
ON COMMUTATIVE SQUARES 

JOHANN B. LEICHT 

The following elementary facts about certain commutative diagrams, called 
"squares," are stated and proved in terms of abelian groups and their homo-
morphisms. However, they are valid for arbitrary abelian categories and can 
be proved also for them. This does not need to be shown, since every abelian 
category can be embedded into the category of abelian groups with preserva­
tion of exact sequences according to a result due to S. Lubkin (1). Proofs 
are often omitted or given only for one half of a theorem, the other half being 
dual to the first. Generalizations to a larger class of diagrams containing all 
finite commutative diagrams are possible. 

DEFINITION 1. The commutative square 

A v-

is called usmooth,1' if 

Ker fi = v Ker a and I m a = v~l Im 0. 

PROPOSITION 1 ("Four-lemma"). In the commutative diagram 

(z) ^ % 
(mxorvorrvj 

the middle square is smooth, that is, 

Ker 4>z = v Ker <£2 and Im 02 = M-1 Im $3-

Here "e0" {"ei"} means the part "Im C Ker" {"Im D Ker"} of "exact." 

Remark. For the first {second) relation the condition "eo" on the bottom (top) 
is superfluous, "eo" at A2 {B%} implies "tfo," hence full exactness at B2 \A?\. 

Received August 7, 1961. The author is indebted to Professor Saunders MacLane and 
Professor Helmut Rôhrl for advice and criticism. 
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"Smoothness" of the square (1) is equivalent to embeddability in a special 
diagram (3) of type (2), that is, with v onto and v 1-1 and exactness through­
out. Application of the four-lemma gives 

Ker v — a Ker v 

0 
l 

I 

KeroC-

and Im v = /3-1 Im / , 

0 

® 
•B 

/ » ' • 

o— 

v' 
: s ; 

• CokcrcC -

J!' 

* 
0 

- 6^/3 

i 
0 

so the "smoothness" property of (1) is symmetric to the dotted diagonal. 77ze 
four-lemma is nothing but the statement of this symmetry, since its hypotheses 
imply immediately 

Ker IJL = <f>2 Ker v and Im v = <£3
-1 Im ju. 

Hence for every smooth square (1), 

Ker ft = v Ker a, Ker / = a Ker i> 

and 

m a = y Ir Im i> = /3_1 Im i/; 

moreover 
Ker <5 = Ker a KJ Ker */ and Im 8 = Im v C\ Im 

COROLLARY a. Let (4) £e a commutative diagram: 

(ej e, 
0 ,4 A > g _ 

W 

/ * 

<r /-/ 

yCC ' ^C 
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Then 
Ker f3 = X Ker a and Im a = X/_1 Im /?; 

a 1-1 (a?zd 7 1-1) implies $ 1-1, (7 1-1 a^rf) fi onto implies a onto. 

COROLLARY a' (dual to a). Let (4') be a commutative diagram: 

A-

W) onrvta 06 

A'- A' 

Then 
Ker 7 = /x Ker /3, Im 0 = M'_1 Im 7; 

and therefore 

(a onto and) /3 1-1 implies 7 1-1, (a onto and) 7 0^/0 implies /3 onto. 

Remark. Omitting the dotted arrows and the trivial assumptions "(eo)," 
this can be regarded as a ''three-lemma," which contains the useful "five-
lemma" and saves sometimes additional diagram-chasing (see for example 2, 
p. 5). 

DEFINITION 2. The commutative square (1) is "small" at A {B'\, if in the 
enlarged diagram (5) the induced map v [v\ is 1-1 {onto}. If it has both properties, 

0 

& • ) 

0 

0 

-•*o 

— ^0 
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then it is "small." It is called "tight" (at A {B'}), if it is both smooth and small 
(at A {£ '}) . 

Now v 1-1 {/ onto) is respectively equivalent to â 1-1 {$_ on to} , since it 

means simply Ker a H\ Ker ^ = 0 j l m / U I m ^ = Bf] ; hence "smal lness" is 

a symmetric proper ty too. 

D E F I N I T I O N 3. The "upper completion" of the diagram 

is the diagram (6) with the subgroup U C A' © B and maps p, a- such that 
(a', b) d U if and only if v'{a') = 13(b) and p(a', b) = a', a (a', b) = b. 

é 

(G) ? 

I t has the following universali ty propert ies: (a) it is commuta t ive , t h a t is, 
/3a = vp; (b) given any two maps v : A —> B and a : A —> A' such t h a t 
fiv = va, there is a unique co : A —> U defined by 03(a) = (a(a), v(a)) £ U 
such t h a t v = aœ and a = pco (see (7)). 

(r) a 

Therefore /3a = v p = [v\ /3]r can be regarded as the least common right-
multiple of v and /3. 

D E F I N I T I O N 3 ' . The "lower completion" of the diagram 

A ' ^ A ^ B 

is the diagram (6') with the factor group L = A' © B (a(a), —v(a)) for all 
a Ç A and maps L, K such that t(af) = (a', 0), a(b) = (0, b). 

W 

The lower completion has the following universali ty propert ies: (a) it 
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commutes , t h a t is ta = KV; (b) given any two maps / : A' —> B' and /3: B —> B' 

with /3v = va there is a unique T\ L-+ B' defined by r(af, b) = / ( a ' ) + (3(b) 

such t h a t / = TL and /3 = TK (see ((7 ' ) ) . 

