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Growth and body composition in children with chronic kidney disease
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Growth failure is a common yet complex problem of childhood chronic kidney disease caused by multiple factors encountered due to the primary

disease or secondary to the renal impairment. This review seeks to describe the various patho-physiological mechanisms contributing to growth

failure in the various stages of childhood with particular emphasis on nutritional problems and endocrine dysfunction encountered whilst managing

these children. In addition, we shall examine the role of body composition in chronic kidney disease, their relationship with growth and nutrition

and the potential effect of abnormalities in fat mass and lean mass on long-term morbidity and mortality.

Growth: nutrition: Body composition: Chronic kidney disease

Childhood chronic kidney disease (CKD) represents a spectrum
of conditions, which result in renal impairment varying from
mild renal insufficiency to end stage renal failure (ESRF)
(Table 1). CKD can be defined as either a glomerular filtration
rate of less than 60ml/min per 1·73m2 for greater than 3
months or kidney damage demonstrating pathological abnorm-
alities or markers of damage – blood, urine or imaging investi-
gations. Most studies in these children refer to those with
moderate to severe CKD (stages 3–4) and ESRF (stage 5),
which corresponds to a glomerular filtration rate being less
than 15ml/min per 1·73m2 and requires renal replacement
therapy of either dialysis or renal transplantation. The incidence
of childrenwithESRFhas been reported as nine permillion child
population overall with the highest incidence of new patients
occurring between 10 and 15 years of age (Ansell et al. 2003).
Multiple aetiologies are responsible for CKD (Table 1), of
which over 50% are due to congenital abnormalities with the
remainder being mainly due to hereditary conditions, glomeru-
lonephrites or multi-system disease.
The presentation of CKD can be varied, either due to the

primary renal disease or as a consequence of impaired renal
function, with onset sometimes being silent with an insidious
progression and symptoms only developing late in its course
(Table 1). Even with optimal care, many of these children
go on to develop ESRF and require renal replacement therapy.
Management of CKD prior to renal replacement therapy is
thus conservative with the main aims being to slow down
disease progression, optimise renal function and minimise
complications secondary to CKD.

Growth failure is a significant problem in CKD with up to
50% of all patients with ESRF in childhood attaining adult
heights below the 3rd centile (Fivush et al. 1998). The cause
of growth failure in CKD is multifactorial with linear impair-
ment being a final common pathway of various factors includ-
ing the aetiology of CKD, hormonal dysregulation, nutritional
deficiency, metabolic acidosis, uraemia, chronic anaemia and
persistent micro-inflammation (Kuizon et al. 1997; Chan et al.
2002). Whilst optimal conservative management aimed at
minimising these complications has been shown to improve
growth, the impact of each factor on growth remains unclear.

In the present review we shall summarise the various patho-
physiological mechanisms of growth failure in CKD. In
particular, we shall examine the importance of endocrine
dysfunction and nutrition in growth failure and, finally, look
at the close association of these factors with abnormalities
in body composition in CKD.

Pathophysiology of growth impairment

Age of onset

CKDcan result in impairment in each phase of development from
in utero to adolescence, which can subsequently result in growth
retardation, with studies suggesting that the degree of height
deficit worsens with duration of disease (Norman et al. 2000).
Intrauterine growth retardation is critical to linear growth and
may occur in severe renal hypoplasia, whilst placental insuffi-
ciency causing intrauterine malnutrition may also affect renal
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morphogenesis in the first trimester and therefore retard fetal
growth (Bassan et al. 2000; Rodriguez-Soriano et al. 2005).

In infancy, untreated CKD is associated with severe growth
retardation with loss in relative height being as high as SD 0·6
per month during the first year of life (Rees et al. 1989;
Karlberg et al. 1996). Feeding problems experienced in
these infants with its concomitant anorexia and uraemia results
in protein–energy malnutrition, which in turn leads to
increased protein catabolism and ultimately growth retar-
dation, which may also explain the failure of some of these
infants to exhibit catch-up growth.

After 2 years of age, children who develop CKD exhibit an
initial loss of height followed by growth parallel to their
percentile after the disease process is better controlled
(Schaefer et al. 1996). The degree of growth retardation is
closely associated to renal dysfunction with a decrease in
height standard deviation scores occurring once glomerular fil-
tration rate falls below 25ml/min per 1·73m2 (Englund et al.
2003) Finally, in adolescence, onset of puberty may be delayed
by up to 2 years in up to 60% of affected children and the delay
may correlate to the duration of CKD (Schaefer et al. 1990;
Simon, 2002). Even when they do enter puberty, a sub-optimal
peak height velocity and shorter pubertal phase may result in
a sub-optimal final height (Kleinknecht et al. 1980).

