 28, 29, 210, etc., larger than 𝑎. Although we observe the error propagation w.r.t 𝐾 , we
can enlarge the sample size (i.e., take large 𝑇) to get satisfactory estimators. Anyway, if we simply look
at the estimation of 𝜙𝑑 (𝑢; 𝑏) and 𝜙𝑐 (𝑢; 𝑏) (i.e., for fixed 𝐾 and 𝑎), Propositions 5 and 6 show that we
can nearly obtain 𝑂 𝑝 (𝑇−1/2) convergence rate.

6. Numerical results

In this section, we present some numerical results to illustrate the performance of our method. All
computations are performed in MATLAB on a desktop computer with Intel(R) Core(TM) i7-6700
CPU, 3.4 GHz and a RAM of 8 GB. In this part, we set 𝑐 = 4, 𝜆 = 3, 𝜎 = 1, 𝛿 = 0.1 and 𝑏 = 30. We
consider the following three claim size density functions,

1. Exp(1): 𝑓𝑋 (𝑥) = 𝑒−𝑥 , 𝑥 > 0;
2. Erlang(2,2): 𝑓𝑋 (𝑥) = 4𝑥𝑒−2𝑥 , 𝑥 > 0;
3. Gamma( 3

2 ,
3
2 ): 𝑓𝑋 (𝑥) = 3

√
6𝑥𝑒−3𝑥/2

2
√
𝜋

, 𝑥 > 0.

The choice of the truncation parameter 𝑎 is selected according to the following rule (see [9]):

𝑎 = 𝜅1 + 𝐿
√
𝜅2 +

√
𝜅4, (6.1)

where

𝜅 𝑗 =
𝑑 𝑗

𝑑𝑠 𝑗
log

(∫
𝑒𝑠𝑥 𝑓 (𝑥) 𝑑𝑥

) ���
𝑠=0

=
𝑑 𝑗

𝑑𝑠 𝑗
logF 𝑓 (−𝑖𝑠)

����
𝑠=0

, (6.2)

and 𝑓 is a probability density function. As in Xie and Zhang [27], we set 𝐿 = 10. When computing ℎ̃+
and �̃�+, we take F 𝑓 = F ℎ+; when computing 𝜙𝑑 and 𝜙′

𝑑 , we take F 𝑓 = F 𝜙𝑑; when computing 𝜙𝑐 and
𝜙′
𝑐 , we take F 𝑓 = F 𝜙𝑐 .

For the expected present value of total dividend payments before ruin, we easily obtain the explicit
formula by (2.4) when 𝑓𝑋 is exponential or Erlang(2,2). When 𝑓𝑋 is Gamma( 3

2 ,
3
2 ), in order to provide

a benchmark, we compute the reference values by the COS method with truncation parameter 𝐾 = 213.
For the expected discounted penalty function, we set 𝑤 ≡ 1, then 𝜙𝑑 (𝑢; 𝑏) is the Laplace transform of
the time of ruin by oscillation, and 𝜙𝑐 (𝑢; 𝑏) is the Laplace transform of the time of ruin due to a claim.
When 𝑓𝑋 is exponential or Erlang(2,2), we can use Laplace inversion transform to compute the explicit
formulas by (3.16) and (3.19) for 𝜙𝑑 (𝑢; 𝑏) and 𝜙𝑐 (𝑢; 𝑏), respectively. When 𝑓𝑋 is Gamma( 3

2 ,
3
2 ), we

also compute the reference values by the COS method with truncation parameter 𝐾 = 213.
First, we study the approximation performance of the COS method. In order to measure the accuracy

of our method, we consider average absolute errors for �̃� (𝑢; 𝑏), 𝜙𝑑 (𝑢; 𝑏) and 𝜙𝑐 (𝑢; 𝑏), respectively,
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Table 1. Average absolute errors by the COS method.