(79 

Hence KZ> = ia = [a, v] 1 can be regarded as the least common left-multiple 
of a and v. 

Both completions are unique up to isomorphism. 

PROPOSITION 2. The upper {lower) completion (6) {(6')} is tight at U {L}. 

Proof, (a) (6) is smooth, t h a t is, Ker (3 = a Ker p and I m p = v~l I m (3. 
If /3(e) = 0, then U d (0, b) G Ker p and b = o-(0, i ) , so Ker 13 C 0- Ker p. If 
*/(a') = j8(ô), then (a', é) G Ï7 with af = p(a' , 6), so Im p 3 j / " 1 Im 0. 

(b) (6) is small a t U: If (a', b) £ Ker p Pi Ker 0-, then p(a' , b) = a' = 0 
and <7(y, ô) = b = 0, so (af, b) = 0. 

COROLLARY a. 7/ / {/3} 0W/0, then <r {p} 0^0 . 

Pro*?/. Im a = /3"1 Im / j l m p = Z " 1 Im 0}. 
T h u s the l.c.m. [*>', /3]r is epimorphic if and only if both v and /3 are. (This 

follows also from Im|V, /3]r = Im |S H Im / . ) 

COROLLARY b . If v {&} 1-1, then and only then a {p} 1-1. 

Proof. Ker a C P _ 1 Ker / P Ker 0- {Ker p C o- 1 Ker p P Ker p} = Ker p Pi 
Ker o- = 0 and Ker v = p Ker 0- {Ker /3 = a Ker p} (or Ker 0- = Ker v © 0 
{Kerp = 0 © Ker /3} in obvious nota t ion) . 

T h u s [v', /3]r is monomorphic if and only if both / and /3 are. (This follows 
also from Ker |V, fi]r = Ker p W Ker a- or = Ker / © Ker /3.) 

COROLLARY C. If v = /3, then p awd 0- onto. 

Proof. Im p = v'-1 Im 0 = Im a = /T 1 Im / = /3'1 Im /3 = B. 

Consequently p = 0- is isomorphic and [/3, /3]r = /3 if and 0^7y if vf = (3 1-1. 
(If p = (7, then Ker p = Ker a = Ker p P Ker a = 0, so p = a 1-1 and 
*>', /5 are both 1-1; if p = a onto, then v = f$ because v p = /3a. If [/3, /3]r = 0, 
t h a t is, ci 1-1, then / = /3 1-1.) 

COROLLARY a'. If a {*>} 1-1, /Ae/z K {L} 1-1. 

Proof. Ker K = Ï> Ker a {Ker 1 = a Ker *>}. 
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T h u s the Le.m. [a, v]t is monomorphic if and only if both a and v are. (This 
follows also from Ker[a, v\x = Ker a U Ker v.) 

COROLLARY W. If and only if a {v} onto, then K \L\ onto. 

Proof. Im a = L-1 Im K {Im v = K - 1 Im i\ and Im O i Im a W Im K 
{Im i D K Im 1/ U Im 1} = Im i \J Im K = L (or Im t = .4 ' © Im v {Im K = 
I m a e 5 } ) . 

T h u s [a, i>]j is epimorphic if and only if both a and v are. (This follows also 
from Im[a, v] = Im t Pi Im K or = Im a ® Im p.) 

COROLLARY C'. If a = V, then i and K 1-1. 

Proof. Ker i = a Ker Ï> = Ker K = v Ker a = a Ker a = 0. 

Hence i = K is isomorphic and [a, a j z = a if and 0^/3/ if a = v on to . (If 
t = K, then Im t =' Im K = Im 1 W Im K = L, so L = K on to and a, v are both 
on to ; if 1 = K 1-1, then a = p because ia = KV. If [a, a]i = a, t h a t is, t on to , 
then v = a onto.) 

Remark. For completions see (3). In (4) least common multiples are defined 
only for monomorphic or epimorphic pairs. 

PROPOSITION 3. The square (1) is smooth if and only if the map a>: A —» U 
{T: L —» B'} in (7) {(7')} is onto {1-1}. So œ onto if and only if r 1-1. 

Proof. Suppose œ on to . If /3(b) = 0, then U D (0, b) = co(a) = (a(a) , p(a)) ; 
hence b = v(a) with a (a) = 0: Ker 0 C v Ker a. If Z(a ' ) = (3(b), then 
[/ Z) (af, b) = o)(a) = (a(a), v(a)) ; hence a' = a (a) : *>,_1 Im ^ C Im a. Sup­
pose (1) is smooth. Given (ar, b) £ U, v' (af) = /3(b) or a' = J / - 1 Im /3 = Im a, 
thus a ' = a(a) and 0(6) = v'a{a) = (3v(a) or /3(ô — v{a)) = 0, t h a t is, 
b — p(a) Ç Ker /3 = *> Ker a, so b — v(a) = v{a) wi th a (a) = 0; hence 
(a', b) = («(a + a), via + â)) = a;(a + â) : co onto . 

PROPOSITION 4. r&e square (1) is M a / / a£ 4̂ {5'} if and only if the map 
œ:A-> U {T:L->B'\ in (7) {(70} is 1-1 {onto}. 

Proof. For a £ A, w(a) = («(a) , *>(a)) = (0 ,0) = 0 is equivalent to 
a £ Ker a Pi Ker p. 

Proofs can be given also by means of Proposition 2, which is restated in: 

PROPOSITION 5. The square (1) is its own upper {lower} completion, that 
is, the map œ {r} in (7) {(7')} is isomorphic if and only if it is tight at A {B'}. 

