ON COMMUTATIVE SQUARES
JOHANN B. LEICHT

The following elementary facts about certain commutative diagrams, called
“‘squares,’”’ are stated and proved in terms of abelian groups and their homo-
morphisms. However, they are valid for arbitrary abelian categories and can
be proved also for them. This does not need to be shown, since every abelian
category can be embedded into the category of abelian groups with preserva-
tion of exact sequences according to a result due to S. Lubkin (1). Proofs
are often omitted or given only for one half of a theorem, the other half being
dual to the first. Generalizations to a larger class of diagrams containing all
finite commutative diagrams are possible.

DEerINITION 1. The commutative square

(1)»0& ~ F

Al \BI
'yl
6=?'o°_=13>'
is called ‘‘smooth,” if
Ker 8 = v Ker « and Ima = »"1ImgB.

ProprosiTioN 1 (“Four-lemma’’). In the commutative diagram

€, g
Ai Az /43 A+
(2) onte §, 2 1
(oo % % % A o)
Bi Bz- 33 Bf—
6 &

the middle square is smooth, that s,
Ker ¢35 = v Ker ¢» and Im ¢y = ! Im ¢s3.
Here ‘e {''e’’} means the part “‘Im C Ker” {"Im D Ker"} of “‘exact.”

Remark. For the first (second) relation the condition ‘‘eq’ on the bottom (top)
is superfluous. ‘‘ey” at Az {Bs} tmplies ‘‘es,” hence full exactness at By {4,}.
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“Smoothness’ of the square (1) is equivalent to embeddability in a special
diagram (3) of type (2), that is, with 7 onto and »’ 1-1 and exactness through-
out. Application of the four-lemma gives

Ker v = a Ker v and Imvy = 31Im
0
* 7
I orto- |
\ > v
Herot Kerﬁ —_— — =0
-
S
A
) ~ 8
~.
J \
Al \ ~ J 7
/ ~
v ~
~
0—— — — (oker ; Cokep
| 2 | A
| -1 |
M v
0 0

so the ‘“‘smoothness’’ property of (1) is symmetric to the dotted diagonal. The
four-lemma is nothing but the statement of this symmelry, since its hypotheses
imply immediately
Ker u = ¢2 Ker v and Imy = ¢35~ Im u.

Hence for every smooth square (1),

Ker 8 = v Ker «, Ker»' = a Ker v
and

Ima =»~11Im§g, Imv =81 Imy;
moreover

Ker § = Ker o \U Ker » and Imé=Im» NImpa.

COROLLARY a. Let (4) be a commutative diagram:

(e,)

(7
0= ————h—" Bt
I a[ ﬂl Jr g
/
0 " [ ’
e L e
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Then

Ker 8 = A Kera and Ima = N-"1Im8g;
therefore

a 1-1 (and v 1-1) implies B 1-1, (v 1-1 and) B onto implies a onto.

CoroOLLARY a’ (dual to a). Let (4') be a commutative diagram:

onto’
A A B s C ?
(4-’) onto oL J /g‘ lg" ll
) , ¢
A G B ! S 7 (————— -0
Then

Ker v = u Ker 3, Img =u'tImy;
and therefore

(a onto and) B 1-1 implies v 1-1, (a onto and) v onto implies B onto.

Remark. Omitting the dotted arrows and the trivial assumptions ‘‘(eo),”
this can be regarded as a ‘‘three-lemma,” which contains the useful ‘‘five-

lemma’ and saves sometimes additional diagram-chasing (see for example 2,
p. 5).

DEFINITION 2. The commutative square (1) is “small’ at A {B'}, if in the
enlarged diagram (5) the induced map v {v'} is 1-1 {onto}. If 1t has both properties,

0 0
| I
' V
v —
Kerol——2— erB
0— — — > Hery A Y B Cokery — — =)
5) “ “ g £
0— — —>kery' Al = B* (okery'— — =0
Coker ol —————— Coker}
| 'y !
| |
v y
0 0
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then it is “small.” 1t is called “‘tight” (at A {B'}), if it is both smooth and small
((lt A {B'})

Now 7 1-1 {»" onto} is respectively equivalent to @ 1-1 {8 onto}, since it
means simply Kera M Kervy = 0 {Im» U Im 8 = B’}; hence “‘smallness” is
a symmetric property too.

DErINITION 3. The “‘upper completion” of the diagram
1aLplp
is the diagram (6) with the subgroup U C A’ @ B and maps p, o such that
(@', b) € Uifand only if v'(a’) = B8(b) and p(a’, b) = a’, o(a’, b) = b.
3

U——"——>8

() fi l/"

) /

_—_—
A8

It has the following universality properties: (a) it is commutative, that is,
Bo = v'p; (b) given any two maps v : 4 — B and «:4 — A’ such that
Bv = v'a, there is a unique w: 4 — U defined by w(a) = (a(a),v(@)) € U
such that v = ow and @ = pw (see (7)).

Therefore Bo = v'p = [V, B8], can be regarded as the least common right-
multiple of v’ and B.