Nutritional deficiency

Various studies have shown that these children frequently
have protein, energy and nutrient-deficient diets regardless
of the degree of renal impairment and this, in turn, can lead
to both retarded growth and abnormal body composition
(Salusky et al. 1983; Abitbol et al. 1990; Norman et al.
2000). An association between energy intake and growth has
been shown in children receiving haemodialysis or peritoneal
dialysis (Tom et al. 1999). Although energy requirements are
aimed at 100% of the recommended daily allowance for age,
120–140% has been suggested for catch-up growth, but

achieving this is often limited by anorexia secondary to urae-
mia. Anorexia is further exacerbated by hyperleptinaemia,
which is shown to have a hypothalamic effect to reduce appe-
tite and food intake and to increase energy expenditure
(Warady et al. 1999; Mak et al. 2006). Protein deficiency is
common in untreated children, which contributes to acidosis,
uraemia, catabolism and impaired growth (Greiber & Mitch,
1992; Meireles et al. 1999). This can remain a problem in chil-
dren receiving peritoneal dialysis, where there is a significant
loss of body protein into the dialysate effluent (Quan & Baum,
1996). Further nutrient deficiencies in phosphate, K, Na, vita-
min C, vitamin B6 and folic acid resulting from dietary
restrictions could also contribute to growth failure and may
require individualised prescription depending upon stage of
renal failure and haematological and biochemical changes.
In the UK, nutritional recommendations are based on dietary
reference values (Department of Health, 1991) for food
energy and nutrients. In the presence of normal height
(.2nd percentile), energy and micronutrient requirements
are based on chronological age but if height falls below the
2nd percentile, requirements for height and age may be used
as baseline values and adjusted accordingly, as recommended
by Coleman (2001) (Table 2).

Infants and young children with CKD frequently suffer
from recurrent vomiting, anorexia and feeding problems
(Hellerstein et al. 1987). Gastro-oesophageal reflux, which
can significantly impair nutritional and medicinal delivery in
an already undernourished child, has been reported in over
70% of these patients, with further studies observing gastro-
oesophageal reflux to have significantly prolonged reflux
periods and intra-oesophageal pH to be abnormally decreased
(Ruley et al. 1989). This suggests the presence of both gastric
and oesophageal dysmotility, further complicated by the pre-
sence of gastric dysrhythmias and delayed gastric emptying
(Ravelli et al. 1992). The uraemic state may also interfere
with extra-renal secretion and degradation of regulatory pep-
tides within the gut, with increases in serum gastrin and

Table 1. Stages, aetiology and modes of presentation of chronic kidney disease (CKD)

Stages of CKD Description GFR (ml/min per 1·73 m2)

Stages
1 Kidney damage with normal or increased GFR $90
2 Kidney damage with decreased mild GFR 60–89
3 Moderate decreased GFR 30–59
4 Severe decreased GFR 15–29
5 Kidney failure ,15 or dialysis

Aetiology Modes of presentation

Congenital abnormalities Antenatal ultrasound
Aplasia/hypoplasia/dysplasia Urinary tract infection
Reflux nephropathy Enuresis
Hereditary conditions Failure to thrive
Medullary cystic disease Short stature
Polycystic kidney disease Lethargy and pallor
Cystinosis Haematuria
Glomerulonephritis Abdominal mass
Focal segmental glomerulosclerosis Nephrotic syndrome
Multisystem Hypertension
Lupus erythmatosus Congestive cardiac failure
Henloch-Scholein purpura Seizure
Haemolytic Uraemic Syndrome Screening siblings of index cases

GFR, glomerular filtration rate.
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other peptides resulting in altered regulation of gastrointestinal
motility, modulation of hunger and satiety (Hallgren et al.
1988). Prolonged enteral feeding is therefore very common
and needed in order to reach adequate nutritional require-
ments, although this can be associated with feeding difficulties
and it is subsequently important to offer support on non-nutri-
tive sucking in infants and encourage normal feeding beha-
viours in the older child (Dello-Strogolo et al. 1997).

Metabolic acidosis

Metabolic acidosis is common in CKD and often seen before
glomerular filtration rate ,50%. It is essentially due to
impaired NH3 excretion, aggravated by nutritional protein
load and altered electrolyte balance. This can then accelerate
protein degradation by activation of the ubiquitin–proteosome
pathway, stimulation of branched chain keto-acid dehydrogen-
ase, stimulation of endogenous steroid synthesis and pro-
motion of end-organ resistance to anabolic effects of growth
hormone (GH) (Mitch & Price, 2003). Metabolic acidosis
has also been shown to directly stimulate bone resorption,
whilst correction of this abnormality has been correlated
with an improvement in bone formation (Domrongkitchaiporn
et al. 2002; Lemann et al. 2003).