P R O P O S I T I O N 6. (1) is smooth if and only if the inner square in the diagram 
(8) built by the maps p, a, co and t, K, T from the upper and lower completions 
(7), (70 is commutative. 
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(') 

Proof. "If" follows from co onto or r 1-1. Assume commutativity. If 
„'(a ') = (3(b), then (a', 6) G Z7 and ip(a'f b) = (a', 0) = Kcr(a', 5) = (0, J) in 
L, that is, (a', -b) = (a(a), — v(a)) for some a £ A, so a' = a(a) and 
/ - 1 Im 0 C Im a. If /3(b) = 0, then (0, b) G Z7 and similarly (0, -b) = (a (a), 
— v{a)) with a £ A, hence 6 = v(a) with a (a) = 0 or Ker 0 C ? Ker a. 

DEFINITION 4. 7w aw^ commutative diagram (8) /fee inner square 3 is ca//ed 
a "squeeze1 of the outer square 21, the map co {r} the upper {lower} "squeezing 
map." 

PROPOSITION 7. 7/ 21 is smooth, then every squeeze 3 of 21 is smooth {and 
conversely). 

PROPOSITION 8. If 3 is smooth, co onto and r 1-1, ^e» 21 is smooth. 

PROPOSITION 9. If 2t is smooth and 3 sraa// (Aewce /ig/z/) a/ U {7,}, /Aen 
co 0?zfo {r 1 - 1 } . 

PROPOSITION 10. 7/ 21 is small at A {B'), then œ 1-1 {r onto} (awd conversely). 

COROLLARY. If 21 is 5ma// a£ A {B'} and co <wfo {r 1-1} (ftena? isomorphic), 
then 3 is sraa// a£ £7 {L}. 

PROPOSITION 11. If 3 is small at U {L}, and co 1-1 {r 0?zto}, then 21 is swa// 
a* ,4 {B'\. 

Remark. Propositions (7)-(9) {(10), (11)} follow from Proposition (3) 
{(4)} and conversely. Direct proofs are as easily available. 

THEOREM 1. For any smooth square (1) the square built by the maps p, a 
and i, K from (7) and (7f) is its own completion, that is, it is tight and is con­
nected commutatively with the original square by the epimorphism co and the 
monomorphism r. It is the only tight squeeze of (1) up to isomorphism, as well 
as of any other squeeze of (1). 

PROPOSITION 12 (see diagram (9)). Given two squeezes 3 and 3 of 21 so that 

3 is small at Û {L} and co onto {r 1-1}^ Then there is a unique e: [/—> Û 
{rj: L —> L) such that (9) commutes; hence $ is a squeeze of 3 if both conditions 
hold. 

Proof. Given u 6 U, u = co(a), define e(u) = co(a). This is consistent since 
for u = co(ai), co(a — a0 = 0. Hence v(a — ax) = o-co(a — a :) = <rco(a —aO = 0 
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(9) 

and a(a — ai) = pu(a — ai) = pû(a — ai) = 0. T h u s œ(a — ai) Ç Ker p H 

Ker d = 0, t h a t is, û(a) = w(#i). 
This again proves the uniqueness of the squeezing described in Theorem 1. 

T H E O R E M 2. Every commutative square (1) can be squeezed uniquely with 
epimorphic upper and monomorphic lower squeeze map to a small square obtained 
from the maps p, <r and i, K in (7) and (7f) by restricting U to Im œ and L to 
L/Ker r. If and only if (1) is smooth, this restriction is the original inner square 
of (8) and tight. If and only if (I) is small, this squeeze is (1) itself. 

Remark. In Theorem 1 the inner square is a squeeze of any squeeze of (1), 
whereas here this can be said only of those squeezes of (1) with epimorphic 
upper and monomorphic lower squeezing map . T h e commuta t iv i ty of the 
inner square is ensured by the restrict ion process. 

D E F I N I T I O N 5. The l.c.m. [ai, a2, a^]r of three maps a^. At—^Q with common 
range Q is their upper completion (10) with the subgroup U Q.Ai © A2 © A3 

and maps (rt such that (au a2, a3) G U if and only if ai(a±) = 0:2(02) = a3(a3) 
and <Tt(au #2, a3) = at for i = 1, 2, 3. 

8 = <XiVi = oLzVz •• • ot>*}>, '3yS 

M 

D E F I N I T I O N 5' . The l.c.m. [vu v2, v%]i of three maps vt: P -^ At with common 
domain P is the lower completion (10') with the factor group L = Ax © A2 © A3 
(vi(p)yOtvj(p)) for all p G P and maps it such that ii(a%) = (0, a*, 0) for 
1 < i < j < 3. 

In both cases we have universality: T o every commuta t i ve diagram of the 
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{10') 

6=0C1yl=ocxVl=otv 
3 3 

same shape (the upper {lower} part of (10) {(10')} with P and vt {Q and at) 
instead of U and at [L and it}, i= 1,2,3) there is a unique mapping 
co:P -» U {r:L-^Q} such that (10) {(10')} commutes. This gives: 

THEOREM 3. For mappings ai'. A 
associativity laws 

Q, Vi'. P —> Au i = 1,2,3, the respective 

[[ai, a2]r, oiz]r = [ai, [a2, a3] r] r = [au a2, a3]r 

and 

[[vi, v2]h v?\i = [vi, [v2, vz]i]i = [vi, v2, vz]i 

hold up to isomorphisms. 