DErINITION 3. The ‘‘lower completion’ of the diagram
A&a45B

is the diagram (6') with the factor group L = A’ @ B (a(a), —v(a)) for all
a € 4 and maps +, « such that (a’) = (a’,0), «(b) = (0, d).

V

A———B
(6" Oil jae
A— L

The lower completion has the following universality properties: (a) it
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commutes, that is «@ = «v; (b) given any two maps »': 4’ — B’ and 8: B — B’
with 8» = v« there is a unique 7: L — B’ defined by 7(a’, ) = »'(a’) + 8(b)
such that » = 7. and 8 = 7« (see ((7)).

A i ——8
) rx‘ L L‘{ 1/3
A’/ \Bl

Hence kv = wa = [a, v]; can be regarded as the least common left-multiple
of a and ».
Both completions are wunique up to isomorphism.

PRrOPOSITION 2. The upper {lower} completion (6) {(6")} <s tight at U {L}.

Proof. (a) (6) is smooth, that is, Ker 8 = ¢ Ker p and Im p = »~! Im 8.
If 8(d) = 0, then U > (0,8) € Ker p and & = ¢(0, b), so Ker 8 C ¢ Ker p. If
v (a') = B(b), then (a’, ) € U with a’ = p(a’, b),s0 Imp D »'~1Im 8.

(b) (6) is small at U: If (a’,d) € Ker p M Ker ¢, then p(a’,d) =a’ =0
and o(a’,d) = b =0, so (@', b) = 0.

COROLLARY a. If v' {8} onto, then o {p} onto.

Proof. Imo = g~ Im»" {Imp = »'~1Im B}.
Thus the L.c.m. [¢/, 8], is epimorphic if and only if both »" and g8 are. (This
follows also from Im[//, 8], = Im B8N Im'.)

COROLLARY b. If v/ {8} 1-1, then and only then o {p} 1-1.

Proof. Ker ¢ C p' Ker v’ M Ker ¢ {Ker p C ¢! Ker 8 N Kerp} = Kerp N
Kero = 0 and Kerv' = pKero {Ker3 = ¢ Ker p} (or Keroc = Kerv' @ 0
{Ker p = 0 ® Ker 8} in obvious notation).

Thus [+, 8], is monomorphic if and only if both »" and g8 are. (This follows
also from Ker[v', 8], = Ker p \U Ker ¢ or = Ker v’ @ Ker 3.)

COROLLARY c. If v’ = B, then p and o onto.
Proof. Imp=»"1'ImB=Ime=4"1Imy =p"1ImpB = B.

Consequently p = ¢ is isomorphic and [8, 8], = B8 if and only if v/ = g 1-1.
(If p=o0, then Kerp=Kero =KerpMN\Keroc =0, so p=o¢ 1-1 and
v', B are both 1-1; if p = ¢ onto, then »' = 8 because »'p = Bo. If [B, 8], = B,
that is, ¢ 1-1, then ' = 8 1-1.)

CoROLLARY a’. If a {v} 1-1, then « {«} 1-1.

Proof. Ker x = v Ker o {Ker: = a Ker »}.
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Thus the l.c.m. [a, »]; is monomorphic if and only if both « and » are. (This
follows also from Kerla, v];, = Ker a \U Ker ».)

CoroLLARY b'. If and only if « {v} onto, then k {i} onto.

Proof. Ima='Imk {Ilmy=«1Im: and ImkDilma'JIm«
{Im e DxkImryrUlm =Im UImek=L (or Imie=A"® Imy» {Imx =
Ima @ BY}).

Thus [e, v], is epimorphic if and only if both « and » are. (This follows also
from Imfe,v] = Im:MNImk or = Ima @ Im».)

CoROLLARY ¢'. If @ = v, then « and « 1-1.
Proof. Kert = aKerv = Kerk = vKera = a Kera = 0.

Hence ¢ = « is isomorphic and [e, a];, = « if and only if o = v onto. (If
t=k, then Imi=Imx=Im:UImk = L, so = «x onto and «, v are both
onto; if + = « 1-1, then a = » because @ = xv. If @, a]; = «, that is, ¢ onto,
then » = « onto.)

Remark. For completions see (3). In (4) least common multiples are defined
only for monomorphic or epimorphic pairs.

ProprostTION 3. The square (1) is smooth if and only if the map w: A — U
{r: L — B’} in (7) {(7")} is onto {1-1}. So w onto if and only if + 1-1.

Proof. Suppose w onto. If 8(b) = 0, then U D (0,0) = wl(a) = (ala), v(a));
hence b = v(a) with «a(a) = 0: Kerg CvKera. If »'(a’) = 8(b), then
UD (@, b) = wla) = (ala), v(@)); hence a’ = ala):v"1ImB C Im a. Sup-
pose (1) is smooth. Given (a’, 6) € U, »'(a’) = 8(d) ora’ = »"1Im B = Im ¢,
thus a’ = aa) and B(b) = vala) = Bv(a) or B(b — v(a)) = 0, that is,
b—v(a) € Kerg=vKera, so b—v(a) =v(@ with «(@ = 0; hence
(@, b) = (ala + a), v(i@a + ad) = w(a + a): w onto.