𝑝 �̃� (𝑢; 𝑏) 𝜙𝑑 (𝑢; 𝑏) 𝜙𝑐 (𝑢; 𝑏)
Exp Erlang Gamma Exp Erlang Gamma Exp Erlang Gamma

6 0.034492 0.024331 0.034561 0.028865 0.026421 0.028959 0.025058 0.021115 0.011907
7 0.028245 0.017991 0.032642 0.021888 0.020943 0.023772 0.021909 0.012736 0.007867
8 0.009112 0.008653 0.018372 0.014322 0.009054 0.012048 0.012729 0.004236 0.009977
9 0.004665 0.002410 0.019538 0.004661 0.002652 0.003612 0.003372 0.001176 0.001311
10 0.001383 0.000094 0.002446 0.001312 0.000853 0.001063 0.001073 0.000757 0.000856

which are defined by

1
#U

∑
𝑢∈U

|�̃� (𝑢; 𝑏) −𝑉 ref (𝑢; 𝑏) |, 1
#U′

∑
𝑢∈U′

|𝜙𝑑 (𝑢; 𝑏) − 𝜙ref
𝑑 (𝑢; 𝑏) |

and
1

#U′′
∑
𝑢∈U′′

|𝜙𝑐 (𝑢; 𝑏) − 𝜙ref
𝑐 (𝑢; 𝑏) |,

where 𝑉 ref (𝑢; 𝑏), 𝜙ref
𝑑 (𝑢; 𝑏) and 𝜙ref

𝑐 (𝑢; 𝑏) are the reference values. We take U = {0.1, 0.2, . . . , 30},
U′ = {0.1, 0.2, . . . , 5} andU′′ = {0.1, 0.2, . . . , 15}, since 𝜙𝑑 (𝑢; 𝑏) is very small for 𝑢 > 5, and 𝜙𝑐 (𝑢; 𝑏)
is very close to zero for 𝑢 > 15. The average absolute errors are reported in Table 1, where we consider
the truncation parameter 𝐾 = 2𝑝 for 𝑝 = 6, 7, 8, 9, 10. All results in the following tables are rounded
at the sixth decimal place. In Table 1, it can be easily seen that the absolute errors decrease with 𝑝 (or
equivalently 𝐾) for �̃� (𝑢; 𝑏), 𝜙𝑑 (𝑢; 𝑏) and 𝜙𝑐 (𝑢; 𝑏), which means that the large truncation parameter can
reduce the error in our examples.

Next, we consider the effectiveness of our statistical estimation method, based on a random sample
on the individual claim sizes {𝑋1, . . . , 𝑋𝑛𝑇 } and claim number 𝑛𝑇 . For the parameter 𝑎, we consider the
following empirical version of the cumulant-based method,

𝑎 = 𝜅1 + 𝐿

√
𝜅2 +

√
𝜅4, (6.3)

where

𝜅 𝑗 =
𝑑 𝑗

𝑑𝑠 𝑗
log F̂ 𝑓 (−𝑖𝑠)

����
𝑠=0

, 𝑗 = 1, 2, 4. (6.4)

When computing ℎ̂+ and �̂�+, we take F̂ 𝑓 = F̂ ℎ+; when computing 𝜙𝑑 and 𝜙′
𝑑 , we take F̂ 𝑓 = �F 𝜙𝑑;

when computing 𝜙𝑐 and 𝜙′
𝑐 , we take F̂ 𝑓 = �F 𝜙𝑐 . Again, we set 𝐿 = 10.

Set the truncation parameter 𝐾 = 210 and the inter-observation interval Δ = 1. We perform 200
experiments and consider average absolute errors for �̂� (𝑢; 𝑏), 𝜙𝑑 (𝑢; 𝑏) and 𝜙𝑐 (𝑢; 𝑏), respectively, which
are defined by

1
#U

∑
𝑢∈U

1
200

200∑
𝑗=1

|�̂� 𝑗 (𝑢; 𝑏) −𝑉 ref (𝑢; 𝑏) |, 1
#U′

∑
𝑢∈U′

1
200

200∑
𝑗=1

|𝜙𝑑, 𝑗 (𝑢; 𝑏) − 𝜙ref
𝑑 (𝑢; 𝑏) |

and
1

#U′′
∑
𝑢∈U′′

1
200

200∑
𝑗=1

|𝜙𝑐, 𝑗 (𝑢; 𝑏) − 𝜙ref
𝑐 (𝑢; 𝑏) |,
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Table 2. Empirical average absolute errors by the COS method.