Thus the statements of the Corollary to Proposition 2 immediately extend 
to this case. The analogies can be carried further: 

DEFINITION 6. The upper {lower} diagram in (10) {(10')} is called "smooth" 
or "small" at P [Q] according as œ onto {r 1-1} or co 1-1 {r onto}, respectively. 
It is called "tight" at P {Q}, if it has both properties. 

PROPOSITION 13. Smallness at P in (10) is equivalent to 

Ker vi C\ Ker v2 C\ Ker vz = 0, 

smoothness at P with 

D 

and 

Kx: Ker «i[ = vx Ker ô = j>i(Ker v2 \J Ker j/3)] = *>i(Ker v2 C\ Ker vd) 
K2: Ker a2[= v2 Ker 5 = *>2(Ker v\ \J Ker J>3)] = *>2(Ker vi P\ Ker v3) 
Kz\ Ker a3[ = i>3 Ker ô = i>3(Ker Vl U Ker *>2)] = v3(Ker i>i P\ Ker *>2) 
Xô : Ker 8[= Ker ^ VJ Ker v2 \J Ker ?8] 

= (Ker Vl H Ker „2) U (Ker ^ H Ker vz) U (Ker »2 Pi Ker ?8) 

C< 

7i: Im vi[= ai"1 Im ô] = a:i_1(Im a2 f~\ Im a 3) 
72: Im j>2[ = a2

_1 Im h] = a2
- 1(Im «i P\ Im a3) 

73: Im i>3[ = az~l Im ô] = a3
- 1(Im ax C\ Im a2) 

7a: Im 5 = Im «i P\ Im a2 C\ Im a3. 
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PROPOSITION 13'. In (10') smallness at Q is equivalent to 

Im a i \J Im a2 U Im a3 = Ç, 

smoothness with 

(Kx': K e r a i [ = ^ Ker ô] = ^ ( K e r ^ U K e r ^ ) 
J i £ / : Ker a2[ = v2 Ker 5] = *>2(Ker *>i W Ker vz) 
! i£ 3 ' : Ker a3[ = v% Ker ô] = ^3(Ker v\ VJ Ker i/2) 
[ K8

f: Ker <5 = Ker Vl U Ker ^2 U Ker v, 

and 

f / / : Im vi[= a r - 1 (Im a2 P Im a3) = a i - 1 Im ô] = a i - 1 ( I m a2 U Im a3) 
I 12': Im i>2[= a 2

_ 1 ( I m a i P Im a3) = a 2
- 1 Im ô] = a 2

_ 1 ( I m a i U Im a3) 
"I iY : Im Ï / 3 [ = a-f1 (Im a i Pi Im a2) = a 3

_ 1 Im ô] = a 3
_ 1 ( I m a± U Im a2) 

Is : Im ô[= Im a i P Im a2 P Im a3] 
[ = (Im a i U Im a2) Pi (Im a i U Im a3) P (Im a2 U Im a 3) . 

Remark. Replacing throughout " = " by the indicated inclusion signs "^)" 
and " £ " we obtain s t a tements t h a t follow already from commuta t iv i ty . 
Obviously smoothness a t P does not imply smoothness a t Q, t h a t is, the 
self-duality "co onto if and only if r 1 -1" in Proposition 3, t rue for squares, 
no longer holds. 

PROPOSITION 14. Condition Kt and Is implies It; It and Ks implies Kt\ 1% 
implies Is', Kt and Kj implies Ksfor 1 < i < j < 3. Dually K/ and I& implies 
I(\ 11 and Ks implies K(\ 1/ and 1/ implies Is ', K/ implies K& . 

COROLLARY. The conditions Klf K2, i£3, and Is { i£ / , K2, K2, and I&'\ or 

h,I2,I,, and K8 {//, J2 ' , J8 'f and Kô'\ or Ki,Kj,Il {//, / / , K{\ with 
1 < ^ ? é 7 ^ / < 3 alone imply the others, that is, smoothness at P \Q). 

Remark. T h e corresponding facts for the square (1) are in obvious no ta t ion : 
K$ and Is implies Ip, Kv> and Is implies Ia; similarly Ia and Ks implies Kv>, 
Iv and Ks implies K$. Hence K$, Kv>, and Is alone, or Ia, Iv, and K8 alone, as 
well as K$ and Ia alone, or Kv> and Iv alone, imply full smoothness. T h e last 
s t a t emen t is the four-lemma. 

Now the commuta t ive diagrams of given shape, say 

form an abelian category (see 3) , whose maps o>:2)—>2)' with 

are triples co = (Xi, <5, X2) such t h a t the diagram (11) commutes . 
T h e sum of two mappings co = (Xi, X, <52) and r : (/xi, e, ^2) : 3) —» 2 / is 

defined by co + r = (Xi + Mi> à + e, X2 + ju2) : 35—> 3D', co is monomorphic 
{epimorphic}, t h a t is, co(/> = 0 {0co = 0} implies 0 = 0 if and only if Xi, X2, 8 
are all 1-1 {onto}. 
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(</) \ 

Ker co, Coker co, Im co ~ Coim co together with their natural injection 
('i>i. 12), projection (in', a', im'), injection ( i / , / , 12') and projection (xi, o-, T2) 
are denned in obvious manner from the respective induced diagrams (12). 