ProposiTioN 4. The square (1) is small at A {B'} if and only if the map
w:Ad—> Ut L— B} in (7) {7} is 1-1 {onto}.

Proof. For a € 4, w(a) = (ala), v(a)) = (0,0) =0 is equivalent to
a € Kera M Ker ».

Proofs can be given also by means of Proposition 2, which is restated in:

PRrOPOSITION 5. The square (1) is its own upper {lower} completion, that
is, the map w {v} in (7) {(7")} is isomorphic if and only if it is tight at A {B'}.

ProrosiTiON 6. (1) is smooth if and only if the inner square in the diagram
(8) built by the maps p, o, w and , k, T from the upper and lower completions
(7), (7) is commutative.
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A

(¢)
/

Proof. “If” follows from « onto or 7 1-1. Assume commutativity. If
v (@) = B(b), then (¢, b) € U and w(a, b) = (¢/,0) = ka(a’,d) = (0,5) in
L, that is, (@, —b) = (a(a), —v(a)) for some a € 4, so a’ = a(a) and
¥~1Im 8 C Im a. If 8(b) = 0, then (0, 5) € U and similarly (0, —8) = («(a),
—v(a)) with @ € 4, hence b = v(a) with a(a) = 0 or Ker 8 C » Ker .

DEFINITION 4. In any commutative diagram (8) the inner square J is called
a “squeeze’ of the outer square U, the map w {r} the upper {lower} *‘squeezing
map.”

ProOPOSITION 7. If ¥ is smooth, then every squeeze S of U is smooth (and
conversely).

PROPOSITION 8. If & is smooth, w onto and 7 1-1, then A is smooth.

ProposttioN 9. If ¥ is smooth and & small (hence tight) at U {L}, then
w onto {T 1-1}.

ProposITION 10. If U is small at A {B'}, then » 1-1 {7 onto} (and conversely).

COROLLARY. If ¥ is small at A {B'} and w onto {r 1-1} (hence isomorphic),
then & is small at U {L}.

ProposITION 11. If & is small at U {L}, and w 1-1 {r onto}, then A is small
at 4 {B'}.

Remark. Propositions (7)-(9) {(10), (11)} follow from Proposition (3)
{(4)} and conversely. Direct proofs are as easily available.

TureorREM 1. For any smooth square (1) the square built by the maps p, o
and v, k from (7) and (7') is its own completion, that is, it is tight and is con-
nected commutatively with the original square by the epimorphism w and the
monomorphism 7. It is the only tight squeeze of (1) up to isomorphism, as well
as of any other squeeze of (1).

PROPOSITION 12 (see diagram (9)). Given two squeezes J S and S of A so that

S is small at U (L} and » onto {r 1-1}. Then there is a unique e: U — U
{n: L — L} such that (9) commutes; hence X is a squeeze of J if both conditions
hold.

Proof. Given u € U, u = w(a), define e(u) = w(a). This is consistent since
for u = w(a1), w(@ — ay) = 0. Hence v(a—a;) = ow(a—a;) = do(@a—ai) =0
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A B

(9) o a DN, p
F/P//Nr,

A= 7 B

and ale — a1) = pw(a — a1) = pale — a1) = 0. Thus &(e — ay) € Kerp M
Ker ¢ = 0, that is, @(a) = @(a,).
This again proves the uniqueness of the squeezing described in Theorem 1.

THEOREM 2. Every commutative square (1) can be squeezed uniquely with
epimorphic upper and monomorphic lower squeeze map to a small square obtained
from the maps p, o and v, k in (7) and (7') by restricting U to Im « and L to
L/Ker 7. If and only if (1) is smooth, this restriction is the original inner square
of (8) and tight. If and only if (1) is small, this squeeze 1s (1) itself.

Remark. In Theorem 1 the inner square is a squeeze of any squeeze of (1),
whereas here this can be said only of those squeezes of (1) with epimorphic
upper and monomorphic lower squeezing map. The commutativity of the
inner square is ensured by the restriction process.

DEFINITION 5. The l.c.m. [ay, as, a3], of three maps a;: A, — Q with common
range Q 1is their upper completion (10) with the subgroup UC 4, @ A @ A,
and maps o; such that (ay, as, as) € U if and only if ai;(a1) = as(as) = as(as)
and oiay, as, as) = a; for 1 = 1,2, 3.

5:0‘1)’13 0LV, = 0y

1 >

DEFINITION 5. The l.c.m. [v1, v, v3]; of three maps v;: P — A, with common
domain P is the lower completion (10") with the factor group L = A1 @ A, @ 4A;
i), 0,v;(p)) for all p € P and maps v; such that v;(a;) = (0,a; 0) for
1<1<ig<3.