Micro-inflammation

CKD is characterised by a chronic inflammatory state, with
inflammatory cytokines being closely associated with protein

metabolism. Recent studies have shown the existence of a mal-
nutrition–inflammation complex, in which chronic inflam-
mation leads to protein–energy malnutrition (Kaizu et al.
1998; Kalantar-Zadeh et al. 2001). Malnutrition in CKD has
been proposed to be a combination of uraemia and inflammation
(Stenvinkel et al. 2000) with resultant severe catabolism
and potential growth failure. The roles of IL-6 and
C-reactive protein in adult studies have been shown to have a
negative correlation with muscle mass in CKD and particularly
haemodialysis (Kaizu et al. 2003) due to cytokine activation
(Roccatello et al. 1998), which can induce protein catabolism
and promotion of apoptosis (Carracedo et al. 1998) via ubiquitin
and capase-3 pathways (Carracedo et al. 2002; Raj et al. 2003).
Strategies to reduce chronic inflammation, such as the use of
regular L-carnitine in ESRF, may improve cellular defences,
modulate the inflammatory cascade and, thus, indirectly main-
tain lean mass and growth potential (Pertosa et al. 2005).

Secondary hyperparathyroidism and renal osteodystrophy

Renal osteodystrophy develops as a result of the effect of
impaired renal function on Ca, P, vitamin D metabolism
and parathyroid hormone activity (Mehls et al. 1980).
Impaired phosphate excretion results in an elevation of serum
phosphate and a reciprocal drop in Ca, stimulating the develop-
ment of secondary hyperparathyroidism and renal osteodystro-
phy. Histologically, renal osteodystrophy results in widening
of the growth cartilage zone due to the development of

Table 2. Nutritional guidelines for the child with chronic kidney disease (CKD). Guidelines providing recommended ranges for energy and protein
requirement. Further adjustment required based on individual nutritional assessment

Stage of CKD and age (years) Energy/ kg body weight (kJ) Protein/kg body weight (g)

Pre-dialysis
Pre-term 500–750 2·5–3·0
0–0·5 480–630 1·5–2·1
0·5–1·0 400–630 1·5–1·8
1·0–2·0 400–500 1·0–1·8
2·0–puberty Minimum EAR* for chronological

age (use height age if , 2nd
percentile for height)

1·0–1·5
Pubertal 1·0–1·5
Post-pubertal 1·0–1·5

Peritoneal dialysis (CCPD/CAPD)
Pre-term 500–750 3·0–4·0
0–0·5 480–630 2·1–3·0
0·5–1·0 400–630 2·0–3·0
1·0–2·0 400–630 2·0–3·0
2·0–puberty Minimum EAR* for chronological

age (use height age if , 2nd
percentile for height)

1·5–2·0
Pubertal 1·4–1·8
Post-pubertal 1·3–1·5

Haemodialysis
Pre-term 500–750 3·0

0–0·5 480–630 2·1
0·5–1·0 400–630 1·5–2·0
1·0–2·0 400–630 1·5–1·8
2·0–puberty Minimum EAR* for chronological

age (use height age if , 2nd
percentile for height)

1·0–1·5
Pubertal 1·0–1·5
Post-pubertal 1·0–1·5

Guidelines for phosphate intake
Infants ,400 mg/d
Children , 0 kg 400–600 mg/d
Children . 20 kg ,800 mg/d

* Estimated average requirement (EAR) based on Dietary Reference Values (Coleman, 2001).
CCPD, continuous cycle peritoneal dialysis; CAPD, continuous ambulatory peritoneal dialysis.
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fibrochondroblastic, fibro-osteoclastic andwoven bone resulting
in narrowing of the cartilage layer and breakdown of the spon-
giosa layer. Although growth impairment does not occur
initially, progressive destruction of the growth plate due to sec-
ondary hyperparathyroidism can lead to slipping of epiphyses
and cessation of growth (Santos et al. 2005).