\C»\ *1 > Koi <~ "» M 

A," • Û -
oca 

4. 
- * / 

• « • 

<** •A: 

/\z G?£eM ^ Coker d -< Gfof/k 

(a) 
A • fl-*—2a-

CoôrnAj " J^-
J*A 

• CoCrriX-

Given 35, define J" (3)) = £/ as the top group in the upper completion of 3), 
that is, (ax, a2) 6 [ / C ^ i © ^ 2 if and only if ai(a,i) = a2(a2). For 
co: 35 -> 35' in 3t define a mapping T(co) : U-> U' = r(SD') by T(ui)(alt a2) = 
(Xi(ai),X2(a2)) Ç Z7'. Define 5(3)) = Q/Im «i U Im a2 and 5(co) : 5(3)) ~> 
5(3)') = Q'/Im a / V J Im a2' by 5(co)(g) = 5(g). This is consistent, since 
d(ai(ai)) = a/Xtidi) = 0 for i = 1, 2. 

THEOREM 4. T and S are additive covariant functors and S is the first right 
satellite of T. The higher satellites are trivial. For any exact sequence 

namely 

x 

•o, 

-A 

( « ; 

A;-
>: 

- A i 

6 

^ 

* -

A 

- A i -

è7 

X 

ce; 

- û " -»o 

• A I -
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the sequence 

0 -> r(S)) ^ H T($>) li^X r(S)") ~̂> 5(2)) — H 5(SD') - ^ ^ S(SD") -> 0 

is exad, w/Â a connecting homomorphism d defined as follows: 

For ( a / W ) Ç E7" = T($"), t h a t is « / ' ( a / ' ) = a2"(a2"), find 
a / ' = Xi , (a 1

, ) , a 2
, / = \2'(a2'). Then 

a i ' V f a i ' ) " a2"\2'(a2') = « ' ( « / ( a / ) - ^ ( a / ) ) = 0. 

Hence ai (ai) — a2 (a2) = ô(q) with q unique. Set 0 ( a / ' , a2") = (Z-

Proof. 6 is well defined, since f o r a / ' = Xi '(âi ' ) , a2
n = \2(â2), X / ( â / — ai) = 0 

and \2(â2 — a2) = 0; hence â / — a / = Xi(#i), â2 ' — a2 ' = X2(a2), and 
« / ( a / ) - a2'(a2') = « / ( a / ) - « / ( a / ) + ai 'Xi(ai) - a2 'X2(a2) = ô(q) + 
ô(a1(a1) — a 2 (a 2 ) ) . B u t ax(ai) — a2(a2) = 0. Now 

r ( © ) = £/ = Ker 0 ^ and S(®) = Coker </>£ 

with the "associated m a p " $<£-. Ai ® A2-*Q given by 

0 j ) ( a i , a2) = «i(ai) — a 2 (a 2 ) . 

7 (̂co) and 5(co) are the induced maps in diagram (14). T h u s the "kernel-
cokernel- lemma" (see 3) provides a proof. Direct calculation gives another . 

o • U=Kef% 

(H) T(*)=H?\ 

a> A©Ar 

X®\ 

£o -Q. -Coktf 

U^Kerfg, ^ © ^ _ Xo' •Qi-

•o 

• Ctkeh %y - 0 

Dually in the abelian category 33 formed by the diagrams of shape 

&:Ai^--P-^A2 

define F(&) = L = Ax 0 A2/(vi(p), -v2(p)) for p £ P, the bo t tom group 
of the lower completion of 6 , and for r : 6 —> (£' in 33, namely r = (/xi, e, /x2) 
such t h a t (11') commutes , the m a p F(T):L—> L' = F(&) by F(r)(aua2) = 
(m (a i), n2(a2)), consistent since F(r)(vi(p), —v2(p)) = (vi'e(p), — v2e(p)) = 0 
in U'. Define G(S) = Ker J>I P \ Ker v2 and the m a p G(r) : Ker *>! H Ker v2 —* 
Ker y / H Ker *>2' = G(<£') by G ( T ) ( £ ) = e(£) Ç Ker Vl' C\ Ker v2\ 

(11') h 
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THEOREM 4'. F and G are additive covariant functors and G is the first left 
satellite of F. The higher satellites are trivial. For any exact sequence 

0 S ^ S ' ^ g" -* 0, 
namely: 

(13') 

the sequence 

0 • G(<5) ^X G(S') ^X G(6") X F(<5) - ^ » W ) ^X F(<£") • 0 

is exact, with connecting homomorphism û defined as follows: For p" 6 Ker vi" 
f\ Ker v2" find p" = «'(/>'); then m'vi'ip') = 0 awd v-îvlip') = 0, arad Aewce 
vi'(p') = Mi(oi) owd vi'{p') = ^2(^2) with unique a 1, a-i. Set û(p") = (ai, —«2). 

Proof. # is well defined. For £" = e'(p'). e ' (p ' — £') = 0 ; hence 
p' = />' + «(£) and y i ' (p') = Mi(ai) + MiMp)), ^ ' (p ' ) = ^ 2 ) + ^Wp)). 
But (eiO), —Vi{p)) = 0 in L. With an "associated map" i / ' g i P - ^ x © 4 2 

defined by i£gO) = (J»I(/>), —vi{p)) 

F(&) = Coker ^ g and G(g) = Ker ^g . 

F(T) and G(T) are the induced maps in (14'). 