In both cases we have universality: To every commutative diagram of the
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L
|
|
iz

X,

\5

6:oc1)4 =0, Y=ot

A

373

same shape (the upper {lower} part of (10) {(10")} with P and »; {Q and «}
instead of U and ¢; {L and .}, ¢ =1,2,3) there is a unique mapping
w:P— U {r: L — Q} such that (10) {(10")} commutes. This gives:

THEOREM 3. For mappings a;: A;— Q,vi: P — A1 = 1,2, 3, the respective
assoctativity laws
[las, @olyy sl = oy, (@2, asl/]; = a1, @s, @3],
and
(r1, velyy wale = [vy, e, valile = [v1, ve, w3]
hold up to isomorphisms.

Thus the statements of the Corollary to Proposition 2 immediately extend
to this case. The analogies can be carried further:

DEFINITION 6. The upper {lower} diagram in (10) {(10")} is called ‘‘smooth’
or “small” at P {Q} according as » onto {r 1-1} or w 1-1 {r onto}, respectively.
It is called “‘tight” at P {Q}, if it has both properties.

ProrosiTiON 13. Smaliness at P in (10) is equivalent to
Ker v1 M Ker vo M Ker v; = 0,

smoothness at P with

K;: Ker ay[= v1 Ker § = vi(Ker v, U Ker ;)] = »;1(Ker vy N Ker »;)
K,: Ker as[= vy Ker § = vo(Ker »; U Ker »;)] = v2(Ker v, N Ker »y)
D9 Ks: Keraz[= v; Ker § = v3(Ker v, \U Ker vs)] = v3(Ker »; N Ker »,)
K;: Ker 8[= Ker v; U Ker v, U Ker ;]
= (Ker v1 N Ker vy) U (Ker v1 N Ker v3) U (Ker v M Ker »3)

and

I1Z Im V1[= al—l Im 5] = 0[1_1(Im [s7) N Im a3)
Iy: Imvo[= as ' Im 8] = ax'(Im oy M Im a3)
I3: Im V3[= a3 Im 5] = 0(3"1(11'1'1 a3 M Im 0[2)
Is: Imdé = Imay N Ima, N Im as.
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ProrosiTiON 13'. In (10") smaliness at Q is equivalent to

Imae; Ulmas U Ima;z = Q,
smoothness with

K,: Ker oy[= v, Ker §] = v1(Ker vy \U Ker »3)
Kgll Ker a2[= Vo Ker 5] = V2(I<ef V1 U Ker Vg)
K;': Ker a[= vz Ker 6] = v3(Ker vy, U Ker »,)
Ky': Ker 6 = Ker »; \U Ker vy U Ker vy

and

fIl’: Imyi[= o ' (Imas N Imay) = ;7' Im 6] = o1 (Im az U Im ay)
I L' Imyy[= as ' (Ima; N Imay) = e Im 8] = ay ' (Im oy U Im ag)
JI Imvg[= oy (Imay N Imay) = a5 Im 8] = a5~ (Im a; U Im aw)
I Im6[= Ima; N Ima: M Im as)
= (Ima; UlIma) N (Ima; U Imaz) N (Im e U Im ay).

Remark. Replacing throughout ““="" by the indicated inclusion signs ‘D"’
and “C” we obtain statements that follow already from commutativity.
Obviously smoothness at P does not imply smoothness at Q, that is, the
self-duality “‘w onto if and only if 7 1-1"" in Proposition 3, true for squares,
no longer holds.

ProrositioN 14. Condition K, and Is tmplies I;; I, and K, implies K;; I;
implies I5; K, and K ;implies K for 1 < 1 < j < 3. Dually K" and I’ implies
I/; 1/ and Ky implies K/'; I/ and I implies Is'; K| implies K;'.

CoROLLARY. The conditions K., Ki, K3, and I, {K{, K., Ky, and I’} or
I, I, I;, and K, {I), I, I/, and K’} or K,y K, I, {I/, I/, K/} with
1 <735 j# 1< 3 alone imply the others, that is, smoothness at P {Q}.

Remark. The corresponding facts for the square (1) are in obvious notation:
Ky and I; implies I,, K,» and I; implies I,; similarly I, and K; implies K,-,
I, and K; implies Kg. Hence K, K./, and I, alone, or I, I,, and K; alone, as
well as Kz and I, alone, or K, and I, alone, imply full smoothness. The last
statement is the four-lemma.

Now the commutative diagrams of given shape, say

D:Ad; 25 Q&2 4,
form an abelian category (see 3), whose maps w: D — D’ with
’ 7
9’3‘41,& Q(gg—Az,
are triples @ = (Ay, 6, N\2) such that the diagram (11) commutes.
The sum of two mappings w = (A, A, 82) and 7: (u1, €, p2): D —> D is
defined by w4+ 7= A\ + u1,8 + ¢ Ao+ u2): D — D, w is monomorphic

{epimorphic}, that is, wp = 0 {¢w = 0} implies ¢ = 0 if and only if Ay, Az, 6
are all 1-1 {onto}.
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A0,

1

(1) ), é A
] O(,’ ’ o‘z' /
A, Q= Az.
Ker w, Coker w, Im w~ Coim w together with their natural injection

(w1, 7, w), projection (w, ¢’, '), injection (¢, j/, t»’) and projection (=i, 7, m2)
are defined in obvious manner from the respective induced diagrams (12).

o0, ) ’ ' 7 ’
erh > er§<—2— kerd, A—e Q% A,
b Fl b W 4 7

lA 7
At Q2 p, Coker) —=1 > Coher§ <—— Coker ),
(12)
/"‘)1‘ o m§ o /mr],_ A1 Oy Q 2 A,
Yy /7 4 T d 7
! ’ 2’ / . . .