𝑞 �̂� (𝑢; 𝑏) 𝜙𝑑 (𝑢; 𝑏) 𝜙𝑐 (𝑢; 𝑏)
Exp Erlang Gamma Exp Erlang Gamma Exp Erlang Gamma

0 0.328940 0.284153 0.289102 0.003099 0.003204 0.003051 0.009850 0.006604 0.007109
1 0.204445 0.182295 0.192941 0.002494 0.002266 0.002429 0.006314 0.004809 0.005842
2 0.160831 0.126271 0.143326 0.001987 0.001715 0.001886 0.004936 0.003465 0.003803
3 0.112534 0.103669 0.093200 0.001708 0.001325 0.001405 0.003567 0.002374 0.002726
4 0.073890 0.069054 0.071132 0.001608 0.001092 0.001359 0.002663 0.001833 0.002027
5 0.053173 0.052682 0.046592 0.001482 0.000958 0.001254 0.002003 0.001473 0.001643

Figure 1. Beams for estimating 𝑉 (𝑢; 𝑏): 200 estimators in green, and the true in bold blue. (a) 𝑞 = 1;
(b) 𝑞 = 3 and (c) 𝑞 = 5.

where �̂� 𝑗 (𝑢; 𝑏), 𝜙𝑑, 𝑗 (𝑢; 𝑏) and 𝜙𝑐, 𝑗 (𝑢; 𝑏) denote the 𝑗 th experiment values of �̂� (𝑢; 𝑏), 𝜙𝑑 (𝑢; 𝑏) and
𝜙𝑐 (𝑢; 𝑏), respectively.

In Table 2, we list the empirical average absolute errors of the estimator for the three functions. For
the observation interval [0, 𝑇], we take 𝑇 = 1000 × 2𝑞 for 𝑞 = 0, 1, 2, 3, 4, 5. It is obvious that the
estimation errors are also decreasing with 𝑞 (or equivalently the time 𝑇), that is, the approximation
results become closer to reference values, which means that our estimator performs better when the
sample sizes become large.

In order to show the stability of our method, we plot 200 estimated curves (green curves) and the true
curves (bold blue curves) on the same picture. For the expected present value of total dividends before
ruin with the exponential claim size density function, we plot the curves of �̂� 𝑗 (𝑢; 𝑏) as functions of 𝑢
when 𝑇 = 1000 × 21, 1000 × 23 and 1000 × 25in Figure 1. It is obvious that all the lines increase with
𝑢 for all the three models, which is consistent with the actual situation that the expected present value
of total dividends before ruin increases with the initial surplus. Besides, as 𝑇 increases, the estimator
�̂� (𝑢; 𝑏) tends to be stable and converges to 𝑉 (𝑢; 𝑏) .

The functions 𝜙𝑑 (𝑢; 𝑏), 𝜙𝑐 (𝑢; 𝑏) and 𝜙(𝑢; 𝑏) are also investigated for Erlang(2,2) claim size density
function. In Figure 2, we find that 𝜙𝑑 (𝑢; 𝑏) is a decreasing function of the initial surplus 𝑢, which means
that ruin is more likely to happen caused by oscillation when 𝑢 is small. At the same time, we can also
observe that as 𝑇 increases, the estimator 𝜙𝑑 (𝑢; 𝑏) tends to be stable and converges to 𝜙𝑑 (𝑢; 𝑏). As for
𝜙𝑐 (𝑢; 𝑏) and 𝜙(𝑢; 𝑏), we plot the corresponding curves in Figures 3 and 4. Again, we can observe that
the estimation becomes better as 𝑇 becomes larger.

Finally, we investigate the effectiveness of our method when further using spectral filters to accelerate
the decay rate of the COS coefficients. Recall that a real and symmetric function Γ(𝑠) is a filter of order
𝜐 if: (i) Γ(0) = 1, Γ(𝑙) (0) = 0, 1 ≤ 𝑙 ≤ 𝜐 − 1; (ii) Γ(𝑠) = 0 for |𝑠 | ≥ 1; (iii) Γ(𝑠) ∈ 𝐶𝜐−1, 𝑠 ∈ R, where
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Figure 2. Beams for estimating 𝜙𝑑 (𝑢; 𝑏): 200 estimators in green, and the true in bold blue. (a) 𝑞 = 1;
(b) 𝑞 = 3 and (c) 𝑞 = 5.