0-

(W 

->P- u 

o-
Y 

w- +p 
fjt' 

U©A 

-fat— 

- Cokeh ft- +0 

P&hr F(r) 

• Coke.* W' ->o 
Remark. For the right half of the diagram (10), built by the maps au a2j «3, 

an "associated map" can be similarly defined, namely x' Ai ® A2 ® Az -^> 
Q ® Q ® Q given by xfai» «2, ad) = (ai(ai) - «2(^2), a{ax) — a3(a3), a2(a2) — 
«3(#3)); then Ker % = U gives the upper completion and Coker x its right 
satellite. Similarly, for the left half of the diagram (10'), built by the maps 
vu V2, vs, the associated map £\ P ® P ® P —> Ai ® A2 ® A% is defined by 
£(Pi> p2j Pz) = (vi(p2 + Pz)y v2(pi — P2), vz(-pi — p2)). Thus Coker £ = L 
gives the lower completion and Ker £ its satellite. More generally to any 
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finite (and infinite) diagram (not necessarily of 1.cm.-type) there corre­
sponds an upper and lower associated map, which gives its upper and lower 
completion, respectively, with satellite. 

PROPOSITION 15 (see 3). If the triangle 

is commutative, the sequence 

(15) 0 -» Ker 0 ±> Ker 4> ^ Ker y U Coker 0 ^ Coker 0 ^> Coker y -> 0 

W£/Ê natural injection i, projection ir, and induced maps 0, 7, e (Zry identity) 
is exact. 

Proof. $ = y/3 implies Ker </> = 0_ 1 Ker 7 D Ker 0, Im 0 = 7 Im 0 C Im 7 
and 0 Ker 0 = Im 0 H Ker 7 C Ker 7, 7-1 Im <j> = Ker 7 U Im 0 D Im 0. 

Let iY be any additive right-exact functor with left satellites J, K, . . . , 
<t>\ B —> D any map, C = lm<i>, a: A = Ker <j> —> i? and 8: D —> E = Coker 0 
the natural injection and projection respectively. The canonical splitting (16) 
into short exact sequences provides a diagram (17) with both rows exact, 
where the vertical maps are identities and 0, 6'', #, âf are the connecting homo-
morphisms. 

Since H(4>) = H(y)H(0) and J(<j>) = J{y)J(0), the sequences 

0 -* Ker ff (j8) -̂ > Ker H (0) ^ ^ > Ker # ( 7 ) -^ Coter H (0) = = » Coker tf (0) 

-^ Coker ff(7)->0, 

(18) 

7. ' ( f l . i ^ r ^ l . ^ i ™ r ^ ^ l 0 -> Ker 7(0) A Ker J(0) - ^ A Ker J ( 7 ) -^ Coker 7(0) = * Coker 7(0) 

-£ Coker J ( 7 ) -> 0 

are exact. Together with (17) they induce the commutative diagram (19) 
with exact lines , , . In particular: 

(a) Kerjff(0) has a subgroup Im H(a)[= Ker H(fi) ~ Coker #] with 
factor group Coker /(ô) [~ Ker H(7) = Im 0]. 

(b) Coker H(<t>) ~ H(E)[= Im H(ô) ~Coker H(y)]. 
Similarly in case K = 0, that is, 0' = 0 and û' = 0, hence Ker J(y) = Im 0' = 0: 
(c) Ker 7(0) ~ 7 ( 4 ) [ ~ Im / ( a ) = Ker 7(0)]. 
(d) Coker J(0) has a subgroup Coker J"(0)[~ Im û = Ker i l (a)] with 

factor group Coker J(y) [~ I m J {S) = Ker0]. 
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Assume the case of abelian groups with H = ( ) 0 X and / = Tor( , X) 
for some fixed group X. The definition of " 0 , " "Tor," and of the connecting 
homomorphism 6 in terms of generators and relations (see 3) allows an explicit 
description of the isomorphism 

K:KerH(cj>)/lmH(a) ~ J(E)/lm J(S): 

Given e G E and x £ X with he = 0 and to = 0 for some integer h > 0, 
find e = ô(d)) then d(hd) = 0; and hence hd = <t>(b). Put arh(e, x) = b 0 x 
mod Im H(a). This is well defined: For e — ô(d'), ô(d — d') = 0; thus 
M' = 4>(b — tib) and (b — hb) 0 x = b 0 x - b 0 to = b 0 x. hd = 4>(b') 
gives b — V = a(a), sob'®x = b®x + H (a) (a 0 x). For rh(d, x) Ç J(D), 
that is, hd = 0 and to = 0, J(8)rh(d, x) = r^(e, x) with e = 8(d) and M = 0(0) ; 
hence KTh(d, x) = 0 0 x = 0. 

Since Ker //(<£) = i7(/3)-1 Im 0 and Im / / (a) is generated by the symbols 
a(a) 0 x, that is, by those b 0 x with 0(e) = 0, the definition of 6 and # 
shows that: 

Ker H(<t>) is generated within H(B) = B 0 X by the symbols b ® x with 
0(è) = M and to = 0 for some /& = 0, 1, 2, . . . (h = 0 gives Im H (a)), 

Im 0 is generated within H(C) = C ® X by the symbols c 0 x with 
T ( C ) [ = C] = hd and to = 0 for some h — 1, 2, 3, . . . (h = 0 gives 0 0 x = 0), 

Im ê is generated in A 0 X by the symbols a 0 x with a(a)[ = a] = M 
and to = 0 for A = (0), 1, 2, 3, . . . . 