A,,I oy QR &, Az CoemA 4 2 (om § ™ (ocm ) ,

Given D, define T(D) = U as the top group in the upper completion of D,
that is, (@ as) € UC A1 ® A, if and only if ai(a1) = as(as). For
w: D — Y in A define a mapping T (w): U— U’ = T(D') by T(v)(ay, as) =
(\1(a1), A2(a2)) € U'. Define S(D) = Q/Ima; U Imas and S(w) : S(D) —
S(®) = Q/Ima,’ U Imay by S(w)(q) = 8(gq). This is consistent, since
6(agay)) = a/Ni(a) =0 for i =1, 2.

THEOREM 4. T and S are additive covariant functors and S 1is the first right
satellite of T. The higher satellites are trivial. For any exact sequence

095D 59" -0,

namely
0 e p— N 0
N
3) 0 —t g b0
cczT diT | . YTOC;
0 s — R g 0
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the sequence

0— 7@ 9, reery L9, rny b sy S@)

s exact, with a connecting homomorphism 0 defined as follows:

For (a/’,a)") € U = T'(D"), that is o/ (@)") = /' (@), find
(ll’l = )\1/((11/), (12” == )\2’((12,). Then

al,lkl,(al,) _ a2”A2/(a2,) — 6’(&1’(0«1’) _ a2l(a2/)) — O.

Hence ai'(ai’) — @' (a2) = §(¢) with ¢ unique. Set 8(a,”, a)’’) = q.

S(w) S(»")

S@") -0

Proof. 0is well defined, since for a,”” = N\ (a)), as’’ = N/ (@Y), A/ (@) —a,) =0
and N (@) — ay) = 0; hence d,/ — a) = M(ay), @' — a) = N2(as), and
061/(@1/) - 062,(52/) = all(all) - 012/(0«2') + 041I>\1((11) - azl)\z(az) = (g +
0(az(ar) — az(aq)). But ai(a;) — as(as) = 0. Now

T(®) = U = Ker b3 and S(D) = Coker é

‘

with the ‘“‘associated map” o A1 @ A, — Q given by
bq (@1, a2) = ar(ar) — as(a).

T(w) and S(w) are the induced maps in diagram (14). Thus the "kernel-
cokernel-lemma’ (see 3) provides a proof. Direct calculation gives another.

0 —— U=ker f@ ADA; $0 Q (oker D 0
)  TwE| el ; -5
0 ﬁ(j!:‘/{t’ff@,_%/‘;@/ﬂ fo’ Q' (okerZ@, —_—0

Dually in the abelian category 8 formed by the diagrams of shape
C:d, <P 4,

define F(€) = L = A1 @ As/ (v1(p), —v2(p)) for p € P, the bottom group
of the lower completion of €, and for r: € > € in B, namely 7 = (u1, €, u2)
such that (11') commutes, the map F(r): L — L' = F(€') by F(r)(ai, a:) =
(u1(ay), u2(as)), consistent since F(r) (v1(p), —v2(p)) = (vi'e(p), —vie(p)) =0
in L'. Define G(€) = Ker »; M Ker »; and the map G(r): Ker »; N Ker v, —
Ker v/’ N\ Ker v = G(€") by G()(p) = e(p) € Ker vy’ M Ker vy'.

Ar——P—2—,

(1) + M
2,

£
A2 p

v

As
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TuEOREM 4. F and G are additive covariant functors and G 1is the first left
satellite of F. The higher satellites are trivial. For any exact sequence

056565 6" —0,

namely:
0 A, L e -0
%T Tz’ Tv
) o P d P’ £ __,p 0
3| O 2
0 AL A AZI /s A: 0
the sequence
0-6(6) E7 66 E7, g D risy £ pesny 9D, peery -0

is exact, with connecting homomorphism & defined as follows: For p'" € Ker v,
N Ker vy’ find p"” = € (p'); then ui'vi' (p') = 0 and wi'v)' (p') = 0, and hence
vi' (p") = milar) and vy’ (p') = wpalas) with unique ay, as. Set 3(p"") = (a1, —as).

Proof. ¢ is well defined. For p" = € ('), €@ — p') =0; hence

P = p' 4 e(p) and v/ (P') = pi(ar) + p1(pi(p)), vo' (B') = palas) + w2(v2(p)).
But (»:1(p), —v2(p)) = 0 in L. With an ‘‘associated map”’ Y P> 41 @ 4

defined by ¢@(P) = (v1(p), —r2(p))
F(€) = Coker 17 and G(€) = Ker 7

F(7) and G(r) are the induced maps in (14').

