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EVEN EVERY JOIN-EXTENSION SOLVES
A UNIVERSAL PROBLEM

ISIDORE FLEISCHER

(Received 18 February 1975)

Abstract

Generalization to arbitrary join-extensions of a poset of a recent characterization of those which
are complete lattices.

Schmidt (1974) devotes a just published article to showing that a complete
lattice extension of a partially ordered set P, every element x of which is the sup
of the elements P N (x] it dominates in P, may be characterized as that complete
lattice extension of P to which extend uniquely as complete sup morphisms all
isotone maps, of P into complete lattices, which have only the P M (x] as inverse
images of principal ideals.

The restriction to complete lattices is superfluous: Every partially ordered
extension E in which P is join-dense admits a unique extension, to an isotone
map preserving the sups of the P N (x], of every isotone map on P which sends
these on subsets having a sup in the image: E can thus be uniquely mapped over
P into every extension in which the P N (x] have sups; and this characterizes it
as extension. Moreover, the unique isotone extension will preserve all sups
existing in E just when the inverse images of principal ideals contain, with any
set of P M (x], also their least upper bound under inclusion, whenever this exists.
The dual property can be used to characterize sub-extensions of the MacNeille
completion. Extensions of the identity, from a partially ordered group to join-
semilattice-extensions, which preserve sups of the finite or bounded subsets, are
also known from abstract treatments of classical ideal theory: cf. Jaffard (1960).

Let P be a subset of a partially ordered set E. The set P N (x] of elements of
P dominated by x € E is initial; i.e. it is closed under passage to smaller
elements in P (it is also closed under those sups of E contained in P, but this
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property is not intrinsic to P). The extension E is thus mapped on a family of
initial subsets of P — a map which is isotone (order preserving) — in fact, a
complete inf morphism in that it sends every existing inf in E on the intersection
of the images. In addition, it order embeds P — more generally, the sups in E of
subsets of P — into the set of P N (x] ordered by inclusion: for x € E dominates
just those subsets of P contained in P N (x]. Indeed, restricted to the sups of
subsets of P, it is even a complete sup morphism in that it sends every sup existing
in E (by the associativity of sup this will also be the sup of a subset of P) on a
smallest containing P M (x] (which might properly contain the union of the
images). This so ordered set may itself be regarded as a partially ordered
extension of P via the identification of the latter’s elements with their embedded
images, the principal initial subsets they generate; as such it is a join-extension
i.e. one consisting exclusively of sups of subsets of P; conversely, every
join-extension is isomorphic to one such, Schmidt (1974).

The identity on P extends (uniquely) to a (necessarily isotone) map from
one join-extension E to another F so as to send sups of the P N (x] forx € E to
their sups in F, whenever these exist: thus when each P N (x] is contained in a
smallest P N (y] for y € F; moreover it could be extended to a map back from F
to E preserving the sup of P N (x] only if y could be sent back on x in order
preserving fashion over P, thus if P N (y] where also contained in P N (x]. This
would make P N(y]= P N(x]; and if it held for all y € F, the identity on P
would extend, uniquely so as to preserve sups of the P N (x], to an isomorphism
of E with F. Somewhat more generally, if F is an arbitrary (not necessarily a
join-} extension of P into and from which the identity on P can be isotonely
extended so as to preserve sups of the P N (x] for x € E, then E is isomorphic to
a subextension of F onto which F can be retracted (by following the map of F on
E with the embedding of E in F); and properly insofar as the image of E does
not exhaust F. Since the identity on F preserves everything, this permits
characterizing E among such F (as in Schmidt(1974))as that extension to which
the identity on P extends uniquely. [By construing sup as an infinitary algebraic
operation, this may be obtained by specialization from a similar characterization
of extensions E generated by a partial algebra P.].

In addition to its mappability over the identity on P into any extension
having sups for its P N (x], a join-, or indeed any, extension E of P admits
extensions of those isotone maps ¢, from P to a partially ordered set F which
send each of its PN (x] on a subset having a sup ¢(x) in F. This ¢ may be
characterized as that isotone extension of ¢, sending every x € E on a smallest
possible image in F; alternatively, as the composition, of the canonical map from
E to the set of P N (x], with the unique extension of ¢, from the image of P
which preserves the sup of each P N (x]. Suppose S is any subset of E with a
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sup, xo. Since ¢ is isotone, ¢ (x,) is always an upper bound for the ¢(x), x € S; it
can fail to be the sup only if ¢ (x) = some y € F for which ¢(xo) Z y; and given
that ¢(x) is the sup of ¢o(P N (x]), this comes to P N(x]C¢5'(y] failing to
imply P N (xo] C ¢5'(y]. Calling an initial subset of P for which this implication
does hold, for every S in a farm:ly S of subsets of E, an S-ideal, we may
summarize this as a

THEOREM. Let ¢, be an isotone map from P sending every P N (x], forx inan
extension E of P, on a subset having a sup in the image. In order for the map which
sends every x € E on this sup to preserve the sups in E of a family S of its subsets, it
is necessary and sufficient that every ¢,'(y] be an S-ideal.

For the special case E = P, this reduces to Schmidt’s Theorem 1. At the
same time, it yields the harder part of his Theorem 2, inasmuch as every P N (x]
is an S-ideal when S consists of subsets of sups in E of subsets of P.

Combining, we obtain the Initial Characterization of Join-Extensions :
every isotone ¢, on P for which ¢o(P N(x]) has a sup for every x in a
join-extension E, extends uniquely to E as an isotone map preserving sups of the
P N (x]; sups of subsets for which the ¢,'(y] are ideals will also be preserved.
Conversely, let F be an arbitrary extension of P having sups for the P N (x], and
suppose the identity on P extends to a map from F to E preserving these sups:
then E is isomorphic (qua extension of P) to the sub-extension of these sups.
Alternatively, if the identity on P extends to a self-map of F onto and preserving
these sups, which is unique in any class of self-maps preserving these sups and
including the identity on F, then F is isomorphic to E.

A dual characterization is also available for sub-extensions of the MacNeille
completion M of P. The P N (x] of M are just those initial subsets which contain
all lower bounds to their upper bounds (in P): hence if such a P N (x] — or more
generally any subset of it having x for sup — has a y for sup in any other
extension of P, then P ﬂ~(y] C P N(x]; consequently the extension of the
identity on P so as to preserve a set of sups in M of subsets of P, is necessarily an
isomorphism into the other extension. Combining this with our previous remarks
on extc~dability of maps, we obtain the Final Characterization of Sub-
Extensions of the MacNeille Completion : every isotone ¢,: Q — P extends to an
isotone ¢ from an extension F of Q into the subextension ECM of P
consisting of all sups in M of ¢o(Q N(y]) for y € F; moreover ¢ can be chosen
to preserve all sups existing in F of the Q N (y]. Conversely, if the identity on P
extends to an isotone ¢ : E — F preserving sups (of subsets of P) which exhaust
E CM, then ¢ is an isomorphism of this subextension of M with its image in F
— alternatively, if F is also exhausted by these sups, it is isomorphic to E.
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