Given the diagram 

replace <t>: B —>D by the associated map 4>^\ Ai © A2-^Q defined above, 
A by U = Ker 0 ^ = [«i, a2]r, £ by 

U = Coker 0 - = Q/lm on U Im a2. 

Furthermore let 

and 

JÇD) : Tor (^ x, X) I2LSI^ Tor «2, Z ) ISL^h}!* Tor ( J 2, X) 

be the induced diagrams with associated maps H(<I>Q) = </>£) ® 1 a n d 
J ( 0 S ) = T o r O ^ , 1); finally F = Ker H(^) = [a± 0 1, a2 0 l ] r , 

F = Coker £7(0$), IF = Ker 7 (0^ ) = [Tor(ai, 1), Tor(a2, l ) ] r and 
IF = Coker 7(0js), the respective least common multiples with satellites. 
Then Im 6 is generated within Im ax \J Im a2 0 X by the symbols 
(ai(di) — a2(a2)) 0 x with ai(ai) — a2(a2) = /zg and to = 0 for some integer 
Â > 0. Im û is generated within U ® X by the symbols (toi, to2) 0 x with 
h(ai(ai) — a2(a2)) = 0 and to = 0 for some h > 0. 
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THEOREM 5. (a) V is generated within (Ax® A2) ® X ~ (Ai ® X) © 
(A 2 ® X) by the symbols (ai, a2) ® x such that ai (ai) — a2(a2) = ha and 
hx = 0 /or 5#me g G (2 ##d integer h = 0, 1, 2, . . . . 

/ / contains the subgroup Ira U ® X, with factor group isomorphic to 
Tor(U, X)/lm Tor (Q, X) by the mapping K defined as follows: For h[q] = 0, 
that is, ha = ai(ai) — a2(a2) € I m a i U Im a2, ^ ^ ^ ( b L #) = (#i> #2) ® x. 

Im U ® X in turn is isomorphic to U ® X modulo the subgroup I m #. 
(b) V ~ U ® X by the canonical map a ® x —•» [q] ® x. 
(c) W~Tor(U,X), that is t [Tor (au l) ,Tor(a2 , l)]r ^ Tor([ai, a2]r, X) by 

rh((ai,a2),x) = (Th(ahx),Th(a2,x)), where h(ai,a2) = 0 and ax(ai) — a2(a2) = 0, 
AewceTor(ai, l)rA(ai, x) — Tor(a:2, l)r / î(a2, x) = r^(ai(ai), x) — rh(a2(a2), x) = 
r„(0,x)^= 0. 

(d) Ŵ  = Tor(Q, X)/lm Tor («i, 1) U Im Tor (a2, 1) /^as a subgroup 
Tor (Im ai U Im a2, X) isomorphic to Im #, with isomorphism given by 
fft(ai(#i) — a2(a2), x) —> (haï, ha2) ® x. The corresponding factor group is 
isomorphic to the subgroup of Tor (U, X) generated by those rh([q], x) with 
hq = 0 and hx = 0, via the canonical map rh(q, x) —*rh([q],x). The latter 
has a factor group isomorphic to Im 6 by rh([q], x) —> hq ® x for hx = 0 and 
hq = ai(ai) — a2(a2). 

To complete the picture given by (19) we describe its maps in terms of 
generators (upper symbols are generators, lower symbols images under the 
preceding map) : 

First row: 

Th(ax(ai) — a2(a2), x) rh(q, x) rh([q]y x) 

0 -> Tor (Im ax U Im a2, X) J^ÏL, Tor (Q, X) ^ - L Tor (Û, X) -* 

0 rh(a1(ai) — a2(a2), x) rh([q], x) with hq = 0 

(ai(ai) — a2(a2)) ® X q ® x [q] ® x 

A (Im ai U Im a2) ® X J ? M * <2 ® X —S^L, Û ® X -» 0 

(ai(ai) — a2(a2)) ® x with («i(ai) — a2(a2)) ® x [q] ® x 
«i(ai) — a2(a2) = &g, hx = 0 

Second row: 

rh((au a2), x) rA((ai, a2), x) ^(«1(^1) — a2(a2), x) 

0 - > T o r ( E / f X ) —-I T o r ( ^ ! © ^ 2 , X ) ^ 2 Tor (Im ai KJ Im a2, X) -* 

0 r/,((ai, a2), x) with r^(«i(ai) — a2(a2), x) 
ai(#i) — a2(a2) = 0 with h(ai,a2) = 0 
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(#i, #2) ® x with 
«i(ai) — a2(a2) = 0 (ai, a2) ® x (a 1(01) — «2(^2)) ® ff 

_!_> £7® X ^-U (Ax ®A2) ®xE^L> (Im ax U Im a2) (g> X - > 0. 

(hai, ha2) ® x with (au a2) ® x with («1(^1) — «2(02)) ® x 
h(ai(ai) — a2(a2)) = 0 ai(ai) — a2(a2) = 0 

Dually, given diagram 

6 : 4 i < - ^ P - ^ ^ 2 

replace <j> : 5 —» D by the associated map ^g : P —> A1 © 4̂ 2, A by Z" = Ker ^ g 
= Ker v\ C\ Ker v2, E by L = Coker i/'g = [*>i, y2]z. Then the induced dia­
grams 

H{^):A1®X^-^^P®X^^-hA,®X 

and 

J ( 6) : Tor (4 lt X) JSL^hlL T o r (P, X) JISL^hlh Tor (4 2, X) 

have associated maps IJ(^g) = i/'g ® 1 and J (^g) = Tor (^g, 1) respectively. 
Their least common multiples with satellites are 

M = Ker fltyg), M = Coker fltyg) = K ® 1, ?2 ® 1],, TV = Ker J (^g) 

and 
N = Coker / (^g) = [Torfo, l ) ,Tor( , 2 , 1)],. 