0 fery, p—LL - pah, Goher . 0
() Go)=t £ JZe 1@p= Fir)
i Y,{," ! ! /
0 Ker ')Uoc,’ P A1@A2 Coker 'ﬁc,/ —_—(

Remark. For the right half of the diagram (10), built by the maps a1, as, as,
an ‘‘associated map’’ can be similarly defined, namely x: 4; ®@ 4. @ 4; —
Q ® Q @ Qgiven by x(a1, az as) = (aa(a1) — az(as), a(a1) — as(as), az(as) —
as(as)); then Ker x = U gives the upper completion and Coker x its right
satellite. Similarly, for the left half of the diagram (10’), built by the maps
v1, va, ¥3, the associated map §: P@® P ® P —> A, ® A, @ A; is defined by
£(pr, P2y P3) = (wi(p2 + P3), v2(Pr — p2), vs(—p1 — p2)). Thus Coker & = L

gives the lower completion and Ker ¢ its satellite. More generally to any
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(41)

Q\

0 O D e gt (< LL (=2 (b
_ |
09 o7 |
u.“ 7 _
!
=g (O <55 = O <~ (I~ Ur=57= (= W =55
o/ \c
7 (%1)
7N
0 Iz 0<— §<—7 y 0
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finite (and infinite) diagram (not necessarily of l.c.m.-type) there corre-
sponds an upper and lower associated map, which gives its upper and lower
completion, respectively, with satellite.

ProrosiTION 15 (see 3). If the triangle

B\ /v/

is commutative, the sequence

; 3 Y
(15) 0—Kerp % Ker ¢ §—>Ker'y £, Coker 8= Cokerq&L Cokery — 0

with natural injection i, projection =, and induced maps B, v, e (by identity)
s exact.

Proof. ¢ = vB implies Ker¢p = g1 Kery D Ker8, Im¢ = yImB8 CImy
and B Ker¢ = ImBNKery CKery, yv!1Im¢ = Kery UImg D Im 8.

Let H be any additive right-exact functor with left satellites J, K, . ..,
¢:B— D any map, C = Im ¢, a: 4 = Ker ¢ — B and 6: D — E = Coker ¢
the natural injection and projection respectively. The canonical splitting (16)
into short exact sequences provides a diagram (17) with both rows exact,
where the vertical maps are identities and 6, ', ¢, ¢’ are the connecting homo-

morphisms.
Since H(¢) = H(v)H(B) and J(¢) = J(v)J(B), the sequences

0 > Ker H(8) - Ker (o) LEL Ker H(y) S CorerH(8) =2, Coker H(¢)
I Coker H(y) —0,
(18)

J®) I
0 — Ker J(B) ER Ker J(¢) = Rer J(v) b Coker J(8) == Coker J(¢)
£ Coker J(y) = 0

are exact. Together with (17) they induce the commutative diagram (19)
with exact lines ———, ———, - - - -, In particular:

(a) Ker H(¢) has a subgroup Im H(a)[= Ker H(8) ~ Coker ¢] with
factor group Coker J(8)[~ Ker H(y) = Im 6].

(b) Coker H(¢) ~ H(E)[= Im H(5) ~ Coker H(y)].

Similarly in case K = 0, thatis, 6’ = 0 and ¢’ = 0, hence Ker J(y) =Im ' =0:

(c) Ker J(¢p) = J(4)[~Im J(a) = Ker J(B)].

(d) Coker J(¢) has a subgroup Coker J(B)[~Im 3 = Ker H(a)] with
factor group Coker J(y)[~Im J(§) = Ker 6].
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Assume the case of abelian groups with H = ( ) ® X and J = Tor( , X)
for some fixed group X. The definition of “®,” “Tor,” and of the connecting
homomorphism 6 in terms of generators and relations (see 3) allows an explicit
description of the isomorphism

x: Ker H(¢)/Im H(a) — J(E)/Im J(5):

Given e € E and x € X with ke = 0 and hx = 0 for some integer & > 0,
find e = 6(d); then §(kd) = 0; and hence hd = ¢(b). Put kr,(e,x) = b @ x
mod Im H(«). This is well defined: For e = 6(d’), 6(d — d’) = 0; thus
hd' = ¢(b—hb) and b — D) Qx =0 @ x —b Q@ hx = b ® x. hd = ¢(b')
gives b — b’ = ala),s0 b’ @ x = b Q@ x + H(a)(a ® x). For m,(d, x) € J(D),
thatis, 2d = Oand hx = 0, J(8)7,(d, x) = 7,(e, x) with e = 6(d) and hd = ¢(0);
hence «r,(d,x) = 0 ® x = 0.