Growth hormone/insulin-like growth factor 1 axis

GH exerts its somatotrophic effects through both direct and
indirect actions via insulin-like growth factor (IGF)-1 by indu-
cing differentiation of epiphyseal growth plate precursor cells
towards chondrocytes, which in turn become responsive to
IGF-1 and concomitantly express IGF-1 mRNA resulting in
proliferation of pre-chondrocytes, osteoblast hypertrophy,
bone remodelling and net mineralisation (Ohlsson et al.
1998). IGF-1 affects somatic growth in fetal and postnatal
development (Gohlke et al. 2005; Yakar et al. 2005) acting
systemically as a classical endocrine hormone and locally as
a paracrine/autocrine growth factor (Dupont & LeRoith,
2001), whilst being influenced to variable degrees by GH,
nutrition and sex steroids (Straus & Takemoto, 1990; Thissen
et al. 1994). Serum GH levels and secretory rates in CKD
have been shown to be high–normal in pre-pubertal children,
probably due to attenuated bioactive IGF-1 feedback and
reduction in the metabolic clearance rate of GH (Haffner
et al. 1994; Tonshoff et al. 1995). The paradox of normal or
elevated GH levels in the presence of growth retardation has
led to the concept of uraemic GH resistance (Kaskel, 2003).
Despite increased GH concentrations, free IGF-1 levels and
IGF-1 bioactivity are decreased in CKD due to the presence
of IGF binding proteins, which have been shown to have mul-
tiple level interactions with the GH/IGF axis, which modulates
their action (Frystyk et al. 1999; Kiepe et al. 2005).

Pubertal dysfunction

Delayed or abnormal pubertal progression in children with
CKD further increases the risk of growth retardation. These
children exhibit elevated gonadotrophins with decreased or
low–normal gonadal hormones resulting in a state of compen-
sated hypergonadotrophic hypogonadism (Marder et al. 1983;
Schaefer et al. 1991). However, they may also have evidence

of hypothalamic-pituitary-gonadal dysregulation with blunted
response of luteinising hormone to gonadotrophins and
decreased luteinising hormone pulsatility and bioactivity
(Blackman et al. 1981; Oertel et al. 1983; Giusti et al.
1991). Finally, oestradiol and testosterone are reduced due
to uraemia, either through direct toxic effects or hyporespon-
siveness of the gland, which can thus further effect pubertal
growth (Karagiannis & Harsoulis, 2005).

Assessment of body composition

The complexity of nutritional management and its relationship
to growth requires an accurate assessment of body compo-
sition in CKD and understanding of the potential problems
of each method (Table 3). BMI was developed as a reliable
method of assessing body fat and nutritional status in public
health studies (Cole, 1997). However, its value in the setting
of chronic disease, where children may also suffer from
growth retardation, has been questioned (Schaefer, 2000). In
addition to growth retardation, reduced levels of physical
activity, ESRF with the need for dialysis and immunosuppres-
sive therapy may further confound the interpretation of BMI.
Furthermore, it is increasingly recognised that truncal obesity
is associated with a higher risk of cardiovascular morbidity
and that BMI, by itself, has limited value in assessing regional
body composition (Bolton et al. 2003).

Assessment of skin-fold thickness as a marker of fat mass,
whilst widely used, is prone to significant inter- and intra-
observer variation. Similarly, whilst waist circumference
measurements are closely correlated to both abdominal fat
mass and insulin resistance syndrome (Hirschler et al.
2005), fluid overload in CKD can result in overestimation of
fat mass whilst abnormal regional body composition or abnor-
mal ratio of subcutaneous:visceral fat could be unrecognised
(Odamaki et al. 1999).

Isotope dilution technique is often considered to be the gold
standard for assessing body composition but this technique is
not widely available and, in CKD, fluid overload may lead to
inadequate equilibration with resulting underestimation of fat
and lean mass (Wuhl et al. 1996). Densitometry estimates
body composition from body density using either underwater
weighing or air-displacement plethysmography (Sardinha et al.
1998; Fields & Goran, 2000) whilst neutron activation analysis

Table 3. Limitations of methods of assessing body composition in chronic kidney disease (CKD)

Method Potential problem in CKD Effect on assessment of nutritional status

BMI Fluid overload increases weight. Unable to
differentiate between lean and fat mass

Overestimation of nutritional assessment

Skin-fold thickness Fluid overload increases subcutaneous tissue Overestimation of nutritional assessment. Unable to
recognise abnormal ratio of subcutaneous:visceral fat

Isotope dilution Inadequate equilibration in fluid overload Overestimation of fluid volume, with underestimation
of fat mass and protein mass