Then Im ê is generated within L ® X by the symbols hp ® x with Ẑ> Ç Z, 
and to = 0, and Im 0 is generated within P/L 0 J by the symbols p ® x 
with (vi(p), —v2{p)) = h(ai, a2) and hx = 0. 

THEOREM 5'. (a) M is generated within P ® X by the symbols p ® x s^c/z 
/ t o (vi(p), — v2(p)) = h(a1} a2) and hx = 0 /or stfme A = 0, 1, 2, . . . . 

/£ contains lm(L ® X) as a subgroup, generated by those p ® x î f ^ h = 0, 
with corresponding factor group isomorphic to Tor(L, X)/lm Tor(^4i © A2, X) 
by the map K defined as follows: Given generator rh(l, x) with I = [au #2)], that 
is h (au a2) = (vi(p), —v2(p)) and hx = 0, put KTh(l, x) = p ® x. 

Im(Z ® X) i to / / is isomorphic to L ® X modulo the subgroup Im #. 
(b) i f ~ L ® X, / t o is [?i ® 1, i>2 ® 1 ] * ^ [PI, ^]z ® X »m //*e natural 

map. 
(c) iv ^ Tor(X, X) ôy inclusion: For p £ L and i = 1, 2 

T»(£, *) - ^ L ^ i d l ^ ( ^ x ) = 0. 

(d) N = [Tor(i>i, 1), Tor (1̂ 2, l)]z ^ T o r ( y l i © ^42, X) modulo the subgroup 
generated by the symbols rh((vi(p), — v2(p)),x) with hp = 0 and hx = 0, a 

https://doi.org/10.4153/CJM-1963-007-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1963-007-6


78 JOHANN B. LEICHT 

subgroup isomorphic to Tor(P, X)/lm Tor(L, X) by rh(p, x) —» rh((vi(p), 
— v2(p))}x), with Im Tor(L, X) c^ Tor(L, X). N contains a subgroup iso­
morphic to Im â by hp ® x —> rh((vi(p), — v2(p)), x), w/zere hp £ L and hx = 0. 
77ze corresponding factor group of N is isomorphic by the canonical map to the 
subgroup of Tor (L, X) generated by the symbols rh([ai, a2], x) with h(ai, a2) = 0, 
and Tor(L, X) modulo this subgroup is isomorphic to Im 6 via rh([ai, a2], x) 
—» [p] ® x, where h(au a2) = (vi(p), — v2(p)). 

In terms of generators the maps in (19) are: 

First row: 

rh([p], x) rh((ai, a2), x) rh([au a2], x) 

0 -> Tor (P/L, X) I^U Tor (^ i 0 ,42, X) _Z^L> Tor(L, X) -* 

0 Th((vi(P), —V2(p)),x) Th([ai, a2], x) 
with h(vi(p), —v2(p)) = 0 with h(ai, a2) = 0 

[p] ® x (ai, a2) ® x [ai, a2] ® x 

i> P/L®X Ehl> (A, ®A2) ® i M , L® X->0 
[£] ® x with te = 0 (vi(p), —vi{p)) ® x [au a2] ® x 

and (vxip), —v2(p)) = h(a1} a2) 

Second row: 

rh(p, x) with 
0l(£) , -V2{P)) = 0 Th(p, X) Th(\p], X) 

0-> Tor(L, X) JSL^U Tor(P, X) _ Z ^ U Tor (P/L, X) -

0 rh(p, x) with T*([£], x) 
Mp), ~v2{p)) = 0 with ft£ = 0 

p ® x with 
M £ ) , - ^ ( ^ ) ) = 0 £ ® x [£] ® x 

±+ L®X E^U P®X M^P/L®X >0 
hp ® x with p ® x with [p] ® x 

Hviip), -v2{p) = 0 (v1(p), -v2(p)) = 0 

Remark. The case of the functors Horn (X, ) and Horn ( , X) can be treated 
similarly. Thus, for example, in the above notation, 

[Hom(l, ai), Hom(l , a2)]r ~ Hom(X, [au a2]r), 

[Hom^i, 1), Hom(i/2, l)] r c^ H o m ( ^ , v2]u X). 
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Added in proof: The four-lemma (Proposition 1) also appears in a recent 
publication of D. Puppe, Korrespondenzen in abelschen Kategorien, Math. 
Ann. 148 (1962), 1-30 (see p. 10, no. 3.1). It is proved there within the frame­
work of his theory of abelian correspondences. His conjecture (see p. 18, 
no. 4.18) that important parts of the theory can be formulated by assuming 
"quasi-exact categories" (these are abelian categories without addition) only 
turns out to be true: Every such category can be imbedded canonically into 
an 3-category 0f correspondences as defined by Puppe (proof to be published 
soon). This provides in particular a proof of the four-lemma (as well as of 
other elementary constructions of homological algebra) in quasi-exact cate­
gories. An elegant proof can also be given independently of the theory of 
correspondences under the same assumptions. 
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