Since Ker H(¢) = H(B)~'Im 6 and Im H(a) is generated by the symbols
a(a) ® x, that is, by those b ® x with ¢(b) = 0, the definition of § and &
shows that:

Ker H(¢) is generated within H(B) = B ® X by the symbols & ® x with
¢(b) = hd and hx = 0 for some b = 0,1,2,... (h = 0 gives Im H(a)),

Im 6 is generated within H(C) = C ® X by the symbols ¢ @ x with
v()[= ¢] = hd and hx = Oforsome h = 1,2,3,... (h = 0 gives0 ® x = 0),

Im & is generated in 4 ® X by the symbols ¢ ® x with a(a)[=a] = kb
and hx = 0 for h = (0),1,2,3, ... .

Given the diagram

©: 4,5 Q2 4,
replace ¢: B — D by the associated map o A1 @ 42— Q defined above,
4 by U = Ker ¢ = a1, a2],, E by
U = Coker d)@ = Q/Im a; U Im a.

Furthermore let

a1 ® 1 as @1

and

T@®): Tor (A, X) Lo ev D pon o xyTorlen Uopo 4, %)

be the induced diagrams with associated maps H(qS@) = o5 ® 1 and
J(¢@) = Tor(d)@, 1); finally V = Ker H(¢®) = [o;1 ® 1,2 ® 1];,
V' = Coker H(qb@), W = Ker J(qS@) = [Tor(as, 1), Tor(as, 1)]; and
W = Coker J((b@), the respective least common multiples with satellites.

Then Im#é is generated within Ima;\JUImas ® X by the symbols
(a1(ay) — as(as2)) ® x with a;(a;) — as(as) = kg and hx = 0 for some integer
h > 0. Im¢ is generated within U ® X by the symbols (kai, kas) @ x with
h(ai(a;) — as(as)) = 0 and hx = 0 for some & > 0.
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THEOREM 5. (a) V s generated within (A, @ 4,) @ X ~ (4, X) @

(d: @ X) by the symbols (a1, as) @ x such that ai(a1) — as(as) = hq and
= 0 for some q € Q and wnteger h = 0,1,2,... .

It contains the subgroup Im U @ X, with factor group isomorphic to
Tor (U, X)/Im Tor (Q, X) by the mapping « defined as follows: For hlg] = 0,
that s, hq = a1(a1) — as(@2) € Ima; U Im ay, put xm,([q], x) = (a1, a2) ® x.

Im U Q® X in turn is isomorphic to U @ X modulo the subgroup Im 9.

(b) V~U ® X by the canonical map ¢ @ x — [q] ® x.

(¢) We~Tor(U,X), that is, [Tor (e, 1), Tor(as, 1)], =~ Tor ([ay, az], X) by
(a1, a2),x) = (rh(ay, x), 7 (az, x)), where h(ay, az:) = 0 and ai(a;) — asz(as) =0
hence Tor (ay, 1)1y (ay, x) — Tor(as, 1)7,(az x) = r(ai(ai), x) — mi(as(as), x) =
7,(0, x) = 0.

(d) W = Tor(Q, X)/Im Tor (a;, 1) \U Im Tor (as, 1) has a  subgroup
Tor(Im a; \J Im as, X) 1somorphic to Im&, with isomorphism given by
mlai(ar) — az(as), x) — (hay, has) @ x. The corresponding factor group is
isomorphic to the subgroup of Tor (U, X) generated by those ,(lq], x) with
hg =0 and hx = 0, via the canonical map 7,(q, x) — 7,([q], x). The laiter
has a factor group isomorphic to Im 0 by 7,([ql, x) = hq @ x for hx =0 and
]’Lg = Oll(al) - 0(2(02).

To complete the picture given by (19) we describe its maps in terms of
generators (upper symbols are generators, lower symbols images under the
preceding map):

First row:
7;1(011(01) - Olg(dg), x) Th(gv x) Th([q]v X
0 — Tor (Imay U Tmas, X) 2 Tor (0, %) 29, Tor (0, X) —
0 Th(al(al) — as(as), x) m4(lgl, x) with kg =0
(ar(ar) — az(a2)) ® x g x lq] ® x
i (Ima; Ulmaz) @ X _II_(VL 0 X l@L U®X—0
(a1(a1) — a2(az)) @ x with (ea(ar) — az(as)) ® x l¢] ® x
al(al) - az(az) = hg, hx =0
Second row:
(@, a), ) ro((ar, a2), %) raea(as) — ax(as), )
0 — Tor (U, X) %) Tor (4, ® 45, %) 78] Tor (Imay U Imas, X) —
0 m((ay, as), x) with mi(ea(ar) — az(as), x)
al(al) - az(dz) =0 with h(al, az) =0
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(a1, a2) ® x with

ai(a1) — az(as) =0 (a1, a3) @ x (a1(a1) — az(a2)) ® x
Povex Y9 Uea)ex O mayUimay) @ X — 0.
(hay, has) @ x with (a1, a2) ® x with (a1(a1) — as(ar)) ® x

h(al(al) _— 0[2((12)) = 0 al(al) _— ag(az) = 0

Dually, given diagram
C:d; P2 4,

replace ¢: B — D by the associated map Y P — 41 @ 4, 4 by L’ = Ker 125
= Kerv; N\ Kervs, E by L = Coker v = [v1, v2];. Then the induced dia-

grams
HE): 4 0 x 28l pex 2@l 1 ex
and
J(6): Tor (Ay, X) Xt Ou D pop xy Tor G 1) po g, x)

have associated maps H (¢@) =¥ ® land J (1,1/6:) = Tor (¢@, 1) respectively.
Their least common multiples with satellites are

M = Ker H(yg), M = Coker H{g) = [11 ® 1,7 ® 1];, N = Ker J(¥)

and
N = Coker J(¢@) = [Tor (v, 1), Tor(vs, 1)]..