Densitometry Fluid overload Overestimation of lean mass
Neutron activation analysis Increased non-protein N (urea) Overestimation of total body N and

total body protein
Total body K Increased tissue K concentration Overestimation of body cell mass
Bioelectrical impedance Fluid overload with abnormal fluid distribution Unpredictable effect on estimation of fat

mass and lean mass from total
body water

Dual energy X-ray absorptiometry Fluid overload Overestimation of lean mass
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provides a non-invasive analysis of the total body content of
major elements by directing neutrons at the subject and then
measuring the time of decay of the excited neutrons
(Ellis, 2000). Fluid overload and raised K and urea in CKD are
again limitations to these techniques. Total body K counting
measures the naturally occurring radioisotope 40K to calculate
total body cell mass. However, this method relies on estimating
total body K in lean muscle, which may be abnormal in CKD
resulting in an overestimation of body cell mass (Blumenkrantz
et al. 1980). Bioelectrical impedance analysis has been widely
used to examine nutritional status in children and body
composition in CKD (Nagano et al. 2000; Schaefer, 2000).
This method estimates body fluid compartment volume by
measuring conduction of electrical current through body fluids
and impedence by body components. However, concerns
remain over the reliability, reproducibility and sensitivity to
changes in regional composition of this method in individual
children in these cohorts (Kyle et al. 2004).
Dual energy X-ray absorptiometry (DXA) involves two

photon beams passing through a subject’s body to create a
two-dimensional projection of a three-dimensional structure.
In CKD, in addition to assessing bone mineral content, whole
body DXA can also provide reproducible estimates of fat mass
and lean mass in children and adults by measuring the degree
of dual photon attenuation produced by each tissue type
(Goran et al. 1996;Azocar et al. 2004).Unlike the othermethods
described, DXA has the advantage of being more widely avail-
able in clinical practice. Furthermore, reference paediatric
population data are increasingly becoming available for various
populations and ethnicities (Ellis et al. 1997; Van der Sluis et al.
2000). The main concern over the accuracy of DXA is its failure
to measure total body water. Instead, the software used to calcu-
late lean mass assumes the total body water to be 73% of lean
mass (Pietrobelli et al. 1996). This is particularly pertinent to
CKD, as in the presence of fluid overload there can be an over-
estimation of lean mass.

Body composition in children with chronic kidney disease

There is increasing evidence that children with CKD have an
altered fat mass and lean mass with nutrition, uraemia, chronic
inflammation, physical inactivity and GH resistance contribut-
ing to the aetiology of abnormal body composition in these chil-
dren (Axelsson et al. 2004; Pattaragarn et al. 2004). In affected
adults, a high BMI has been reported with fluid overload and a
lowBMI has been associated with increasedmorbidity andmor-
tality (Pifer et al. 2002). In children, similar studies have shown
an inverse bell-shaped association between BMI and mortality
risk with a change of more than 1 SD being associated with a
6% increase in mortality (Wong, 2000). However, BMI when
corrected for height age is only moderately raised in children
withCKD (Schaefer, 2000).Measurement of skin-fold thickness
in affected children has shown deficits in tricep skin-fold thick-
ness (Orejas et al. 1995), but Zivicnjak et al. (2000) demon-
strated that fat distribution in CKD was disproportionate with
an increase in truncal fat in comparison with limbs. Such find-
ings have also been reported in adults who had a significant
increase in visceral fat and a decrease in subcutaneous fat
when compared with healthy subjects (Odamki et al. 1999).
Total body K, a potential marker of lean mass, is reported to
be low in childhood CKD (Weber et al. 1980), whilst in vivo

neutron activation measuring total body N has also shown defi-
cits in childhood CKD, although this change was not apparent
when data were adjusted for height (Baur et al. 1994).

DXAdata, corrected for height in childrenwith CKD, demon-
strated that BMI did not accurately reflect body composition,
with patients exhibiting low lean mass with relatively high fat
mass (Rashid et al. 2006). Johnson et al. (2000) also reported
reduced lean mass and high fat mass in children with CKD
and an increase in lean mass and a decrease in fat mass over a
6-month period of recombinant human GH treatment. Similar
results have been reported in pre-pubertal children with CKD,
confirming the lipolytic and anabolic effects of GH, although
neither of these two studies adjusted the data for height or
body size (Boot et al. 1998; Van der Sluis et al. 2000).

Conclusions

The present review seeks to explain the different mechanisms
that affect growth in childhood CKD. Endocrine disturbances
and nutritional problems play major roles in growth failure.
Children with CKD may have abnormalities of their body
composition, which may not be apparent on simple measure-
ment of BMI. Evaluation by methods such as DXA needs to
be performed carefully with due consideration of the concur-
rent growth retardation and pubertal delay.
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