Figure 3. Beams for estimating 𝜙𝑐 (𝑢; 𝑏): 200 estimators in green, and the true in bold blue. (a) 𝑞 = 1;
(b) 𝑞 = 3 and (c) 𝑞 = 5.

Figure 4. Beams for estimating 𝜙(𝑢; 𝑏): 200 estimators in green, and the true in bold blue. (a) 𝑞 = 1;
(b) 𝑞 = 3 and (c) 𝑞 = 5.

in particular Γ(𝑙) (±1) = 0 for 0 ≤ 𝑙 ≤ 𝜐 − 1. For a function 𝑓 , its filter-COS approximation is simply
defined by

𝑓 filter (𝑥) =
𝐾∑′

𝑘=0
Γ(𝑘/𝐾)𝐵 𝑓 ,𝑘 cos

(
𝑘𝜋

𝑥 − 𝑎1

𝑎2 − 𝑎1

)
, 𝑎1 ≤ 𝑥 ≤ 𝑎2.

In the following experiments, we select an exponential filter Γ(𝑠) = exp(−𝜈𝑠𝜐) with 𝜐 = 6 and
𝜈 = − log 𝜖 , where 𝜖 represents the machine epsilon so that Γ(1) = 𝜖 ≈ 0. We take 𝜖 = 10−6. In Table
3, we list the absolute errors of the three functions by using the filter-COS method. Similarly, we can
find that the calculation errors decrease with the truncation parameter 𝐾 . Compared with Table 1, we
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Table 3. Average absolute errors by the filter-COS method.

𝑝 �̃� (𝑢; 𝑏) 𝜙𝑑 (𝑢; 𝑏) 𝜙𝑐 (𝑢; 𝑏)
Exp Erlang Gamma Exp Erlang Gamma Exp Erlang Gamma

6 0.002814 0.001834 0.015319 0.025578 0.021668 0.022997 0.004712 0.004442 0.004535
7 0.001464 0.000923 0.004861 0.017049 0.013511 0.014764 0.003721 0.003069 0.003291
8 0.000553 0.000359 0.002026 0.007109 0.005520 0.006106 0.001669 0.001319 0.001426
9 0.000222 0.000123 0.001053 0.002798 0.001936 0.002094 0.000688 0.000463 0.000498
10 0.000033 0.000010 0.000411 0.000336 0.000190 0.000110 0.000099 0.000042 0.000028

Table 4. Empirical average absolute errors by the filter-COS method.

𝑞 �̂� (𝑢; 𝑏) 𝜙𝑑 (𝑢; 𝑏) 𝜙𝑐 (𝑢; 𝑏)
Exp Erlang Gamma Exp Erlang Gamma Exp Erlang Gamma

0 0.301895 0.256849 0.282391 0.002804 0.003166 0.002899 0.009251 0.006041 0.007095
1 0.211058 0.202374 0.207984 0.002044 0.002014 0.002097 0.006299 0.004475 0.005501
2 0.145835 0.140759 0.126585 0.001582 0.001493 0.001564 0.004750 0.003421 0.003824
3 0.104888 0.100684 0.097467 0.001137 0.001148 0.001020 0.003257 0.002559 0.002689
4 0.079401 0.067289 0.066253 0.000987 0.000859 0.000720 0.002331 0.001667 0.001873
5 0.051070 0.047694 0.052073 0.000754 0.000646 0.000550 0.001792 0.001222 0.001261

can find that the errors calculated by the filter-COS method are much smaller than the errors obtained
without filter. In particular, we observed that for the �̃� (𝑢; 𝑏) and 𝜙𝑐 (𝑢; 𝑏) functions, the errors are
significantly improved with the addition of filtering. We also list the empirical errors of the estimator
for the three functions by the filter-COS method in Table 4, and almost all errors obtained by using the
filter-COS method are also reduced compared with Table 2. In summary, spectral filters can accelerate
the convergence rate.
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