Then Im ¢ is generated within I ® X by the symbols #p ® x with hpc L
and hx = 0, and Im 6 is generated within P/L ® X by the symbols p ® x
with (v1(p), —v2(p)) = k(ay, as) and hx = 0.

THEOREM 5. (a) M is generated within P @ X by the symbols p @ x such
that (v1(p), —v2(p)) = h(ai, a2) and hx = 0 for some h =0,1,2,....

It contains Im(L @ X) as a subgroup, generated by those p ® x with h = 0,
with corresponding factor group isomorphic to Tor(L, X)/Im Tor(A; @ A, X)
by the map « defined as follows: Given generator 7,(l, x) with I = [ay, as)], that
is h(ay, as) = (v1(p), —vy(p)) and hx = 0, put krp(l, x) = p ® «x.

Im(L ® X) itself is isomorphic to L @ X modulo the subgroup Im 9.

(b) M~L Q® X, that is [v1i ® 1,v: ® 1], >~ [v1, vs];, @ X via the natural
map.

(¢) N ~Tor(L, X) by inclusion: For p € Landi=1,2
rn(py ) 20, ), 2) = 0,

(d) N = [Tor(vy, 1), Tor(ve, 1)]; ~Tor(4; ® As, X) modulo the subgroup
generated by the symbols To((v1(p), —v2(p)), x) with hp = 0 and hx = 0, a
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subgroup isomorphic to Tor(P, X)/Im Tor(L, X) by m.(p, x) = 7 ((v1(p),
—vs(p)), %), with Im Tor(L, X) ~Tor(L, X). N contains a subgroup iso-
morphic to Im & by hp @ x — 74((v1(p), —v2(p)), x), where hp € L and hx = 0.
The corresponding factor group of N is isomorphic by the canonical map to the
subgroup of Tor (L, X) generated by the symbols r,([a1, as], x) with h(a,, az) = 0,
and Tor(L, X) modulo this subgroup is isomorphic to Im 6 via 7,([a1, a:], x)
— [p] ® x, where h(ai, az) = (v1(p), —va2(p)).
In terms of generators the maps in (19) are:

First row:
2 ([p], %) m((ay, as), x) m([ay, asl, x)
0 — Tor(P/L, X) _](_YL Tor(d; ® A X) i@_) Tor(L, X) —
0 m((1(p), —v2(p)), x) mi([ay, as], x)
with k(v (p), —rs(p)) = 0 with k(a1 as) = 0
Pl ®«x (a1,a:) ® x [a1, a2] ® x
kA riex HY seayexT¥ rex—o
[p] ® x with hx = 0 (r1(p), —v2(p)) ® x la1, a:] @ x

and (Vl(P), —Vz(P)) = h(alv (12)

Second row:

Th (P, x) With

(n1(p), —v2(p)) =0 (P, X) ([P, %)
0  Torh,x) 29O rorexy T8O, tore/r x) —
0 (P, x) with . ([p], x)
(v1(p), —v2(p)) =0 with &p = 0
p ® x with
(v1(p), —v2(p)) =0 P ®x r] ® x
v I ®Xx He)  pogx  HO prex o
hp ® x with p ® x with [p] ® x

h(vi(p), —v2(p) = 0 (1(p), —»2(p)) =0

Remark. The case of the functors Hom (X, ) and Hom( , X) can be treated
similarly. Thus, for example, in the above notation,

[Hom (1, a;), Hom (1, a2) ], >~ Hom (X, [ay, a2].),
[Hom (1, 1), Hom (s, 1)], &>~ Hom ([vy, v2];, X).
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Added in proof: The four-lemma (Proposition 1) also appears in a recent
publication of D. Puppe, Korrespondenzen in abelschen Kategorien, Math.
Ann. 148 (1962), 1-30 (see p. 10, no. 3.1). It is proved there within the frame-
work of his theory of abelian correspondences. His conjecture (see p. 18,
no. 4.18) that important parts of the theory can be formulated by assuming
“‘quasi-exact categories” (these are abelian categories without addition) only
turns out to be true: Every such category can be imbedded canonically into
an J-category of correspondences as defined by Puppe (proof to be published
soon). This provides in particular a proof of the four-lemma (as well as of
other elementary constructions of homological algebra) in quasi-exact cate-
gories. An elegant proof can also be given independently of the theory of
correspondences under the same assumptions.
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